
Hardware implementation of the exponent based
computational core for an exchange-correlation

potential matrix generation

Maciej Wielgosz , Ernest Jamro, Kazimierz Wiatr

AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow

ACK Cyfronet AGH
ul. Nawojki 11, 30-950 Krakow

{wielgosz/jamro/wiatr}@agh.edu.pl

Abstract. This paper presents an FPGA implementation of a calcula-
tion module for a finite sum of the exponential products (orbital func-
tion). The module is composed of several specially designed floating-point
modules which are, fully pipelined and optimized for high speed perfor-
mance. The hardware implementation revealed significant speed-up for
the finite sum of the exponential products calculation ranging from 2.5x
to 20x in comparison to the CPU. Orbital function is a computationally
critical part of the Hartree-Fock algorithm. The presented approach aims
to increase the performance of the part of the quantum chemistry com-
putational system by employing FPGA-based accelerator. Several issues
are addressed such as an identification of proper code fragments, porting
a part of the Hartree-Fock algorithm to FPGA, data precision adjust-
ment and data transfer overheads. The authors’ intention was also to
make hardware application of the orbital function universal and easily
attachable to different systems.

Key words: HPRC (High Performance Reconfigurable Computing),
FPGA, quantum chemistry, floating-point

1 Introduction

High performance computing has been recognized for many years as an area
dominated only by microprocessors. The rapid increase of the logic resources of
modern FPGAs (Field Programmable Gate Arrays) gives a huge opportunity
to adopt hardware accelerators for calculations which involve processing a large
volume of data. Such a vital rise in the computational capabilities of FPGAs has
stimulated investigations to construct a reconfigurable hardware accelerator [1].

The proposed hardware module aims to speed up HPC chemistry and physics
calculations and provide compatibility with the standard floating point data
format. The RASC [2] platform has been chosen as a hardware accelerator be-
cause of the computational capabilities it offers for SMP supercomputers. Since
achievable computation speed-ups strictly depends on the selected part of the

2 M. Wielgosz, E. Jamro, K. Wiatr

algorithm, the choice of it becomes a critical issue. Therefore the finite sum of
exp() functions was found a proper candidate for hardware acceleration. This
operation is predominant in scientific computations, therefore the described so-
lution may be employed in many kinds of applications (e.g. Quantum Monte
Carlo)[3, 4].

However, the implementation described here should be considered as a first
step in hardware exchange-correlation potential implementation. The ultimate
goal is to design a hardware unit capable of generating an exchange-correlation
potential matrix, which is one of the most computationally intensive routines
within the Hartree-Fock calculations.

2 Algorithm

The time-independent Schroedinger equation for a system of N particles inter-
acting via the Coulomb interaction is:

Ĥψ = Eψ (1)

Ĥ =
N∑
i=1

(− ~2

2mi
∇2
i) +

1
2

N∑
i=1

N∑
j 6=i

ZiZj
4πε0 |ri − rj |

(2)

where: ψ is an N-body wavefunction, r denotes spatial positions and Z repre-
sents the charges of the individual particles. E denotes the energy of either the
ground or an excited state of the system.

Quantum chemistry issues consist of a number of interacting electrons and
ions. The total number of particles, N, is usually sufficiently large that an exact
solution cannot be found. Controlled and well understood approximations are
sought to reduce the complexity to a manageable level. Once the equations are
solved, a large number of properties may be calculated from the wavefunction.
Errors of approximations made in obtaining the wavefunction will be manifested
in any property derived from the wave function. Where high accuracy is required,
considerable attention must be paid to the derivation of the wavefunction and
any approximations made. Therefore there has been careful investigation into
what level of precision should be adopted in calculations to ensure satisfactory
approximation.

The general procedure of solving the Hartree-Fock equations is to make
the orbitals self-consistent with the potential field they generate. It is achieved
through an iterative trial-and-error computational process, thus the entire pro-
cedure is called the self-consistent field (SCF) method.

The SCF procedure of solving the Hartree-Fock equation leads to the follow-
ing set of eigenvalue equations in matrix formulation:

FC − SCE = 0 (3)

F is the Fock-operator, C the matrix of the unknown coefficients, S the over-
lap matrix and E is the energy eigenvalues. All matrixes are of the same size.

Hardware implementation of the exponent based... 3

The Hartree-Fock equation solving is an iterative process. The coefficients
(corresponding to an electric field) are used to build the Fock-operator F, with
which the system of linear equations is solved again to get a new solution (a new
electric field). The procedure is repeated until the solution no longer changes.

The Fock operator depends on orbitals, which in turn are its eigenfunctions.
Therefore orbitals have to be calculated for each iteration of the whole Hartree-
Fock algorithm. That is why the finite sum of exponential products contributes
scientifically to the overall performance of the application.

Orbital function is expressed by equation 4 [5]:

χklm(r) = rkxr
l
yr
m
z

∑
i

CiNie
−αir

2
(4)

The algorithm (equ. 4) was split into several sections [8] to allow adoption
of a modular design approach. Consequently, a fully pipelined structure was
obtained.

Fig. 1. EP module block diagram

4 M. Wielgosz, E. Jamro, K. Wiatr

Three different units have been employed within the EP module [Fig. 1].
All of them are specially designed, fully pipelined floating-point modules [6,
7] optimized to high speed performance. Input widths as well as their internal
data path scales from single to double data precision. The input and output
data format complies with the IEEE-754 floating-point standard. Nevertheless
intermediate data representations employ different non-standard floating-point
format in order to reduce hardware resources.

1. Multiplier
For double precision data format inputs mantissa is 53-bit (54-bit including
leading one) wide, therefore the product width is 108-bit wide. Such a bit-
width is far beyond the required precision, therefore the LSBs of the product
are usually disregarded [10]. Consequently the LSB’s part of the multiplier
performs operations which are not used in the next arithmetic operations.
As a result, in the proposed architecture, some of the LSBs logic is not
implemented at all. This approach allows for significant area reduction. A
more detailed description of the multiplier will be available in a separate
paper.

2. Exponential function
This is mixed table-polynomial implementation of the exp function [6, 7],
based on commonly known mathematical identities

ex = 2x ∗ log2(e) = 2xi ∗ ex−xi/log2e (5)

where xi is an integer part of x ∗ log2e.
3. Accumulator

This is a fully pipelined mixed precision floating point unit. It can process
one datum per clock cycle due to its advanced and optimized structure. A
more detailed description of the accumulator will be available in a separate
paper.

3 Platform

The Altix 4700 series [11] is a family of multiprocessor distributed shared mem-
ory (DSM) computer systems that currently ranges from 8 to 512 CPU sockets
(up to 1,024 processor cores) and can accommodate up to 6TB of globally shared
memory in a single system while delivering a teraflop of performance in a small-
footprint rack. The RASC module communicates with the Altix system in the
same manner as any CPU does, i.e. employing NUMALink interconnection. Data
transfer between the FPGA and NUMALink bus is realized by an application-
specific integrated circuit (ASIC) denoted as TIO.

SGI RASC RC100 Blade consists of two Virtex-4 LX 200 [9] FPGAs, with
40 MB of external SRAM logically organized as two 16MB blocks (as shown
in Fig. 2) and an 8MB block. Each QDR SRAM block is capable of transfer-
ring 128-bit data every clock cycle (at 200MHz) both for reads and writes. The
RC100 Blade is connected using the low latency NUMALink interconnect to the

Hardware implementation of the exponent based... 5

Fig. 2. RASC architecture and the host-fpga data link

SGI Altix 4700 Host System, for a rated peak bandwidth of 3.2GB per second
each direction. The RASC algorithm execution procedure, from the processor’s
perspective, is composed of several functions which reserve resources, queue com-
mands and perform other preparation steps. The resource reservation procedure,
once conducted, allows many runnings of the algorithm - which amounts to a
huge time savings, since the procedure takes approximately 7.5 ms. Therefore
optimal structure of the hardware-accelerated application should contain as few
initializations of the FPGA chips as possible so the FPGAs configuration time
will be only a fraction of the algorithm execution time.

4 Implementation and acceleration

The EP module implemention results on the RASC [2] platform are presented
below. Core services, provided by SGI together with the RASC module, is an
extra logic incorporated in an FPGA which provides communication with the
on-board hub. Units which the EP module is built of are strongly parametrized,
therefore resources occupation varies depending on the data width (different
calculation precision) of the module.

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs

EP module alone 2229 (1%) 1975(1%) 2(0.006%)

EP module with the core services 11560 (7%) 15922(9%) 25(7%)

Table 1. Implementation results of the EP module - single precison

6 M. Wielgosz, E. Jamro, K. Wiatr

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs

EP module alone 8684 (4.8%) 7891(4%) 6(0.02%)

EP module with the core services 18015 (10%) 21838(12%) 29(8%)

Table 2. Implementation results of the EP module - double precison

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs

Exp() 820 (0.5%) 920(0.5%) 2(0.006%)

Multiplier 549 (0.3%) 444(0.25%) 0

Accumulator 860 (0.5%) 605(0.4%) 0

Table 3. Implementation results of the elementary modules - single precision

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs

Exp() 5025 (3%) 5223 (3%) 6 (1.8%)

Multiplier 2316 (1%) 1850(1%) 0

Accumulator 1343 (0.5%) 818(0.4%) 0

Table 4. Implementation results of the elementary modules - double precison

Exp() function and the accumulator module consume the highest amount of
resources, due to their complexity.

Module Multiplier Exp() Accumulator EP module

Pipeline delay [clk] 4 21 8 33

Table 5. Delays introduced by the EP module’s components - single precision

Module Multiplier Exp() Accumulator EP module

Pipeline delay [clk] 5 30 10 45

Table 6. Delays introduced by the EP module’s components - double precision

The overall pipeline latency of the exp module is 33 clock cycles for the single
precison data format. The latency strongly depends on the width of input data.

It is worth underlining that all the modules have adjustable widths of data
paths within the range from single to double precision. The Hartree-Fock algo-
rithm is executed differently, depending on the set of molecules it is employed

Hardware implementation of the exponent based... 7

for. This, in turn impacts the precision requirements at different stages of com-
putations. It may happen that for a certain chemical substance some sections of
the algorithm process much more data than others. Besides, in the Hartree-Fock
algorithm, the result precision increases (error decreases) with every algorithm
iteration, therefore the calculation precision may be somehow scaled with the
iteration number. Utilizing FPGAs in Hartree-Fock computations allows for the
adjustment of data buses widths within the system so the proper precision is
maintained across all the stages of the algorithm execution. The FPGA configu-
ration time (7.5 ms) is significantly shorter than the overhead introduced by the
oversized data format. It may appear that some sections of calculations can be
successfully computed at single precision (or any other precision, e.g. 48-bits),
saving a huge amount of resources that would otherwise be wasted if double pre-
cision data format was adopted. A hardware approach allows gradual switching
from single to double data format together with the algorithm’s rising demand
for precision.

Fig. 3. Example of the precision adjustment within the EP module

All the data connections within the EP module are adjustable so it is possible
to change them in order to meet precision requirements. Different approach
can be taken to parameterize the EP module but the most common is a top-
down method, which involves gradual modification of the inter module interface’s
width. Eventually number of guard bits of the basic components is established.

8 M. Wielgosz, E. Jamro, K. Wiatr

For instance (Fig. 3) optimal data width with regards to the precision of the
interface between first multiplier and that exp() unit is 37 bits.

The EP module is intended to be a part of a larger system performing
exchange-correlation potential calculation, so some preliminary tests were car-
ried out in order to determine top achievable performance of the module on the
RASC platform.

Fig. 4. Configuration of EP modules on the RASC platform

Each of the EP modules performs calculations in single precision so it is pos-
sible to aggregate two of them to increase overall throughput. Additionally due
to the algorithm’s structure some of the data (atom base coefficients) is used
multiple times. So only a single 32-bit data chunk is streamed in and out the
FPGA. This in turn allows to aggregate up to four EP module (single precision)
on the single FPGA. This holds as the parallization degree is limited by the
external memory data transfer rate rater than the FPGA resources. Single ex-
ponential operation calculation together with two-directional data transfer takes
roughly 8 ns on the RASC platform whereas the same operation executed on the
Itanium takes roughly 20 ns for a highly optimized code. Both the values were
obtain as the result of a conducted tests.

Employing both Xilinx Virtex 4 chips available on the RASC platform leads
20x speed-up comparing to Itanium 2 1.6 GHz processor.

There is a huge difference between optimized and a simple code in execu-
tion time. Tables 8 and 9 present different degree of oprtimization applied to

Hardware implementation of the exponent based... 9

Number of EP modules [RASC/Itanium] speed-up

1 2.5

2 5

4 10

Table 7. Acceleration results

Itanium algorithm execu-
tion

Itanium a single operation
execution time [us]

[RASC/Itanium] speed-
up

Not optimized C code 0.2 25

Not optimized C code
with compiler highest ef-
fort (-O3 compiler flag
set)

0.16 14.6

Fully optimized C code 0.02 2.5

Table 8. Acceleration results as the results of the processor source code optimization

Not optimized C code Optimized C code

for(t=0;t<size;t++)

result += a[t]*exp_table(b[t]*c[t]);

for(t=0;t<size;t++)

b_c_table[t] = b[t]*c[t];

for(t=0;t<size;t++)

exp_table[t] = (b_c_table[t]);

for(t=0;t<size;t++)

result = result + a[t]*exp_table[t];

Table 9. C implementation of the orbital calculation routine

the processor source code. What shows how such an acceleration evaluation can
somethimes be misleading, especially when hardware performance is not com-
pared with the optimized software one.

5 Summary

It is worth noting that a finite sum of the exponential products (eq.4) is, as a
computational routine, ubiquitous in scientific calculations because of its uni-
versal function. Many different processes in the real world can be described by
exponential function. Combination of the exp() leads to an even more uniform
formula. Performance tests revealed that the FPGA is much faster than a proces-
sor - even with data stored in the processor’s memory and the full optimization

10 M. Wielgosz, E. Jamro, K. Wiatr

provided. It is worth taking into consideration that the Hartree-Fock algorithm,
due to its iterative execution, allows the adoption of gradually adjustable data
precision, which will give a speed boost to FPGAs in the final application. So
there is still a huge potential in hardware implementation of quantum chemistry
computational routines.

References

1. Underwood, K. D., Hemmert, K. S., and Ulmer, C.: Architectures and APIs: assess-
ing requirements for delivering FPGA performance to applications. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (Tampa, Florida, Novem-
ber 11 - 17, 2006). SC ’06. ACM, New York, NY, 111. DOI= http://doi.acm.org/

10.1145/1188455.1188571

2. Silicon Graphics, Inc. Reconfigurable Application-Specific Computing User’s Guide,
Ver. 005, January 2007, SGI

3. Gothandaraman A., Peterson G., Warren G., Hinde R., Harrison R.:FPGA acceler-
ation of a quantum Monte Carlo application. Parallel Computing 34(4-5): 278-291,
2008.

4. Gothandaraman, A., Warren, G. L., Peterson, G. D., and Harrison, R. J.: Re-
configurable accelerator for quantum Monte Carlo simulations in N-body systems.
In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (Tampa,
Florida, November 11 - 17, 2006). SC ’06. ACM, New York, NY, 177. DOI=
http://doi.acm.org/10.1145/1188455.1188638

5. G.Mazur, M.Makowski: Development and Optimization of Computational Chem-
istry Algorithms, KDM’2008, March-2008, Zakopane, Poland

6. M.Wielgosz, E. Jamro, K. Wiatr, Highly Efficient Structure of 64-Bit Exponential
Function Implemented in FPGAs, ARC 2008, Lecture notes in Springer-Verlag,
London LNCS 4943, pp. 274 - 279

7. E. Jamro, M. Wielgosz, K. Wiatr, FPGA implementation of 64-bit exponential
function for HPC,FPL Netherlands, 27-29 August 2007, FPL Proceedings

8. Omondi A.R., Computer Arithmetic Systems, Prentice Hall. Cambridge, 1994
9. Xilinx Virtex-4 Family Overview http://www.xilinx.com/support/

documentation/data_sheets/ds112.pdf

10. Parhi K. K., Chung J.G., Lee K.C., Cho K.J. Low-error fixed-width modified booth
multiplier, US Patent: 957244.

11. SGI Altix 4700 http://www.sgi.com/products/servers/altix/4000/

