
Hardware implementation of the orbital function
for quantum chemistry calculations

Maciej Wielgosz1, Ernest Jamro1, Pawel Russek1, Grzegorz Mazur2,
Marcin Makowski2 and Kazimierz Wiatr1

1AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow

1ACK Cyfronet AGH
ul. Nawojki 11, 30-950 Krakow

{wielgosz/jamro/russek/wiatr}@agh.edu.pl
2Jagiellonian University, Faculty of Chemistry,

ul. Ingardena 3, 30-060 Krakow, Poland
{mazur/makowskm}@chemia.uj.edu.pl

Abstract. This paper presents FPGA acceleration and implementation
results of the module for generating orbital function. The authors have
implemented some of the computationally demanding part of the GPP
quantum chemistry source code in FPGA. The orbital function core is
composed of the authors’ customized floating-point hardware modules.
These modules are scalable from single to double precision, capable of
working at frequency ranging from 100 to 200 MHz. Besides hardware
implementation, the design process also involved reformulation of the
algorithm in order to adapt them to the platform profile. The compu-
tational procedure presented in this paper is part of an algorithm for
generating exchange-correlation potential, and is also recognized as one
of the most computationally intensive routines. This feature justifies the
effort devoted to develop its hardware implementation.

Key words: High Performance Reconfigurable Computing, FPGA, quan-
tum chemistry, Custom Computing, HPC

1 Introduction

Field Programmable Gate Arrays (FPGAs) as a promising solution capable of
delivering GFLOP/s of sustainable performance have been incorporated into
many hardware accelerators. This approach has sparked a rising interest among
researchers who find these platforms to be an attractive alternative solution to
GPPs (General Purpose Processor). Coarse-grain parallelism has been exploited
for many years, which has resulted in many implementations of different quan-
tum chemistry algorithms on the SMP (Symmetric Multi-Processor) and cluster
machines. At the same time, using FPGAs allows for a broad range of poten-
tial improvements with regards to computational time at the fine-grain level of
algorithm complexity.

2 Maciej Wielgosz, Ernest Jamro, Pawel Russek

It is worth emphasizing that the precision of floating-point operations also
becomes a primary concern when dealing with low-level quantum chemistry pro-
cedures, thus the authors have taken various measures to optimize them, both
in terms of resource consumption and processing speed. These goals seem to be
contradictory, but FPGA technology allows manipulation at the bit level which
can be regarded as a huge advantage over GPP and GPU (Graphics Processing
Unit) solutions which operate on data of fixed bit-length. The flexibility of the
precison adjustment also justifies the choice of VHDL as the design language
instead of one of the HLLs (High Level Language).

The proposed implementation employs the RASC platform, a detailed de-
scription of which, along with Altix system transfer modes, is covered in [1,
7].

2 Algorithm consideretion

One of the most common and the simplest approximation theories for solving the
Scheodeinger equation is the Hartree-Fock algorithm. The general procedure for
solving the Hartree-Fock equation is to make the orbitals self-consistent with the
potential field they generate. This is achieved through an iterative trial-and-error
computational process, thus the entire procedure is called the self-consistent field
(SCF) method.

The SCF procedure for solving the Hartree-Fock equation leads to the fol-
lowing equation in matrix formulation:

FC − SCE = 0 (1)

where F is the Fock-operator, C is the matrix of the unknown coefficients, S
is the overlap matrix and E contains energy eigenvalues. All matrixes are of the
same size.

Solving the Hartree-Fock equation is an iterative process. The coefficients
(corresponding to an electric field) are used to build the Fock-operator F, with
which the system of linear equations is solved again to get a new solution (a new
electric field). The procedure is repeated until a solution reaches a previously
established level of accuracy.

The Fock operator depends on orbitals, which in turn are its eigenfunctions.
Therefore orbitals have to be calculated for each iteration of the whole Hartree-
Fock algorithm. That is why the orbital calculation presented in this paper
contributes significantly to the overall performance of the application.

Orbital function is expressed by equation 4 [2]:

χklm(r) = rkxr
l
yr
m
z Cn

∑
i

CiNie
−αir

2
(2)

where rx, ry, rz denote atom centered spatial coordinates of each point in
the grid. Cx, Cy, Cz are normalization coefficients. The k, l, m indices depend
on the type of atom shell (s, p, d or f). An atom base is represented by Ci and
ai coefficients.

Hardware implementation of the orbital function.... 3

3 Architecture of the orbital module

The implementation of the orbital generation function requires both designing
hardware modules and software routines. To enable adoption of a modular design
approach eq. 2 was decomposed into two sections - the exponential part (denoted
as EP):

χe(r) =
∑
i

CiNie
−αir

2
(3)

and the polynomial part (PP):

χp(r) = rkxr
l
yr
m
z Cn (4)

Both of them are designed as separate units which make up the orbital func-
tion module. The polynomial part (PP) module generates coefficients for the
forthcoming atom and at the same time evaluates orbital values for a currently
processed atom. Such a pipeline approach requires an EP module to provide
the exponential part computed in advance so the PP unit can sustain data pro-
cessing. Both modules work independently to some degree - controlled by the
Fine State Machine (FSM). It should be noted that the same set of polynomial
coefficients can used several times for different EP results. This holds for all the
orbitals within the same atom. On the other hand, calculating an EP result takes
several clock cycles (one clock cycles per a sum iteration). Therefore for large
atoms (composed of many shells), the calculation bottleneck is the EP module.
Conversely, for a small one, the calculation bottleneck is in the PP module. As
the size of an atom changes, in terms the number of shells, the load balance of
the EP and PP modules shifts. A set of FIFO memories have been employed
to avoid data transfer stalls between the units and to evenly distribute the load
balance for different values.

The RASC accelerator is controlled by the host processor which handles hard-
ware algorithm execution on the FPGA. Several routines are to be performed by
the host processor in order to send data, launch the accelerator and fetch results
afterwards. As the FPGA internal memory resources are limited, the maximum
single computational data block is parameterized and its size can be adjusted
within the range between 128 and 512 of the grid points. The maximum num-
ber of atoms composing the molecule is 32. Furthermore it is assumed that the
number of atom base coefficients (Ci and ai) does not exceed 64.

A uniform input data stream is well suited for FPGA implementation, but
unfortunately this is not a case of the algorithm described in this paper. Quan-
tum chemistry complexity is reflected by the diverse structure of input data
which imposes some difficulties related to their efficient relocation. Thus a ded-
icated method of data formatting was introduced and implemented on the host
processor to consolidate the data, which are subsequently sent over to the RASC
accelerator.

4 Maciej Wielgosz, Ernest Jamro, Pawel Russek

Shell # Orbital type (k,l,m) # Normalization coefficient Cn # Polynomial coefficient (PP)

s 1 1 1

p rx 1 rx

p ry 1 ry

p rz 1 rz

d r2
x 0.33333 0.33333r2

x

d rxry 1 rxry

d rxrz 1 rxrz

d r2
y 0.33333 0.33333r2

y

d ryrz 1 ryrz

d r2
z 0.33333 0.33333r2

z

f r3
x 0.06667 0.06667r3

x

f r2
xry 0.33333 0.33333r2

xry

f r2
xrz 0.33333 0.33333r2

xrz

f rxr2
y 0.33333 0.33333rxr2

y

f rxryrz 1 rxryrz

f rxr2
z 0.33333 0.33333rxr2

z

f r3
y 0.06667 0.06667r3

y

f r2
yrz 0.33333 0.33333r2

yrz

f ryr2
z 0.33333 0.33333ryr2

z

f r3
z 0.06667 0.06667r3

z

Table 1. Orbital coefficients generated by the PP module

4 Implementation and acceleration results

Once the hardware module was implemented on the FPGA, several computa-
tional tests were conducted to compare the RASC performance with the Itanium
2 processor. Some of the tests were done for the water molecule calculated in
the block composed of 512 point of the three dimensional grid. It took Itanium
2 processor roughly 2885 us to perform such an operation, which is close to the
3174 us consumed by FPGA. It is worth noting that the predominate shell of
the water molecule is s. Due to the architecture of the hardware module, shell
types have an impact on the overall performance. Consequently, an increase
of the atom shell size allows full advantage to be taken of LUT and pipeline
mechanisms implemented on the FPGA and the accelerated system starts to
outperform GPP processor implementation, as depicted in the figures 2,3.

Figure 2 presents various speed-ups achieved for different atom shells dom-
inating in the computations. As presented in table 1, the atom shell impacts
the volume of computations which must be performed to obtain a single orbital
result. Number of Ci and ai coefficients also affects calculation effectiveness(Fig.
3). Discrepancy in the number of Ci and ai coefficients and the type of atom
shell is the main source of dynamic variation of load balance between the EP
and PP modules. The ideal case would be an equal number of polynomial Ci and

Hardware implementation of the orbital function.... 5

Fig. 1. Block diagram of the orbital generation module

ai, but unfortunately, this rarely occurs in the computations. Therefore various
buffering methods have been employed (Fig.1).

FPGA deliveres sustained performance while the processor efficiency drops
with the growth of the moledule size. Presented results of a 3, 5× speed-up do not
seem to be impressive but some enhacements to be implemented are expected to
improve the performance of the system. The most important one is a top atom
shell prediction mechanism which will eliminate the necessity of generating a
complete set of polynomial coefficients for every atom. Only the orbitals which
are used for the current calculation will be generated.

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs

Orbital module 8034 (4.5%) 7025 (3.4%) 14 (4.1%)

Orbital module + core services 17365 (9%) 20972 (11%) 37(11%)

Table 2. Implementation results of the Orbital module - single precison

6 Maciej Wielgosz, Ernest Jamro, Pawel Russek

Fig. 2. Impact of the predominating shell on the speed-up (for the constant number
of Ci and ai coefficients = 1)

Fig. 3. Impact of the number of atom base coefficients on the speed-up(for the s shell)

FPGA resources consumed by double precision implementation of the orbital
module are roughly three times higher than presented in (Tab. 2).

Hardware implementation of the orbital function.... 7

Parameter Value

Frequency [Mhz] 100

Max. Error [ulp] 1

RMSE 0,67

Pipeline dalay [clk] 64

Table 3. Primary parameters of the module

5 Summary

In this paper, a novel approach to generating orbital function in quantum chem-
istry has been presented. The authors aim to implement the exchange-correlation
potential generation and the orbital function is considered to be a milestone on
the way to achieving this. On the other hand, the presented implementation was
also considered to be a benchmark meant to deliver reliable test results which al-
low estimation of quantum chemistry acceleration effectiveness on FPGAs. The
obtained speed-up is promising and is expected to be higher along with improve-
ments introduced. Furthermore, resource consumption is relatively low due to
the 32-40 bit data precision adopted across building units of the orbital mod-
ule. An additional role of the presented module is also a data serialization for
subsequent modules of the system for exchange-correlation potential generating
which are expected to contribute significantly to the overall speed-up.

References

1. Silicon Graphics, Inc. Reconfigurable Application-Specific Computing User’s Guide,
Ver. 005, January 2007, SGI

2. G.Mazur, M.Makowski: Development and Optimization of Computational Chem-
istry Algorithms, KDM’2008, March-2008, Zakopane, Poland

3. Omondi A.R., Computer Arithmetic Systems, Prentice Hall. Cambridge, 1994
4. Underwood, K. D., Hemmert, K. S., and Ulmer, C.: Architectures and APIs: assess-

ing requirements for delivering FPGA performance to applications. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (Tampa, Florida, Novem-
ber 11 - 17, 2006). SC ’06. ACM, New York, NY, 111. DOI= http://doi.acm.org/

10.1145/1188455.1188571

5. Gothandaraman A., Peterson G., Warren G., Hinde R., Harrison R.:FPGA acceler-
ation of a quantum Monte Carlo application. Parallel Computing 34(4-5): 278-291,
2008.

6. Gothandaraman, A., Warren, G. L., Peterson, G. D., and Harrison, R. J.: Reconfig-
urable accelerator for quantum Monte Carlo simulations in N-body systems. In Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomputing (Tampa, Florida,
November 11 - 17, 2006). SC ’06. ACM, New York, NY, 177.

7. M.Wielgosz, E. Jamro, K. Wiatr Accelerating calculations on the RASC platform. A
case study of the exponential function, ARC 2009, Lecture notes in Springer-Verlag,
London LNCS 5453, pp. 306-311

