
  

Implementation of a New Cipher in OpenSSL Environment 

the Case of INDECT Block Cipher 

 

Piotr Jurkiewicz, Marcin Niemiec* 

AGH University of Science and Technology, Department of Telecommunications, al. A. Mickiewicza 30, 
30-059 Krakow, Poland. 
 
* Corresponding author. Tel.: +48 126174803; email: niemiec@kt.agh.edu.pl 
Manuscript submitted November 24, 2014; accepted April 8, 2015. 
doi: 10.17706/ijcce.2016.5.1.41-49 
 

Abstract: Implementation of a new cipher in the popular cryptographic library is a convenient way of 

deploying it for wide usage. In this article we described the process of integration of a new cipher with the 

OpenSSL libraries. In this case it is the INDECT Block Cipher (IBC), a new symmetric block cipher based on a 

substitution-permutation network. However, this work is more universal because it is possible in the same 

way to integrate any symmetric cipher in the OpenSSL environment. The goal of the implementation is to 

enable usage of a new cipher in applications using OpenSSL libraries, especially to encrypt data in SSL/TLS 

connections. The article contains general descriptions of OpenSSL, SSL/TLS protocol and the IBC algorithm. 

Also, the integration process was described in detail. Particular attention is paid to binary compatibility 

issues. Additionally, results of various tests of the modified libraries were presented.  

 
Key words: Cryptography, INDECT block cipher (IBC), OpenSSL, transport layer security (TLS).  

 
 

1. Introduction 

Developing a new cipher is exhausting work. The created algorithm should be not only be secure, but 

must also achieve a high performance. Therefore, many tests and theoretical analyses must be performed 

before the new algorithm’s specifications can be released. At the end of the process comes the point where 

the new cipher is ready. However, the struggle doesn’t end there. The new algorithm should be properly 

implemented, in order to use it in the real world.  

The implementation would be most useful if it would enable usage of a new cipher in already existing 

applications. The most convenient way to do this is to implement a new algorithm in some widely used 

cryptographic library. 

There are a few popular cryptographic libraries in use nowadays: crypto++, Mozilla NSS, OpenSSL, and 

others. In this case study, the OpenSSL toolkit was chosen as the base for new cipher implementation 

because of its popularity. 

This article consists of 7 sections. Section 2 describes the structure of the OpenSSL toolkit and contains 

an overview of the SSL/TLS protocol. Section 3 describes the implemented algorithm — the INDECT Block 

Cipher. Section 4 presents details about integration of a cipher. Section 5 discusses compatibility issues. 

Results of tests performed on modified libraries are presented in Section 6. Section 7 contains the summary.  

2. OpenSSL Toolkit 

OpenSSL [1] is an open source toolkit implementing SSL/TLS protocols as well as general purpose 

International Journal of Computer and Communication Engineering

41 Volume 5, Number 1, January 2016



  

cryptography functions. It is written in the C programming language. As well as the toolkit being used as a 

stand-alone cryptographic application, it provides libraries which can be reused by independent programs.  

OpenSSL distributions are available for most operating systems, including Unix-like ones, Windows and 

MacOS. OpenSSL shared libraries are preinstalled in many Linux distributions. It consists of three major 

components: two libraries (libcrypto and libssl) and the command line tool (openssl). 

2.1. Cryptographic Features 

The libcrypto library implements a wide range of cryptographic-related functions, including: symmetric 

encryption, public key cryptography, certificate handling and hash functions.  

The library has several built-in symmetric encryption algorithms. It includes AES, DES, Blowfish, IDEA 

and others. Most of the ciphers can work in block and stream modes. OpenSSL supports the following 

modes: 

Block modes: 

� ECB (Electronic Codebook) 

� CBC (Cipher Block Chaining) 

Stream modes: 

� CFB (Cipher Feedback) 

� OFB (Output Feedback) 

� CTR (Counter Mode) 

The libcrypto library provides an API which allows these ciphers to be used to encrypt or decrypt data in 

applications using the library. Moreover, the openssl command-line tool can encrypt or decrypt arbitral files, 

using provided keys or keys based on passwords. 

2.2. Secure Communication 

SSL (Secure Sockets Layer) [2] and its successor, TLS (Transport Layer Security) [3] are network 

protocols that provide secure communication over the Internet. They integrate the data cryptography 

functions, allowing client/server applications to protect against eavesdropping and tampering. 

SSL/TLS is usually implemented on top of some transport protocol, e.g. Transmission Control Protocol 

(TCP). It encapsulates the application data. A big advantage of SSL/TLS is that it is application protocol 

independent. A higher level protocol can layer on top of the SSL/TLS protocol transparently. 

SSL and TLS use symmetric ciphers (e.g. AES) for data encryption. The keys for these ciphers are 

generated uniquely for each connection and are based on a secret negotiated by the Handshake Protocol. 

SSL/TLS supports many combinations of ciphers, authentication mechanisms, and hashing algorithms. 

These combinations are called ‘ciphersuites’. Ciphersuites are chosen during the negotiation. 

The libssl library implements the SSL and TLS protocol handling. The library can be used by third-party 

applications to secure their connections using SSL/TLS protocols. The libssl provides a rich API. A developer 

can create either a server or a client application using the library’s functions. 

The libssl library makes use of cryptographic functions provided by the libcrypto library. In particular, it 

uses symmetric ciphers to encrypt data transmitted in SSL/TLS connections.  

3. INDECT Block Cipher 

The INDECT Block Cipher (IBC) is a new symmetric block cipher. The paper [4] describes this algorithm 

in detail. The construction of the cipher is based on a substitution-permutation network. The main 

innovation of this symmetric algorithm is the unique approach to the key scheme. The algorithm uses highly 

non-linear S-boxes and P-boxes, generated from the key. IBC provides high resistance to cryptanalysis and 

wide key space, up to 576 bits. 

International Journal of Computer and Communication Engineering

42 Volume 5, Number 1, January 2016



  

3.1. Structure of IBC 

IBC works on 256-bit blocks of data. The block of data is initially permuted. Then, a single round loop 

begins. The number of rounds depends on the key size. The overall structure of a single round is presented 

in Fig. 1. 

 

 
Fig. 1. IBC round structure [4]. 

 

Each round consists of a substitution and a permutation phase. In the substitution phase, the algorithm 

splits the 256-bit block into 8-bit sub-blocks. Then each byte is substituted by a S-box. 

The number of different S-boxes used for substitution depends on the key size. For 128-bit key, all 32 

sub-blocks are substituted by the same S-box. However, two different S-boxes are used for a 192-bit key: the 

first half of sub-blocks are substituted by the first S-box, and the second half of sub-blocks are substituted 

by the second S-box. Similarly, for a 320-bit key four S-boxes are used, and for 576-bit keys eight S-boxes are 

used. 

After the substitution, all sub-blocks are merged back into one 256-bit block. Then, the whole block is 

permuted. Permutation is based on another S-box, called the P-box. The number of the bits in the 256-bit 

block is substituted in the P-box, and the outcome number marks the destination spot. This means that bits 

are shuffled within the whole 256-bit block. 

3.2. S-box Generation 

Unlike in many other ciphers, data is not XORed with key-dependent round keys in each round. Instead, 

the substitution and permutation processes depend on the key itself. New S-boxes are created from the 

original AES S-box by a linear transformation. 

Using this method, we are able to create a huge number of new S-boxes. The maximum number of S-boxes 

that we can obtain this way is:  

 

5348063769211699200 ≈ 5.35 � 10� 

 

Each one of the S-boxes can be coded on 64 bits. The original method of constructing new S-boxes was 

International Journal of Computer and Communication Engineering

43 Volume 5, Number 1, January 2016



  

tested in a specially developed S-box simulator. It has been confirmed that generated S-boxes have good 

security features: balancing, SAC, completeness, diffusion order, low XOR table, and nonlinearity. Further 

details about new cipher construction and its verification can be found in [4]. 

4. Integration 

Before the implementation of a new cipher, several requirements were set up: 

� The new cipher should be available in all functions of OpenSSL where other symmetric ciphers are 

used; 

� The new cipher should be able to encrypt data transmitted in SSL/TLS connections; 

� The performance of encryption should be as high as possible; 

� The deployment of modified libraries should be as simple as possible; 

� Usage of a new cipher in existing applications should not require modification of these applications or 

recompilation. 

However, although OpenSSL is very popular in network environments, there is unfortunately no tutorial 

on integration of new ciphers. Moreover, OpenSSL’s developing documentation is rather poor. Therefore, the 

authors decided to take a look at an existing cipher implementation and try to implement a new one 

similarly. 

The Camellia cipher [5] was chosen as an example. First, OpenSSL source code files were searched for 

appearance of the words “camellia” and “cmll”. There were 2138 hits in 62 files. After code analyzing we 

established that implementation should consist of two main parts: implementation of a cipher in libcrypto 

library and implementation of SSL/TLS ciphersuite in libsssl. 

4.1. Implementation of a Cipher 

Ciphers’ code is a part of libcrypto library. The code is located in crypto/x directories, where x is the name 

of an individual algorithm. 

Every cipher directory contains a main header file, with the same name as a cipher directory. The main 

header file contains declarations of structures and functions. Names of functions consist of a prefix, usually 

the same as the name of the cipher. Functions’ prototypes are identical for every cipher, providing the 

interface to the underlying cipher. 

New functions: Indect_set_encrypt_key and Indect_set_decrypt_key are responsible for setting up 

encryption/decryption options and generating internal keys based on settings and keys provided by the 

user. Functions take strings containing the encryption key provided by the user as an input. The output of 

functions is stored in the INDECT_KEY type structure. 

This structure is cipher-dependent, so it can be different for every algorithm. It stores all the key 

information needed by the low level encryption/decryption functions. In the case of the IBC, the structure 

contains S-Boxes generated from the key during the key initialization phase as well as permutation tables, 

derived from the P-Box. 

Another function: Indect_encrypt and Indect_decrypt are responsible for encrypting and decrypting a 

single block of data. Because the IBC uses different encryption/decryption routines for each key length, 

these functions cannot directly implement block encryption/decryption. Instead, these functions invoke 

one of the actual encryption functions indirectly, by dereferencing function pointer arguments stored in the 

key structure.  

Next, the main header file contains declarations of functions implementing modes of operation (ECB, CBC, 

OFB, etc.). These functions do not encrypt/decrypt data itself. They only handle the data and prepare it for 

processing (partitioning into blocks, padding blocks). To encrypt/decrypt a single block they call 

Indect_encrypt and Indect_decrypt functions, described above. Thus, functions implementing block modes 

International Journal of Computer and Communication Engineering

44 Volume 5, Number 1, January 2016



  

are mostly cipher invariant. Implementation of these functions can be borrowed from ciphers existing in 

OpenSSL. 

Functions performing actual key setup and encryption/decryption are declared locally in separate files. 

Therefore, these functions’ interface does not depend on OpenSSL API. Functions are declared ibc_locl.c and 

are implemented in the indect.c file. 

4.2. Integration with Libcrypto 

Integrating a new cryptographic algorithm requires a number of modifications to the OpenSSL code. 

Several libcrypto functions, which implement individual functionalities, must know all available ciphers. 

New algorithm modes should be properly registered and calls to cipher’s routines should be added into the 

libcrypto code. 

The crypto/evp/ directory stores the code implementing the EVP library. The EVP library provides a 

high-level interface to cryptographic functions. It requires several modifications in order to add a new 

algorithm. 

� First, the crypto/evp/c_allc.c file should be modified. It contains calls to functions registering all cipher 

algorithms. Calls registering a new algorithm need to be added. 

� Second, the crypto/evp/evp.h header file should be modified. The value of the constant variable 

defining the maximum key length should be modified. Originally it is 32 bytes (256 bits) — in case of 

IBC its needs to be changed to 40 bytes (320 bits) because IBC can use a 320-bit key. 

The crypto/evp/evp.h ends with error codes. After the modification, it contains error codes related to IBC. 

They are automatically generated by the script mkerr.pl and should not be modified manually. Similarly, the 

crypto/evp/evp_err.c file contains error codes. This file is also automatically generated, and should not be 

modified manually. In order to generate error codes in both files it is needed to call the make errors 

command in the main source directory after applying all modifications in the source. 

4.3. Implementation of SSL/TLS Ciphersuite 

In order to make the new cipher available in SSL/TLS connections there must be several modifications 

applied in the libssl library. New ciphersuites containing the new cipher must be created and registered. 

Ciphersuites are combinations of authentication, encryption, and Message Authentication Code (MAC) 

algorithms used to negotiate the security settings for a network connection using the SSL/TLS network 

protocol. The structure and use of the ciphersuite concept is defined in the document [3]. 

The ciphersuites’ IDs are assigned by IANA and defined in several RFCs. There is a range of ciphersuite 

IDs reserved for private use (first byte of ciphersuite ID equals ‘FF’). Unless a programmer is implementing 

a ciphersuite with an ID assigned for IANA, he/she should choose an ID from that range. Ciphersuite IDs are 

defined in the ssl/tls1.h header file. 

The ciphersuites are implemented in the ssl/s3_lib.c file. Each ciphersuite is implemented in a structure 

which contains all settings related to that particular ciphersuite. 

 

/* Cipher FF41 */ 

{ 

1, 

TLS1_TXT_RSA_WITH_INDECT_128_CBC_SHA, 

TLS1_CK_RSA_WITH_INDECT_128_CBC_SHA, 

SSL_kRSA|SSL_aRSA|SSL_INDECT|SSL_SHA|SSL_TLSV1, 

SSL_NOT_EXP|SSL_HIGH, 

0, 

International Journal of Computer and Communication Engineering

45 Volume 5, Number 1, January 2016



  

128, 

128, 

SSL_ALL_CIPHERS, 

SSL_ALL_STRENGTHS 

}, 

 

The next file which needs to be modified is the ssl/ssl.h header file. This contains definitions of several 

constants. When a new cipher is implementing, the constant specifying its name must be defined. 

Furthermore, the ssl/ssl.h file contains the SSL_DEFAULT_CIPHER_LIST constant. This defines the default 

ciphersuites order of preference. The cipher list consists of one or more cipher strings separated by colons. 

To enable preferred usage of IBC ciphersuites, we do not have to modify this constant, because the list is 

sorted in order of ciphers’ key length. The IBC ciphersuite uses 320-bit key length, so it will be preferred 

over the AES ciphersuites (maximum 256-bit key length). It is worth mentioning that modifying this 

constant breaks the binary compatibility. 

5. Compatibility 

Most applications using OpenSSL use it as a dynamic library. In the Windows environment libcrypto and 

libssl dynamic library (*.dll) files are usually distributed bundled with the application. The dll files are 

usually located in the application’s main directory. 

In the Linux environment, however, most applications use system wide shared libraries, located in /lib or 

a similar system directory. Files are usually named libcrypto.so.x.x.x and libssl.so.x.x.x. 

One of the main reasons behind integrating the IBC into OpenSSL was to enable the easiest possible 

means of applying the new cipher in existing applications. The most convenient way to do this would be to 

just replace existing shared library files with the modified ones. However, this is possible only when the 

binary compatibility is ensured between the original and modified libraries. 

Backward binary compatibility is a feature of the new version of a library compared with an old version 

of the same library to guarantee that applications working with the old version keep working correctly with 

the new version without recompilation. Examples of changes resulting in breaking backward binary 

compatibility include changing data type size of a function parameter or changing the structure of a virtual 

table in a class. Such changes result in incorrect run-time behavior or even crashes of applications that use 

the corresponding function or class [6]. 

Therefore, binary compatibility needs to be kept in mind while making changes in the source code. 

During the integration of IBC into the OpenSSL we made efforts to keep the binary interface compatible. 

Thanks to that, it is possible to deploy the new cipher on existing systems without any requirement to 

change the code of applications using OpenSSL, or even without the need for recompiling them against the 

modified libraries. 

The binary compatibility has been tested with an automatic tool called abi-compliance-checker [7]. It is a 

free, open source tool, available for Linux-like operating systems. The tool can check all types of changes 

that cause backward binary compatibility problems. 

6. Tests 

The implemented IBC cipher was tested in a network environment. The performance of the improved 

source-code of the new cipher was checked. Also, secure SSL/TLS connections with IBC algorithm were 

verified.  

6.1. Performance 

International Journal of Computer and Communication Engineering

46 Volume 5, Number 1, January 2016



  

Nowadays, performance is a primary requirement for symmetric encryption. Therefore, we made efforts 

to optimize performance during the implementation of the new cipher in OpenSSL. The first 

implementations of IBC — simple graphical application and hardware implementation — were not very fast 

[8]. This is why the code of IBC was completely rewritten. Thanks to this, a significant improvement was 

archived. 

The first improvement was migrating to the lower level programming language (from C# to C). The 

second was rewriting the permutation code using only low-level bit instructions (bit shift, OR).  

It is worth mentioning that permutation is the most expensive operation in the algorithm. According to 

Amdahl's law, such large improvement can be achieved only by subsequently shaving off the largest cost 

factors in the task [9]. Only pre-calculating the bits during permutation brings ~30% performance 

improvement. The performance comparison of the original IBC application (graphical application) with the 

IBC integrated with OpenSSL environment is presented in Table 1. 

 

Table 1. Performance Comparison (3 GHz Processor) 

Key size 

[bit] 

Number of 

 rounds 

Performance [Mbps] 

IBC graphical  

application 
IBC in OpenSSL 

128 8 2.70 63.62 

192 10 2.37 52.12 

320 12 2.11 44.12 

 

6.2. SSL/TLS Connectivity 

New ciphersuites containing IBC have been created in the libssl library. Thanks to that it is possible to use 

the cipher to encrypt data transmitted in SSL/TLS connections. 

 

 
Fig. 2. Client hello message. 

International Journal of Computer and Communication Engineering

47 Volume 5, Number 1, January 2016



  

The encryption algorithm used in a session is agreed between client and server during the handshake 

procedure. The client sends a Client Hello message to the server. Example of such a message is shown in Fig. 

2. The Client Hello message contains the list of cipher suites supported by the client. The list is ordered by 

preference (usually more secure ciphersuites are more preferred). IBC ciphersuites are identified as 

unknown by Wireshark software because its IDs are from the private range and Wireshark does not 

recognize them. 

The server choses the first supported ciphersuite from the list, and sends its ID to the client in a Server 

Hello message. It corresponds to the "DHE-RSA-INDECT320-SHA" ciphersuite, which uses the IBC cipher 

with a 320-bit key. 

In order to successfully negotiate usage of IBC, both client and server must use a modified version of 

library. If one of the peers uses original SSL/TLS library (without IBC ciphersuites), then the most preferred 

ciphersuite which is known by both peers will be agreed (usually a ciphersuite containing the AES 

algorithm). This means that it is possible to establish a secure connection between peers which are using 

modified and original libraries. 

7. Conclusion 

Integration of a new cryptographic algorithm requires a number of modifications to the OpenSSL code. In 

particular, new SSL/TLS ciphersuites containing a new cipher must be created in order to make it available 

for usage in SSL/TLS connections. As an example, the integration of the IBC cipher was presented in this 

paper. Overall, implementation of IBC required more than 3000 changes in source code. 

The cipher code was completely rewritten using low-level C language. Because of this, we were able to 

gain a significant performance boost over the original graphical application. Results of performance tests 

show above 23x performance improvement. 

Besides performance, compatibility requirements were important during the implementation. We were 

able to preserve full binary and source compatibility with the original version of OpenSSL. This was proven 

in compatibility tests by the abi-compliance-checker. Because of this, it is possible to use the most 

convenient way of deploying IBC libraries — replacing existing OpenSSL shared library files with the 

modified ones. 

Using the modified version of OpenSSL, it is possible to establish secure connections over the Internet 

using the new cipher to encrypt transmitted data. If both client and server use modified libraries, this new 

cipher is negotiated by default. The next step will be deploying the implemented IBC algorithm in the 

security architecture for Law Enforcement Agencies [10]. 

Acknowledgment 

The implementation and evaluation of cryptographic algorithm have been financed by the European 

Regional Development Fund under the Innovative Economy Operational Programme, INSIGMA project no. 

POIG.01.01.02-00-062/09. 

References 

[1] OpenSSL Project. Form http://www.openssl.org  

[2] RFC 6101. (2011). The Secure Sockets Layer (SSL) Protocol Version 3.0. 

[3] RFC 5246. (2008). The Transport Layer Security (TLS) Protocol Version 1.2. 

[4] Niemiec M., & Machowski Ł. (2012). A new symmetric block cipher based on key-dependent S-boxes. 

Proceedings of ICUMT 2012. Saint Petersburg, Russia. 

[5] RFC 5932. (2010). Camellia Cipher Suites for TLS. 

International Journal of Computer and Communication Engineering

48 Volume 5, Number 1, January 2016



  

[6] Ponomarenko, A., & Rubanov, V. (2010). Automated verification of shared libraries for backward binary 

compatibility. Proceedings of VALID 2010. Nice, France. 

[7] ABI compliance checker. From http://ispras.linuxbase.org/index.php/ABI_compliance_checker 

[8] Niemiec, M., Dudek, J., Romański, Ł., & Święty, M. (2012). Towards hardware implementation of INDECT 

Block Cipher. Proceedings of MCSS 2012. 

[9] Marowka, A. (2012). Extending amdahl's law for heterogeneous computing. Proceedings of ISPA 2012. 

Madrid, Spain. 

[10] Urueña, M., Machník, P., Niemiec, M., & Stoianov, N. (2014). Security architecture for law enforcement 

agencies. Multimedia Tools and Applications. 

 

 

Piotr Jurkiewicz is currently a M.Sc. student at the Department of Telecommunications at 

AGH University of Science and Technology, Krakow, Poland. His research interests include 

software defined networking, flow aware networking, fast packet processing and high 

performance software. He is an open source software contributor. In 2013 he was a 

Google summer of code student at ON.LAB. 

 

 

Marcin Niemiec obtained his M.Sc. and Ph.D. degrees in telecommunications at the AGH 

University of Science and Technology, Krakow, Poland, in 2005 and 2011, respectively. He 

has also studied at the Universidad Carlos III de Madrid. He is an assistant professor at the 

Department of Telecommunications, AGH University of Science and Technology. His 

research interests focus on security and data protection, in particular security services, 

symmetric ciphers, cryptanalysis, malware, intrusion detection, and quantum 

cryptography. He is the co-organizer of a number of international meetings, workshops, 

and conferences. He has actively participated in European Commission’s 6th and 7th Framework 

Programmes (ePhoton/ONE+, BONE, SmoothIT, INDECT), Eureka-Celtic (DESYME), and several national 

projects. He is the recipient of the Best Paper Award from IEEE GLOBECOM 2012. He has co-authored over 

60 publications and reports (papers, deliverables, book reviews, IETF drafts, and books. 

 

International Journal of Computer and Communication Engineering

49 Volume 5, Number 1, January 2016


