4. Podstawy dynamiki

4.2 Zasady dynamiki Newtona

   Podstawowa teoria, która pozwala przewidywać ruch ciał, składa się z trzech równań, które nazywają się zasadami dynamiki Newtona.
Sformułowanie pierwszej zasady dynamiki Newtona:

Prawo, zasada, twierdzenie
Ciało, na które nie działa żadna siła (lub gdy siła wypadkowa jest równa zeru) pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej.

Siła wypadkowa Fwyp jest sumą wektorową wszystkich sił działających na ciało. Jeżeli Fwyp = 0 to również przyspieszenie ciała a = 0, a to oznacza, że nie zmienia się ani wartość ani kierunek prędkości tzn. ciało jest w stanie spoczynku lub porusza się ze stałą co do wartości prędkością po linii prostej. Zgodnie z pierwszą zasadą dynamiki nie ma rozróżnienia między ciałami spoczywającymi i poruszającymi się ze stałą prędkością. Nie ma też różnicy pomiędzy sytuacją gdy nie działa żadna siła i przypadkiem gdy wypadkowa wszystkich sił jest równa zeru.

Sformułowanie drugiej zasady dynamiki Newtona:

Prawo, zasada, twierdzenie
Tempo zmian pędu ciała jest równe sile wypadkowej działającej na to ciało. Dla ciała o stałej masie sprowadza się to do iloczynu masy i przyspieszenia ciała.

   lub   

(4.6)

Sformułowanie trzeciej zasady dynamiki Newtona:

Prawo, zasada, twierdzenie
Gdy dwa ciała oddziałują wzajemnie, to siła wywierana przez ciało drugie na ciało pierwsze jest równa i przeciwnie skierowana do siły, jaką ciało pierwsze działa na drugie.

(4.7)

   Pierwsza zasada dynamiki wydaje się być szczególnym przypadkiem drugiej bo gdy a = 0 to i Fwyp = 0. Przypisujemy jej jednak wielką wagę dlatego, że zawiera ważne pojęcie fizyczne: definicję inercjalnego układu odniesienia.

Definicja
Pierwsza zasada dynamiki stwierdza, że jeżeli na ciało nie działa żadna siła (lub gdy siła wypadkowa jest równa zeru) to istnieje taki układ odniesienia, w którym to ciało spoczywa lub porusza się ruchem jednostajnym prostoliniowym. Taki układ nazywamy układem inercjalnym.

   Układy inercjalne są tak istotne bo we wszystkich takich układach ruchami ciał rządzą dokładnie te sama prawa. Większość omawianych zagadnień będziemy rozwiązywać właśnie w inercjalnych układach odniesienia. Zazwyczaj przyjmuje się, że są to układy, które spoczywają względem gwiazd stałych ale układ odniesienia związany z Ziemią w większości zagadnień jest dobrym przybliżeniem układu inercjalnego.
Ponieważ przyspieszenie ciała zależy od przyspieszenia układu odniesienia (od przyspieszenia obserwatora), w którym jest mierzone więc druga zasada dynamiki jest słuszna tylko, gdy obserwator znajduje się w układzie inercjalnym. Inaczej mówiąc, prawa strona równania F = ma zmieniałaby się w zależności od przyspieszenia obserwatora.

Tu dowiesz się  Więcej o ...  układach inercjalnych i nieinercjalnych.

Zwróćmy jeszcze raz uwagę na fakt, że w równaniu (4.6) występuje siła wypadkowa.

Oznacza to, że trzeba brać sumę wektorową wszystkich sił działających na ciało. Doświadczenia potwierdzają zasadę addytywności sił. Zasada ta dotyczy również masy: masa układu jest sumą mas poszczególnych ciał tego układu. 

Prześledźmy teraz zastosowanie zasad dynamiki na następującym przykładzie.

Przykład

Rozważmy układ trzech ciał o masach 3m, 2m i m połączonych nieważkimi nitkami tak jak na rysunku poniżej. Układ jest ciągnięty zewnętrzną siłą F po gładkim podłożu. Szukamy przyspieszenia układu i naprężeń nici łączących ciała.

Rys. 4.2. Układ trzech mas połączonych nitkami ciągnięty siłą F

Reakcja podłoża R równoważy nacisk poszczególnych ciał tak, że siły działające w kierunku y równoważą się. Natomiast w kierunku x układ jest ciągnięty zewnętrzną siłą F, a oddziaływania są przenoszone przez nitki. Ciało o masie 3m działa na ciało o masie 2m siłą N1, a siła −N1 jest siłą reakcji na to działanie. Podobnie jest z siłami N2 i −N2. Przyspieszenie układu i siły naciągu nitek N1 i N2 obliczamy stosując drugą zasadę dynamiki Newtona do każdego ciała indywidualnie.

(4.8)

Sumując równania stronami otrzymujemy

(4.8)

Zwróćmy uwagę na addytywność mas. Taki sam wynik otrzymalibyśmy traktując ciała jak jedną masę. Doświadczenia potwierdzają zasadę addytywności masy: masa układu jest sumą mas poszczególnych ciał układu.

Podstawiając wynik (4.9) do równań (4.8) obliczamy naciągi nitek

(4.8)

Spróbuj teraz samodzielnie rozwiązać podobny problem.

Ćwiczenie
Dwa klocki o masach m1 = m2 = 1 kg są połączone nieważką nitką przerzuconą przez nieważki bloczek tak jak na rysunku poniżej. Oblicz przyspieszenie układu oraz naprężenie linki. Przyjmij, że klocek m2 porusza się po stole bez tarcia. Sprawdź obliczenia i wynik.


Zwróćmy jeszcze raz uwagę na fakt, że w równaniu (4.6) występuje siła wypadkowa. Oznacza to, że trzeba brać sumę wektorową wszystkich sił działających na ciało. Możesz się o tym przekonać rozwiązując podane poniżej zadanie.

Ćwiczenie
Oblicz przyspieszenie z jakim porusza się klocek o masie m zsuwający się bez tarcia po równi pochyłej o kącie nachylenia θ (tak jak na rysunku). Sprawdź obliczenia i wynik.


Teraz możesz poznać bardziej zaawansowany przykład  Więcej o ...  (Ruch w polu grawitacyjnym z uwzględnieniem oporu powietrza).

... ...