27. Fale elektromagnetyczne

27.3 Rozchodzenie się fal elektromagnetycznych

  Dla zilustrowania rozchodzenia się fal elektromagnetycznych i wzajemnego sprzężenia pól elektrycznych i magnetycznych rozpatrzymy jedną z najczęściej stosowanych linii transmisyjnych jaką jest kabel koncentryczny.

Na rysunku 27.3 pokazany jest rozkład pola elektrycznego i magnetycznego w kablu koncentrycznym w danej chwili t. Pole elektryczne jest radialne, a pole magnetyczne tworzy współosiowe koła wokół wewnętrznego przewodnika. Pola te poruszają się wzdłuż kabla z prędkością c (zakładamy, że linia transmisyjna ma zerowy opór). Mamy do czynienia z falą bieżącą.

 Rys. 27.3. Rozkład pól magnetycznego i elektrycznego w fali elektromagnetycznej w kablu koncentrycznym

Rysunek pokazuje tylko jedną z możliwych konfiguracji pól odpowiadającą jednej z różnych fal jakie mogą rozchodzić wzdłuż kabla. Pola E i B są do siebie prostopadłe w każdym punkcie.

Innym przykładem linii transmisyjnej (obok kabli koncentrycznych) są tzw. falowody , które stosuje się do przesyłania fal elektromagnetycznych w zakresie mikrofal. Falowody wykonywane są w postaci pustych rur metalowych o różnych kształtach przekroju poprzecznego (bez przewodnika wewnętrznego). Ściany takiego falowodu mają znikomą oporność. Jeżeli do końca falowodu przyłożymy generator mikrofalowy (klistron) to przez falowód przechodzi fala elektromagnetyczna. Przykładowy rozkład pól E, B takiej fali jest pokazany na rysunku 27.4 dla falowodu, którego przekrój jest prostokątem. Fala rozchodzi się w kierunku zaznaczonym strzałką.

 Rys. 27.4. Rozkład pól magnetycznego i elektrycznego fali elektromagnetycznej w prostokątnym falowodzie
Dla polepszenia czytelności na rysunku górnym pominięto linie B a na dolnym linie E

Typ transmisji czyli rozkład pól (typ fali) w falowodzie zależy od jego rozmiarów. Zwróćmy uwagę, że rozkład pól nie musi być sinusoidalnie zmienny.

Elektromagnetyczna linia transmisyjna może być zakończona w sposób umożliwiający wypromieniowanie energii elektromagnetycznej do otaczającej przestrzeni. Przykładem takiego zakończenia jest antena dipolowa umieszczona na końcu kabla koncentrycznego pokazana na rysunku 27.5.

 Rys. 27.5. Elektryczna antena dipolowa na końcu kabla koncentrycznego

Jeżeli różnica potencjałów pomiędzy między drutami zmienia się sinusoidalnie to taka antena zachowuje się jak dipol elektryczny, którego moment dipolowy zmienia się co do wielkości jak i kierunku.

Energia elektromagnetyczna przekazywana wzdłuż kabla jest wypromieniowywana przez antenę tworząc falę elektromagnetyczną w ośrodku otaczającym antenę. Na rysunku-animacji 27.6 pokazane jest pole E wytwarzane przez taki oscylujący dipol (przez taką antenę).

Kliknij w dowolnym miejscu na rysunku żeby uruchomić animację. Ponowne kliknięcie oznacza powrót do początku.

 Rys. 27.5. Fala elektromagnetyczna emitowana przez drgający dipol elektryczny

Zwróćmy uwagę na jeszcze jedną bardzo istotną cechę fal elektromagnetycznych. Fale elektromagnetyczne mogą rozchodzić się w próżni w przeciwieństwie np. do fal akustycznych, które wymagają ośrodka materialnego.

Prędkość fal elektromagnetycznych w próżni jest dana wzorem

(27.8)

lub

(27.9)

gdzie ν jest częstotliwością, λ długością fali, ω częstością kołową, a k liczbą falową.