32. Światło a fizyka kwantowa

32.3 Teoria promieniowania we wnęce, prawo Plancka

Rozważania klasyczne

  Na przełomie ubiegłego stulecia Rayleigh i Jeans wykonali obliczenia energii promieniowania we wnęce (czyli promieniowania ciała doskonale czarnego). Zastosowali oni teorię pola elektromagnetycznego do pokazania, że promieniowanie wewnątrz wnęki ma charakter fal stojących. Promieniowanie elektromagnetyczne odbija się od ścian wnęki tam i z powrotem tworząc fale stojące z węzłami na ściankach wnęki (tak jak omawiane w paragrafie 13.5 fale w strunie zamocowanej na obu końcach). Następnie Rayleigh i Jeans obliczyli wartości średniej energii w oparciu o znane nam prawo ekwipartycji energii i w oparciu o nią znaleźli widmową zdolność emisyjną.

Wynik jaki uzyskali został pokazany linią przerywaną na rysunku 32.3 . Jak widać rozbieżność między wynikami doświadczalnymi i teorią jest duża. Dla fal długich (małych częstotliwości) wyniki teoretyczne są bliskie krzywej doświadczalnej, ale dla wyższych częstotliwości wyniki teoretyczne dążą do nieskończoności. Ten sprzeczny z rzeczywistością wynik rozważań klasycznych nazywany jest „katastrofą w nadfiolecie”.

Teoria Plancka promieniowania ciała doskonale czarnego

  Pierwszy wzór empiryczny dający wyniki widmowej zdolności emisyjnej w przybliżeniu zgodne z doświadczeniem przedstawił Wien. Wzór ten został następnie zmodyfikowany przez Plancka tak, że uzyskano wynik w pełni zgodny z doświadczeniem. Wzór Plancka ma postać

(32.3)

gdzie C1 i C2 są stałymi wyznaczanymi doświadczalnie.

Planck nie tylko zmodyfikował wzór Wiena ale zaproponował zupełnie nowe podejście mające na celu stworzenie teorii promieniowania ciała doskonale czarnego. Założył on, że każdy atom zachowuje się jak oscylator elektromagnetyczny posiadający charakterystyczną częstotliwość drgań.

Prawo, zasada, twierdzenie Oscylatory te, według Plancka, nie mogą mieć dowolnej energii, ale tylko ściśle określone wartości dane wzorem



(32.4)

gdzie v oznacza częstość drgań oscylatora, h jest stałą (zwaną obecnie stałą Plancka) równą h = 6.63·10−34 Js, a n - pewną liczbę całkowitą (zwaną obecnie liczbą kwantową ).

Ten postulat zmieniał radykalnie istniejące teorie. Wiemy, że zgodnie z fizyką klasyczną, energia każdej fali może mieć dowolną wartość, i że jest ona proporcjonalna do kwadratu amplitudy. Tymczasem według Plancka energia może przyjmować tylko ściśle określone wartości czyli jest skwantowana .

Ponadto oscylatory nie wypromieniowują energii w sposób ciągły, lecz porcjami czyli kwantami . Kwanty są emitowane gdy oscylator przechodzi ze stanu (stanu kwantowego ) o danej energii do drugiego o innej, mniejszej energii. Odpowiada to zmianie liczby kwantowej n o jedność, a w konsekwencji wypromieniowana zostaje energia w ilości

(32.5)


Prawo, zasada, twierdzenie
Oznacza to, że dopóki oscylator pozostaje w jednym ze swoich stanów kwantowych dopóty ani nie emituje ani nie absorbuje energii. Mówimy, że znajduje się w stanie stacjonarnym .

Sprawdźmy teraz czy ta nowatorska hipoteza stosuje się do znanych nam oscylatorów. Jako przykład rozpatrzmy wahadło proste złożone z ciała o masie 1 kg zawieszonego na lince o długości 1 m.

Częstotliwość drgań własnych takiego wahadła wynosi

(32.6)

Jeżeli wahadło wykonuje drgania o amplitudzie 10 cm to jego energia całkowita wynosi

(32.7)

Zgodnie z hipotezą Plancka zmiany energii dokonują się skokowo przy czym ΔE = hv. Względna zmiana energii wynosi więc

(32.8)

Żeby zaobserwować nieciągłe zmiany energii musielibyśmy wykonać pomiar energii z dokładnością przewyższającą wielokrotnie czułość przyrządów pomiarowych.

Kwantowa natura drgań nie jest więc widoczna dla makroskopowych oscylatorów podobnie jak nie widzimy dyskretnej natury materii tj. cząsteczek, atomów, elektronów itp., z których zbudowane są ciała. Wnioskujemy, że doświadczenia z wahadłem prostym nie mogą rozstrzygnąć o słuszności postulatu Plancka.

Zanim przejdziemy do przedstawienia innych doświadczeń (zjawisko fotoelektryczne i efekt Comptona) omówmy zastosowanie prawa promieniowania w termometrii.

Zastosowanie prawa promieniowania w termometrii

  Promieniowanie emitowane przez gorące ciało można wykorzystać do wyznaczenia jego temperatury. Jeżeli mierzy się całkowite promieniowanie emitowane przez ciało, to korzystając z prawa Stefana-Boltzmana (32.2) można obliczyć jego temperaturę. Sprawdź ten sposób wykonując następujące ćwiczenie.

Ćwiczenie
Średnia ilość energii (na jednostkę czasu) promieniowania słonecznego padającego na jednostkę powierzchni Ziemi wynosi 355 W/m2. Oblicz średnią temperaturę jaką będzie miała powierzchnia Ziemi, jeżeli przyjmiemy, że Ziemia jest ciałem doskonale czarnym, wypromieniowującym w przestrzeń właśnie tyle energii na jednostkę powierzchni i czasu. Czy uzyskany wynik jest zgodny z doświadczeniem? Sprawdź obliczenia i wynik.

Ponieważ dla większości źródeł trudno dokonać pomiaru całkowitego promieniowania więc mierzy się ich zdolność emisyjną dla wybranego zakresu długości fal. Z prawa Plancka wynika, że dla dwu ciał o temperaturach T1T2 stosunek natężeń promieniowania o długości fali λ wynosi

(32.9)

Jeżeli T1 przyjmiemy jako standardową temperaturę odniesienia to możemy wyznaczyć T2 wyznaczając doświadczalnie stosunek I1/I2. Do tego celu posługujemy się urządzeniem zwanym pirometrem (rysunek 32.5).

 Rys. 32.5. Pirometr

Obraz źródła S (o nieznanej temperaturze) powstaje w miejscu gdzie znajduje się włókno żarowe pirometru P. Dobieramy prąd żarzenia tak aby włókno stało się niewidoczne na tle źródła tzn. świeciło tak samo jasno jak źródło S. Ponieważ urządzenie jest wyskalowane odczytując wartość prądu żarzenia możemy wyznaczyć temperaturę źródła.