38. Fizyka jądrowa

38.4 Reakcje jądrowe

Rozszczepienie jąder atomowych

  Z wykresu 38.2 wynika, że energia wiązania na jeden nukleon wzrasta z liczbą masową aż do A > 50. Dzieje się tak dlatego, że dany nukleon jest przyciągany przez coraz większą liczbę sąsiednich nukleonów. Jednak przy dalszym wzroście liczby nukleonów nie obserwujemy wzrostu energii wiązania nukleonu w jądrze, a jej zmniejszanie.

Wyjaśnienie tego efektu można znaleźć analizując wykres 38.1. Widać na nim, że siły jądrowe mają bardzo krótki zasięg i jeżeli odległość między dwoma nukleonami jest większa niż 2.5·10−15 m to oddziaływanie pomiędzy nimi jest słabsze. Jądra zawierające dużą liczbę nukleonów mają większe rozmiary i odległości pomiędzy poszczególnymi nukleonami mogą być relatywnie duże, a stąd słabsze przyciąganie pomiędzy nimi.

Konsekwencją takich zmian energii wiązania ze wzrostem liczby nukleonów w jądrze jest występowanie zjawisk rozszczepienia i syntezy jądrowej .

Jeżeli ciężkie jądro rozdzielimy na dwie części, to powstałe dwa mniejsze jądra są silniej wiązane od jądra wyjściowego tzn. te dwie części mają masę mniejszą niż masa jądra wyjściowego. Dzięki temu w reakcji rozszczepienia wydziela się energia. Źródłem energii bomby atomowej i reaktora jądrowego są procesy rozszczepienia jądrowego.

Spontaniczne rozszczepienie naturalnego jądra jest na ogół mniej prawdopodobne niż rozpad α tego jądra. Można jednak zwiększyć prawdopodobieństwo rozszczepienia bombardując jądra neutronami o odpowiednio wysokiej energii. Właśnie takie neutrony powodują reakcje rozszczepienia uranu 235U i plutonu 239Pu.

Ćwiczenie
W reakcji rozszczepienia uranu wydziela się energia 200 MeV. Na tej podstawie oblicz jaka jest różnica pomiędzy masą jądra uranu, a sumą mas produktów rozszczepienia i jaki stanowi to procent masy uranu. Pamiętaj o tym, że masa jest równoważna energii zgodnie z zależnością E = mc2. Sprawdź obliczenia i wynik.

Analizując liczby masowe i atomowe pierwiastków (np. na podstawie tabeli 38.1) można zauważyć, że pierwiastki lekkie zawierają w jądrze zbliżone ilości protonów i neutronów podczas gdy dla pierwiastków ciężkich przeważa liczba neutronów.

W związku z tym w reakcji rozszczepienia powstaje na ogół kilka neutronów. W konsekwencji rozszczepienie jądrowe może stać się procesem samopodtrzymującym w wyniku tzw. reakcji łańcuchowej . Jeżeli przynajmniej jeden z powstałych neutronów wywoła kolejne rozszczepienie to proces będzie sam się podtrzymywał. Ilość materiału powyżej, której spełniony jest powyższy warunek nazywamy masą krytyczną .

Jeżeli liczba rozszczepień na jednostkę czasu jest utrzymywana na stałym poziomie to mamy do czynienia z kontrolowaną reakcją łańcuchową. Po raz pierwszy taką reakcję rozszczepienia przeprowadzono (E. Fermi) na Uniwersytecie Chicago w 1942 r.

Masa materiału rozszczepianego (np. 235U czy 239Pu) może też być nadkrytyczna . Wówczas neutrony powstałe w wyniku jednego rozszczepienia wywołują więcej niż jedną reakcję wtórną. Mamy do czynienia z lawinową reakcją łańcuchową . Cała masa nadkrytyczna może być rozszczepiona (zużyta) w bardzo krótkim czasie, t < 0.001 s, ze względu na dużą prędkość neutronów (3·105 m/s). Tak eksploduje bomba atomowa. Najczęściej przygotowuje się kulę o masie nadkrytycznej ale rozrzedzonej. Następnie otacza się ją klasycznymi ładunkami wybuchowymi, których detonacja wywołuje wzrost ciśnienia zewnętrznego i gwałtownie zwiększenie gęstości materiału (zmniejsza się objętość kuli). W konsekwencji osiągnięty zostaje stan nadkrytyczny.

Oczywiście w elektrowniach atomowych spalanie paliwa odbywa się bardzo powoli. W związku z tym konieczne jest spowalnianie neutronów i dobór warunków stacjonarnej pracy reaktora. Wymaga to stosowania skomplikowanych instalacji dużo droższych niż w elektrowniach konwencjonalnych spalających węgiel. Dodatkowe, bardzo znaczne koszty w elektrowni atomowej są związane z budową i eksploatacją systemu ochrony i zabezpieczeń oraz ze składowaniem odpadów promieniotwórczych. Jednak pomimo tak wysokich kosztów energia jądrowa skutecznie konkuruje z paliwem tradycyjnym i jest bardziej ekonomiczna na dużą skalę. Również zanieczyszczenia powstające przy spalaniu węgla w tradycyjnych elektrowniach stanowią nie mniejszy (a w opinii wielu znacznie większy) problem niż odpady promieniotwórcze.

Ćwiczenie
Żeby przekonać się o skali problemu oblicz jaką ilość węgla należy spalić aby uzyskać tyle samo energii co w reakcji rozszczepienia 1 kg uranu. W obliczeniach uwzględnij wyniki uzyskane w poprzednim ćwiczeniu oraz to, że przy spalaniu 1 kg węgla wydziela się średnio energia 2.5·107 J. Sprawdź obliczenia i wynik.

Energia jądrowa powinna ułatwić pokrycie światowego zapotrzebowania na energię w obliczu wyczerpywania się tradycyjnych źródeł energii.

Reakcja syntezy jądrowej

  Ponownie odwołujemy się do wykresu 38.2. Wynika z niego, że masa dwóch lekkich jąder jest większa niż masa jądra powstającego po ich połączeniu. Jeżeli więc takie jądra zbliżymy do siebie na dostatecznie małą odległość, to z ich połączenia powstawanie nowe jądro i wydzieli się energia związana z różnicą mas.

Przykładowo przy połączeniu dwóch deuteronów (jądro izotopu wodoru ) w jądro helu, 0.6% masy zostanie zamienione na energię. Zauważ, że ta metoda jest wydajniejsza od rozszczepiania jąder uranu (ćwiczenie powyżej). Poza tym dysponujemy nieograniczonym źródłem deuteru w wodzie mórz i oceanów.

Jednak istnieje przeszkoda w otrzymywaniu energii tą metodą. Jest nią odpychanie kulombowskie, które nie pozwala zbliżyć się deuteronom na odległość niezbędną do ich połączenia (porównywalną z zasięgiem przyciągających sił jądrowych). Reakcja ta nie jest możliwa w temperaturze pokojowej ale byłaby możliwa gdyby deuter mógł być ogrzany do temperatury około 5·107 K.

Reakcje, które wymagają takich temperatur nazywamy reakcjami termojądrowymi . Temperatury osiągane podczas wybuchu bomby atomowej są wystarczające do zapoczątkowania takiej reakcji. Raz zapoczątkowana reakcja termojądrowa wytwarza dostateczną ilość energii do utrzymania wysokiej temperatury (dopóki materiał nie zostanie spalony). Tak działa bomba wodorowa.

Nam jednak zależy na uzyskaniu użytecznej energii z reakcji syntezy jądrowej tzn. na prowadzeniu reakcji w sposób kontrolowany. Dlatego prowadzone są próby skonstruowania reaktora termojądrowego. Podstawowym problemem jest utrzymanie gazu o tak wysokiej temperaturze, w pewnej ograniczonej objętości. Czas trwania reakcji musi być wystarczająco długi żeby wytworzona energia była większa od energii zużytej na uzyskanie tak gorącego gazu (uruchomienie reaktora). Stwarza to wiele problemów technicznych i jak dotąd nie udało się przeprowadzić zakończonej sukcesem (z dodatnim wynikiem energetycznym) kontrolowanej reakcji termojądrowej.

Jednak w przyrodzie obserwuje się ciągłe wytwarzanie energii termojądrowej. Procesy termojądrowe są źródłem energii gwiazd w tym i „naszego” Słońca.

Źródła energii gwiazd

  Ewolucja wielu gwiazd rozpoczyna się od wyodrębnienia się chmury wodoru z materii międzygwiezdnej. Chmura ta zapada się pod wpływem siły grawitacji. Zagęszczaniu materii pod wpływem grawitacji towarzyszy wzrost temperatury aż osiągnięte zostaje stadium protogwiazdy .

Ponieważ energia protogwiazdy, źródłem której jest grawitacyjne zapadanie się, zmniejsza się przez promieniowanie elektromagnetyczne (protogwiazda świeci) trwa dalsze jej kurczenie się aż do pojawienia się nowego źródła energii, które może temu przeciwdziałać. Tym nowym źródłem są reakcje termojądrowe.

Spróbujmy teraz obliczyć rozmiar (promień) Słońca w funkcji jego masy. W tym celu zakładamy, że gęstość Słońca jest stała (w rzeczywistości rdzeń ma większą gęstość niż warstwy przy powierzchni), a jego masę przyjmujemy równą MS = 2·1030 kg.

Zapadanie się masy gazu w Słońcu zostanie zatrzymane gdy ciśnienie termiczne wywołane ogrzewaniem gazu przez energię z reakcji termojądrowych wyrówna ciśnienie grawitacyjne. Obliczamy więc ciśnienie grawitacyjne wewnątrz jednorodnej kuli o promieniu R. Korzystamy z równania , gdzie jest wartością średnią przyspieszenia (na powierzchni kuli przyspieszenie jest równe g, a w środku przyspieszenie jest równe zeru). Stąd>

(38.24)

gdzie . Ostatecznie więc

(38.25)

Na podstawie równania stanu gazu doskonałego ciśnienie termiczne gazu wynosi

(38.26)

gdzie mp jest masą protonu (masa atomu wodoru  masa protonu).

Porównanie tych dwóch ciśnień daje wyrażenie na promień Słońca

(38.27)

skąd

(38.28)

Teraz spróbujemy ocenić jaka jest najniższa temperatura potrzebna do zbliżenia dwóch protonów na odległość 2·10−15 m wystarczającą do ich połączenia się.

Każdy proton ma energię (3/2)kT, więc energia kinetyczna pary protonów jest równa 3kT. Ta energia musi zrównoważyć energię odpychania elektrostatycznego równą .

Z porównania tych energii otrzymujemy temperaturę T  2.8·109 K.

We wnętrzu gwiazdy wystarcza temperatura o jeden lub nawet dwa rzędy wielkości niższa, bo zawsze znajdzie się wystarczająca ilość protonów o prędkościach większych od średniej (przypomnij sobie Maxwella rozkład prędkości - paragraf 16.2) aby podtrzymać reakcję. Tak więc temperatura, dla której zaczynają zachodzić reakcje termojądrowe jest rzędu 107 K. Na podstawie tych danych otrzymujemy wartość promienia Słońca zbliżoną do wartości obserwowanej R = 7·108 m.

Temperatura rzędu 107 K jest więc dostatecznie wysoka, aby wywołać następujące reakcje termojądrowe

(38.29)

(38.30)

(38.31)

gdzie D oznacza izotop wodoru - deuter. Ten ciąg reakcji termojądrowych pokazany na rysunku 38.3 jest znany jako cykl wodorowy .

W cyklu wodorowym wytworzona zostaje cząstka alfa, 2 pozytony, 2 neutrina i 2 fotony gamma. Masa jądra helu stanowi 99.3% masy czterech protonów więc wydziela się energia związana z różnicą mas. Cykl wodorowy jest głównym mechanizmem produkcji energii przez Słońce i inne gwiazdy bogate w wodór.

 Rys. 38.3 Schemat cyklu wodorowego

Energia wytwarzana przez Słońce jest ogromna. W ciągu sekundy 592 miliony ton wodoru zamieniają się w 587.9 milionów ton helu. Różnica tj. 4.1 miliony ton jest zamieniana na energię (w ciągu sekundy). Odpowiada to mocy około 4·1026 W.

Ćwiczenie
Na podstawie tych danych, spróbuj teraz obliczyć po jakim czasie wypaliłoby się Słońce (o masie MS =  2·1030 kg) tj. cały wodór zamieniłby się w hel. Pamiętaj, że energia wytwarzana przy przemianie wodoru w hel stanowi 0.7% masy "paliwa" wodorowego. Porównaj otrzymany wynik z dotychczasowym wiekiem Słońca, który szacuje się na 5·109 lat. Sprawdź obliczenia i wynik.

Ten rozdział kończy moduł jedenasty; możesz teraz przejść do podsumowania i zadań testowych.