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How to construct the perfect sandcastle
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Just a bit of water enables one to turn a pile of dry sand into a spectacular sandcastle. Too much water
however will destabilize the material, as is seen in landslides. Here we investigated the stability of wet sand
columns to account for the maximum height of sandcastles. We find that the columns become unstable to
elastic buckling under their own weight. This allows to account for the maximum height of the sand column;
it is found to increase as the 2/3 power of the base radius of the column. Measuring the elastic modulus of the
wet sand, we find that the optimum strength is achieved at a very low liquid volume fraction of about 1%.
Knowing the modulus we can quantitatively account for the measured sandcastle heights.

he formation of capillary bridges between sand grains are the cause of the stiffness of sculptured wet sand in a

sandcastle, as opposed to dry sand which can hardly or not support its own weight'. Qualitatively, the liquid

leads to the formation of capillary bridges between the sand grains, and the curvature of the liquid interface
leads to a capillary pressure causing a force of attraction between the grains. This then creates a network of grains
connected by pendular bridges, and allows, for example, creating complex structures such as sandcastles. Not
many quantitative studies on the mechanical properties of wet sand exist, in spite of the fact that the handling and
flow of granular materials is responsible for roughly 10% of the world energy consumption®.

Since in many cases the humidity in the air is sufficient for liquid bridges to form between sand grains, one
would expect the mechanical behavior to be well known. This is not the case, in spite of the fact that the stability of
wet granular packings is of paramount importance for civil engineering purposes and that the adhesive forces due
to the presence of liquid bridges are also extremely important in geophysical applications (i.e., soil stability), of
which sandcastles are merely an unusual example®®. For sandcastles, the only estimate in the literature’®, argues
that the stability is related to the capillary rise in the granular medium, and arrives at a maximum sandcastle
height of roughly 20 cm. This is in stark disagreement with the observation of sandcastles of several meters high,
and the common observation that the stability depends on the base radius of the sand structure.

To account for the (in)stability of sandcastles, we show here that it is sufficient to consider that the limit of
instability is reached when a column of sand undergoes a buckling transition under its own weight. An elastic rod
becomes elastically unstable and buckles under its own weight when exceeding a critical height 4,,;,'°. We present
here the analytical solution for h,,; for a cylindrical column:
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where G is the elastic modulus, R the column radius, p is density, g the gravitational acceleration, and J =~ 1.8663 is
the smallest positive root of the Bessel function of the first kind of order —1/3"'. A similar expression is used in
civil engineering to calculate the stability of buildings'*> and we therefore expect that this also gives the maximum
height for which a sandcastle falls apart as the buckling instability will cause the sandcastle to fracture.

Results

From the buckling arguments, the maximum height varies with the base radius as h,,,,, ~ R**. The experimental
data for the maximum height as a function of the column radius compare rather favorably with the theoretical
expression for buckling (Fig. 2). The exponent of experimental data is in good agreement with theory: k., ~
R0.710.05'

To be able to quantitatively compare with the buckling prediction for the maximum height of a sandcastle, we
need to quantify the shear modulus. A recently introduced model for the strength of wet granular matter"
assumes that when one adds a volume of liquid to grains, the capillary attractive force and elastic response from
the Hertz contact between two spheres will be balanced. As two beads are always separated by at least the surface
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Figure 1 | Sandcastles with diameters 2 cm and 7 cm.

roughness, below a critical liquid volume fraction about 0.2%, the
bridges between the beads cannot form. At higher volume fractions,
the bridge force is dominated by the curvature of the meniscus and at
even higher volume fractions the bridges start merge into larger
pockets of fluid”’. The macroscopic shear modulus G of a mac-
roscopic cube of dimension L containing a large amount of grains
can be defined as the ratio of stress and strain:
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Figure 2 | Experimental data points and theoretical prediction of the
maximum height of sandcastle as a function of its radius. The solid line is
the theory without any adjustable parameters using G = 0.054 a~ >E**y'",
where a = 100 um, E = 30 GPa, y = 70 mN/m. The density of the sand is
p = 2.6 glem’. The small but systematic discrepancy between the theory
and the experiments is likely to be due to perturbations that arise when we
remove the PVC pipes, leading to a somewhat smaller maximum height
than the theoretical one.

where Ax/L is the strain, Fyqin/L* the stress and v =~ 0.5 the Poisson
ratio. Assuming that at the level of single particles the capillary and
elastic forces are balanced for each pair of grains and using the simple
Hertz contact for the grain contact elasticity, the optimum strength G
can be found by averaging over all pairs as':

G=OC(1_1/3E2/3')/1/3, (3)

where g is the radius of the grains, E is the Young’s modulus of the
grain material and y is the surface tension of the liquid-air interface,
respectively. « is constant of proportionality that expresses how
much the individual capillary sphere-sphere bonds are deformed
relative to the globally imposed strain. To compute an estimate of
o, we take a simple cubic crystal of frictionless spheres and average «
over different straining directions, which gives « = 0.054. We take
the function (V) =~ 1 for determining the maximum strength; (V)
shows the dependence of the elastic modulus to the liquid volume
fraction and is unity for the optimum volume fraction'’.

Discussion

This model gives a very accurate result for the maximum strength of
the sand packing (Fig. 3), which makes it possible to compute how
high sandcastles can be built from the predicted elastic modulus for
any size grains of wet sand. Using typical values for beach sand, a
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Figure 3 | The elastic shear modulus vs. volume fraction of water (circles:
experimental measurements, dashed line: theoretical prediction for the
optimal strength from Eq. 3). The measurements were done on a
commercial rheometer using a vane-in cup geometry where the cup was
covered with sandpaper and the sand compacted as for the sandcastle
experiments. Inset: picture of the grains.
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Figure 4 | An underwater sandcastle. Using commercially available
hydrophobic sand it is possible to build an underwater sandcastle. Since
the force between beads remain constant, but the effective weight of the
sandcastle is reduced by a factor of 3, it is possible to build more spectacular
sandcastles underwater than above. The different elements of this
sandcastle were molded under water, saturated with interstitial air. After
molding, a syringe was used to suck out air from the elements, reducing the
“fluid” volume fraction from about 40% to about 10% in order to increase
the strength of the material before simply moving them into place by hand.

cylinder with a radius of 20 cm for instance could be as tall as about
2.5 m, which is in quite good agreement with what can be observed
for real sandcastles'’. This estimate is an immense improvement
compared to a previous dimensional analysis result which gives
roughly 20 c¢m as the maximum height of a sandcastle, independently
of the base diameter’. For our cylindrical sandcastles, using the
optimum strength in the buckling arguments, we arrive at a quant-
itative theory for sandcastle stability that agrees with the measure-
ments (Fig. 2).

Can we use these new insights to build taller sandcastles? From
R0 We see that besides the sandcastle diameter, the most potent
power is associated with o/pg. We cannot change g, but o can be
increased by compaction which is always done by sandcastle
builders. Also we could decrease the effective density, p, of our sand-
castle by plunging it under water. For normal sand however, this will
destroy the liquid bridges between grains and thus the strength of the
material. However, if hydrophobic sand is used the roles of water and
air interchange completely™. In this case the air and not the water
“wets” the grains and we can simply interchange water and air, which
does not change the bridge force. Since the force between beads
remain constant, but the effective density of compacted sand changes
from 1.6 g/cm’ to 0.6 g/cm’ when immersed in water. This makes it
possible to build underwater sandcastles, which are even more spec-
tacular than normal ones (Fig. 4).

These results are of practical interest for civil engineering and soil
mechanics, as well as fundamental interest to come to a better under-
standing of partially saturated granular materials. In addition it
explains the maximum height of, and provides us with a recipe to
construct the perfect sandcastle.

Methods

To verify this experimentally, beach sand with an average radius of 100 m was mixed
with a small amount of deionized water. Cylindrical ‘sandcastles’ were constructed
using non-wetting PVC pipes of different diameters cut in half over the length of the
tube. The two halves were assembled, and the wet sand was put in the tube standing on
vertically on a surface. The wet sand was poured into the pipe in small portions and
compacted by dropping a thumper into the pipe at least 70 times. This process was
repeated until the pipe was filled with sand up to a certain height. The two halves of
the cylindrical tube were then carefully removed and if the sand column was stable, a
new experiment was launched filling the tube to a larger height, until the column
collapsed. Several experiments were done at each filling height to ensure the repro-
ducibility of the results. Figure 1 shows two columns of sand with height 27 ¢m and
60 cm with diameters 2 ¢m and 7 cm. This procedure was followed for 8 pipes of
diameter ranging between 0.5 and 7.5 centimeters.
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