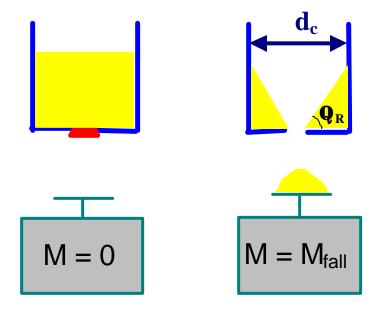
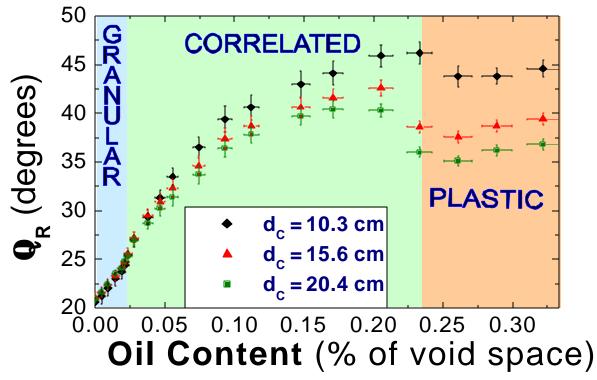

Wet Granular Media

Adds new dimensions to granular physics

- Capillary forces attractive force, cohesion
- Lubrication decrease of static friction
- Viscous forces

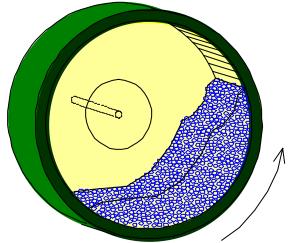

In ambient atmosphere always interstitial liquid from humidity

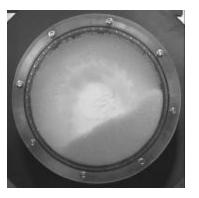
- Impact on Physics
- Big Impact in Applications

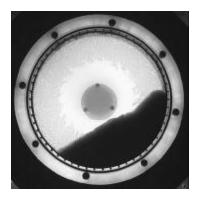

Draining crater method to measure repose angle $(\mathbf{Q}_{\mathbf{R}})$ as a function of wetting

- glass beads -- ~1 mm diam.
- add oil -- low vapor pressure
- vary oil content -- limit of small oil (0.001%-1%)
- vary container size -- expect size dependence

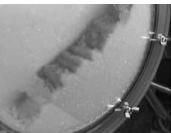
Experimental checks to be sure grains are wellmixed and no time-dependent effects


Draining crater data: three regimes of behavior with increasing liquid content


<u>Granular</u> <u>Regime</u>	Individual grains flow down surface
<u>Correlated</u> <u>Regime</u>	Correlated clumps flow down surface
<u>Plastic</u> <u>Regime</u>	Coherent surface flow (like viscous liquid) Q _R drops with increasing liquid content


Wet materials in the rotating drum

glass beads (0.9mm & 0.5mm) + oil (0.001%-1%)



Use background illumination to overcome problems with grains sticking

 Observe new features in statics: Surface Roughness

• Observe new features in dynamics: Deep Avalanches