
Drag and Local Jamming 

When a stress is applied to a dense collection of grains, the 
grains form a rigid "jammed" structure to resist the stress

What is the nature of the jammed state resulting from a 
locally applied stress?

How strong are jammed states?  How do they fail?



Local Jamming is Manifested in Drag Force
v

Fdrag GRAINS

Drag is force required to reorganize grains to allow motion
Force is transmitted through inhomogeneous force chains of jammed grains

vv

Fdrag



Principles of granular drag at low velocities
Grains jam, and then jammed state breaks

f(t)
time

Fdrag ≡ avg. force to reorganize static grains

Fdrag should be velocity independent -- akin to friction

η = dimensionless constant (grain surface/morphology/packing) 
ρ = density of grain material
dc = cylinder diameter
H = depth of insertion

Fdrag = ηgρdcH2 for vertical cylinder
Simple mean-field or detailed calculation suggests:



Measure Drag Force at Low Velocities
Rotating Bucket of Glass Spheres, Cylinder Dipped In

Measure Force to Keep Cylinder Fixed

Fixed 
Cylinder

Rotating 
Bucket of
Grains

Vary grain size, velocity, depth, cylinder diameter



Details of Drag Force Apparatus
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Average Drag Properties
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Fdrag = ηgρdcH2 in agreement with theoretical expectations
independent of velocity and grain size

Phys. Rev. Lett. 82, 205 (1999)
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Average drag does not depend on cylinder surface
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friction coefficient µ

Phys. Rev. E 64, 031307 (2001) and 64, 061303 (2001) 

Drag determined by the force needed to collapse the 
bulk jammed state



Fluctuations in drag force: jammed states breaking

Spring
Add spring to control elasticity
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Fluctuations are periodic at low depths
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Can be reproduced by model of coupled springs
Phys. Rev. E 64 051303 (2001)
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Fluctuations do not depend on 
rod shape or surface friction: 
result from bulk failure of the 
jammed grains 



Fluctuations scale with velocity and elasticity
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Stick slip reflects properties of grains, not apparatus



Fluctuations change in character  with 
depth of insertion
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Phys. Rev. Lett. 84 5122 (2000) 
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Fluctuation transition is finite size effect?
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Force chains are long range →

Below certain depth the container 
walls prevent relaxation of the 
jammed state →

More frequent reorganizations



More direct measure of finite size effect on 
granular drag:  penetration force near boundary

How close to the treasure chest does the pirate feel its 
presence under the sand?



Look at finite size effect with penetrometer

• Probe effects of boundaries on 
strength of jammed state by 
measuring resistance to 
penetration

• Vary: 
bead diameter
bucket size
diameter of plate
velocity,
texture of bottom surface

Nature 427, 503 (2004)
Phys. Rev. E 70, 041301  (2004)



Careful filling procedure required

Slowly lower bucket
so grains fill without free fall



Height dependence of penetration force

• Initial linear force distribution with subsequent rollover

• Rapid increase as penetrometer approaches bottom
• Work in a regime of no bucket size or velocity dependence

Vanel and Clément Eur. Phys. J. B (1999)
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Obtain the effect of the bottom by subtracting 
off data taken with deeply filled bucket

Obtain:

“Bulk” force as a 
function  of depth, 
Fbulk

Measure of stress at 
bucket bottom, F0

0.9 mm beads
25.4 mm plate
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Subtraction of background yields surprising 
minimum in force
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Why is there a minimum in ∆F?

Near the bottom grains can 
slide along surface

Forces in bulk need to rearrange 
ensemble of grains
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Texture of bucket bottom

− Flat/Smooth

− Circularly grooved

− Radially grooved

− Rough/Beaded

Remote sensing of boundary texture 
through penetration

Sliding along boundary surfaces reduces penetration force.
→ Texture affects the nature of the local jammed state.
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How close to the bottom boundary does the 
penetration force reflect that a bottom exists? 

Exponential behavior observed in ∆F approaching bottom 
boundary for all textures, grain sizes,  and real sand

∆F ∝ e-z/λ

Implies the existence of an intrinsic length scale!
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What sets the length scale for sensing the bottom?

Length scale defines the size of the locally jammed state

Fill Depth?   Plate Diameter?   Grain Diameter?  Something else?



Grain diameter appears not to affect length scale
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Plate diameter dependence of length scale
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• λ increases with penetrating plate size 

• Larger penetrating object detects bottom earlier



Fill height dependence of length scale

Fill height affects λ
through ambient stress

Get measure of stress 
through F0 = Fbulk(z = 0)
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Dependence of length scale on system parameters
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Scaling of length scale
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Where does dependence of length scale come from?

0 / ???F rλ ∝
If we take F0 = Peff(πr2) where Peff is an effective 
granular pressure we get:

???effP rλ ∝

Since λ is the effective size of the jammed state 
caused by penetration, it would be interesting to 
understand its origins…theory needed!!!



Conclusions: Jamming in drag

• Jamming leads to unusual drag in granular materials
Velocity independent
Stick slip fluctuations
Only weakly shape dependent

• Boundary effects on jamming result in rich behavior 

• Many open issues
What defines the length scale for the jammed state?
What are the microscopic dynamics of the collapse 
process?
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