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A Bicycle Can Be Self-Stable Without
Gyroscopic or Caster Effects
J. D. G. Kooijman,1 J. P. Meijaard,2 Jim M. Papadopoulos,3 Andy Ruina,4* A. L. Schwab1

A riderless bicycle can automatically steer itself so as to recover from falls. The common view
is that this self-steering is caused by gyroscopic precession of the front wheel, or by the wheel
contact trailing like a caster behind the steer axis. We show that neither effect is necessary for
self-stability. Using linearized stability calculations as a guide, we built a bicycle with extra
counter-rotating wheels (canceling the wheel spin angular momentum) and with its front-wheel
ground-contact forward of the steer axis (making the trailing distance negative). When laterally
disturbed from rolling straight, this bicycle automatically recovers to upright travel. Our results
show that various design variables, like the front mass location and the steer axis tilt, contribute to
stability in complex interacting ways.

Abicycle and rider in forward motion ba-
lance by steering toward a fall, which
brings the wheels back under the rider

[supporting online material (SOM) text S1 and
S2] (1). Normally, riders turn the handlebars
with their hands to steer for balance. With hands
off the handlebars, body-leaning relative to the
bicycle frame can also cause appropriate steering.
Amazingly, many moving bicycles with no rider
can steer themselves so as to balance—likewise
with a rigid rider whose hands are off the handle-
bars. For example, in 1876, Spencer (2, 3) noted that
one could ride a bicycle while lying on the seat
with hands off, and the film JourdeFêteby Jacques
Tati, 1949, features a riderless bicycle self-balancing
for long distances. Suspecting that bicycle ride-
ability, with rider control, is correlated with self-
stability of the passive bicycle, much theoretical
research has focused on this bicycle self-stability.

The first analytic predictions of bicycle self-
stability were presented independently by French
mathematician Emmanuel Carvallo (1897) (4)
and Cambridge undergraduate Francis Whipple
(1899) (3, 5). In their models and in this paper, a
bicycle is defined as a three-dimensional mecha-
nism (Fig. 1A) made up of four rigid objects
(the rear frame with rider body B, the handlebar
assembly H, and two rolling wheels R and F)
connected by three hinges. The more complete
Whipple version has 25 geometry and mass pa-
rameters. Assuming small lean and steer angles,
linear and angular momentum balance—as con-
strained by the hinges and rolling contact—lead
to a pair of coupled second-order linear differ-
ential equations for leaning and steering (SOM
text S3) (6). Solutions of these equations show
that after small perturbations, the motions of a
bicycle may exponentially decay in time to up-
right straight-ahead motion (asymptotic stabili-

ty). This stability typically can occur at forward
speeds v near to

ffiffiffiffiffi

gL
p

, where g is gravity and L
is a characteristic length (about 1 m for a mod-
ern bicycle). Limitations in the model include
assumed linearity and the neglect of motions
associated with tire and frame deformation, tire
slip, and play and friction in the hinges. None-
theless, modern experiments have demonstrated
the accuracy of the Whipple model for a real
bicycle without a rider (7).

The simple bicycle model above is energy-
conserving. Thus, the asymptotic stability of a
bicycle, that the lean and steer angles exponen-
tially decay to zero after a perturbation, is jarring
to those familiar with Hamiltonian dynamics. But
because of the rolling (non-holonomic) contact of
the bicycle wheels, the bicycle—although energy-
conserving—is not Hamiltonian, and it is possi-
ble for a subset of variables to have exponential
stability in time (6, 8). There is no contradiction
between exponential decay and energy conser-
vation because for a bicycle, the energy lost from
decaying steering and leaning motions goes to
increase the forward speed. Unresolved, how-

ever, is the cause of bicycle self-stability. In some
sense, perhaps, a self-stable bicycle is something
like a system with control, albeit self-imposed.

Rider-controlled stability of bicycles is indeed
related to their self-stability. Experiments like
those of Jones (9) and R. E. Klein (10) show that
special experimental bicycles that are difficult
for a person to ride, either with hands on or off,
tend not to be self-stable. Both no-hands control
(using body bending) and bicycle self-stability
depend on “cross terms,” in which leaning causes
steering or vice versa. The central question about
what causes self-stability is thus reduced to, what
causes the appropriate coupling between lean-
ing and steering? The most often discussed of
the coupling effects are those due to front-wheel
gyroscopic torque and to caster effects from the
wheel trailing behind the steer axis. Trail (or
“caster trail”) is the distance c that the ground
contact point trails behind the intersection of
the steering axis with the ground (Fig. 1A).

There is near universal acceptance that either
spin angular momentum (gyroscopic effect) or
trail, or both, are necessary for bicycle self-stability
(3). Active steering of a bicycle front wheel causes
a gyroscopic torque on an upright frame and rider.
Because the front wheel is relatively light as com-
pared with the more massive bicycle and rider, the
effect of this gyroscopic torque on the lean is gen-
erally small (SOM text S1) (11). However, coupling
the other way—the effect of active bicycle-leaning
on hands-free steering—is nonnegligible. For ex-
ample, when the bicycle has a lean rate to the right
the front axle also has a lean rate to the right, and the
spinning wheel exerts a clockwise (looking down)
reactive torque carried at least in part by the handle-
bar assembly. This reaction torque tends to turn the
handlebars rightward. Thus, the common explana-
tion of no-hands rider control: To steer to the right,
the rider bends her upper body to the left, tilting
the bicycle and wheels rightward (5). The bicycle
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Fig. 1. (A) The bicycle model consists of two interconnected frames, B and H, connected to two wheels,
R and F. The model has a total of 25 geometry and mass-distribution parameters. Central here are the
rotary inertia Iyy of the front wheel, the steer axis angle (“rake”) ls, and the trail distance c (positive if
contact is behind the steer axis). Depending on the parameter values, as well as gravity g and forward
speed v, this bicycle can be self-stable or not. (B) A theoretical TMS bicycle is a special case. It is
described with only nine free parameters (eight plus trail). The wheels have no net rotary inertia and
thus function effectively as ice skates. The two frames each have a single point mass and no mass
moments of inertia. A heavy point mass on the rear skate at the ground contact point can prevent the
bicycle from tipping over forward; because it has no effect on the linearized dynamics, it is not shown.
Even with negative trail (c < 0; inset), this non-gyroscopic bicycle can be self-stable.
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handlebars, considered as freely rotating on the
steer axis and forced by the gyroscopic front wheel,
thus initially turn rightward. Such leaning-induced
steering can be used for rider control of balance.
Likewise, this gyroscopic coupling also contributes
to a forward-moving passive bicycle self-steering
toward a fall (12).

The most thorough discussion of the neces-
sity of gyroscopic coupling of leaning to steering
for bicycle self-stability is in the bicycle chapter
of the fourth volume of the gyroscope treatise
by Klein and Sommerfeld (11, 13). They took the
example bicycle parameters fromWhipple and elim-
inated just the spin angularmomentumof thewheels.
Using their own linearized dynamic stability anal-
ysis of theWhipplemodel, Klein and Sommerfeld
concluded that, ‘‘... in the absence of gyroscopic
actions, the speed range of complete stability
would vanish’’ [(11) p. 866] and make what ap-
pears to be a strong general claim about bicycles:
‘‘The gyroscopic action, in spite of its smallness,
is necessary for self-stability’’ [(11) p. 866].

They emphasized that the gyroscopic torque
does not apply corrective lean torques to a bicy-
cle directly, as others seem to have thought (14).
Rather, through the gyroscopic torque, leaning
causes steering, which in turn causes the right-
ing accelerations: ‘‘The proper stabilizing force,
which overwhelms the force of gravity, is the cen-
trifugal force, and the gyroscopic action plays
the role of a trigger’’ [(11) p. 881].

In Jones’s famous search for an unrideable
bicycle (URB) (9), he added a counter-rotating
disk to the handlebar assembly, canceling the gy-
roscopic self-steering torque of the front wheel.
He could still (barely) ride such a nongyro bi-
cycle using no hands. Jones rightly deduced that
the gyroscopic effect discussed in (11) was not the
only coupling between leaning and steering. Jones
emphasized the importanceof the front-wheelground
contact being behind the steering axis (positive trail,
c > 0) (Fig. 1A). Even though the front forks of

modern bicycles are typically bent forward slight-
ly, with the wheel-center forward of the steering
axis, all modern bicycles still have positive trail
(typically from 2 to 10 cm on modern bicycles)
because of the steering axis tilt ls > 0. When Jones
modified his bicycle by placing the front-wheel
ground contact in front of the steer axis (negative
trail, c < 0), he could not ride using no hands.

In Jones’s view, a bicycle wheel is in part like
a caster wheel on a shopping cart, with the wheel
trailing behind a vertical pivot axis. If a modern
bicycle was rolled forward by guiding the rear
frame in a straight line while it was held rigidly
upright, the front wheel would quickly self-center
like a shopping-cart caster. Jones noted, ‘‘The bi-
cycle has only geometrical castor [sic] [trail] stabil-
ity to provide its self-centering’’ [(9) p. 40]. Jones’s
main focus was a second trail effect: The vertical
ground contact force on the front-wheel–ground
contact point exerts a steering torque on a leaned
bicycle even when the bicycle is steered straight.
Jones calculated the steer torque caused by lean as
a derivative of a static potential energy, neglecting
the weight of the front assembly. If a typical mod-
ern bicycle is firmly held by the rear frame, leaned
to the right, and pressed down hard, then the ver-
tical ground contact force on the frontwheel causes
a rightward steering torque on the handlebars. The
Jones torque can be felt on a normal bicycle by
riding in a straight line and bending your upper
body to the left, leaning the bicycle to the right:
To maintain a straight path, the hands must fight
the Jones torque and apply a leftward torque to the
handlebars. According to Jones, this torque causes
steering toward a fall onlywhen the trail is positive.
When the trail is zero, Jones’s theory predicts no
self-correcting steer torque. Jones seems to con-
clude that no-hands control authority (the ability
to cause steeringbybodybending) and self-stability
both depend on positive trail. A mixture of the two
mechanisms Jones discusses certainly suggests
that trail is a key part of bicycle stability.

Following Klein and Sommerfeld and Jones,
it has become common belief that steering is
stable because the front-wheel–ground contact
drags behind the steering axis, and leaning is sta-
ble because some mixture of gyroscopic torques
and trail causes an uncontrolled bicycle to steer
in the direction of a fall (3).

Are gyroscopic terms or positive trail, togeth-
er or separately, really either necessary or suffici-
ent for bicycle self-stability? Following Carvallo,
Whipple, Klein and Sommerfeld, and others since
[see history in (6)], we began with the linearized
equations of motion. Using the numerical values
from the benchmark example in (6) and setting
the gyroscopic terms to zero, we found that self-
stability is lost (SOM text S6.1, which is similar
to the result of Klein and Sommerfeld for the
Whipple parameters). However, we also found
bicycle designs that are self-stable even without
gyroscopic terms.

The conflict with Klein and Sommerfeld is
partly resolved by noting sign errors in their key
stability term (3). Despite their calculation errors,
the Whipple bicycle with Whipple’s example pa-
rameters does indeed lose self-stability when the
gyro terms are set to zero. But with their incor-
rect expressions, Klein and Sommerfeld could
make slightly more general claims that are not
valid when the sign errors are corrected (3). What-
ever generality Klein and Sommerfeld intended
(their wording is ambiguous), their result does
not apply to bicycles in general.

Similarly, Jones’s simplified static-energy cal-
culation seems incomplete in the context of a dy-
namical system, such as the Whipple and Carvallo
models. Jones’s static energy calculation only
calculates (incompletely) one term, K0df, of the
full dynamics equations (3, 6). In a full dynamic
analysis, K0df does not predict the steering of a
falling bicycle (3). For example, that term can
be nonzero for a bicycle that falls with no self-
corrective steering at all. And just as for the gy-

Fig. 2. Realization of the model from Fig. 1B. (A) The experi-
mental TMS bicycle. (B) Front assembly. A counter-rotating wheel
cancels the spin angular momentum. The ground contact is slight-
ly ahead of the intersection of the long steer axis line with the

ground, showing the small negative trail (movie S3). (C) Self-stable experimental TMS bicycle rolling and balancing [photo for (C) by S. Rentmeester/FMAX].
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roscopic term, we can find designs with zero or
negative trail that we predict are self-stable (SOM
text S6.2).

In contrast to the conventional claims above
for the necessity of gyroscopic terms and trail, we
have found no rigorous reasoning that demands
either. To understand better what is needed for
self-stability, we eliminated as many bicycle pa-
rameters as possible (15). Most centrally, we elim-
inated the gyroscopic terms and set the trail to
zero (c = 0). We also reduced the mass distribution
to just two point masses: one for the rear frame B
and one for the steering assembly H (Fig. 1B).
With these theoretical parameters, the wheels—
having no net spin angular momentum—are me-
chanically equivalent to skates. These simplifi-
cations reduce the number of parameters from
Whipple’s 25 to a more manageable eight.

Stability analysis of this theoretical two-mass-
skate (TMS) bicycle model (SOM text S7), con-
firmed by means of numerical solution of the
governing differential equations, shows that neither
gyroscopic terms nor positive trail are needed
for self-stability [Routh-Hurwitz analysis shows
that all eigenvalues of the theoretical TMS bicy-
cle can have negative real parts at some forward
speeds (16)].

We used the stable theoretical TMS bicycle
parameters as a basis for building an experimen-
tal TMS bicycle (Fig. 2A and SOM text S8 and
S9). We used small wheels to minimize the spin
angular momentum. To further reduce the gyro-
scopic terms, following Jones we added counter-
spinning disks that rotate backward relative to
the lower wheels (Fig. 2B and movie S2). The
experimental TMS bicycle was built to have a
slightly negative trail (c = –4 mm < 0) (movie
S3). Although the experimental TMS bicycle

looks like a folding scooter, it is still a bicycle
(two wheels, two frames, and three hinges).

Because all physical objects have distributed
mass, the measured parameters of the experimen-
tal TMS bicycle were necessarily slightly differ-
ent from those of the theoretical design, which
was based on point masses. Using measured pa-
rameters, we calculated the stability plot of Fig. 3A
(SOM text S7 and S8). For rolling speeds greater
than 2.3 m/s, all eigenvalues have negative real
parts (implying self-stability).

After an initial forward push, the coasting ex-
perimental TMS bicycle (Fig. 2C) would remain
upright before it slowed down to about 2 m/s
(SOM text S10 and S11 and movie S1). As it
slowed below 2 m/s, the bicycle would begin to
fall. In a perturbation experiment, the stable coast-
ing bicycle (v > 2.3 m/s) was hit sideways on the
frame, causing a jump in the lean rate, followed
by a recovery to straight-ahead upright rolling.

The lean and yaw rates were measured (tele-
metered). A data set was compared with theory
in Fig. 3B (movie S4). One difference between
experiment and theory is lateral wheel slip at the
initial perturbation, which caused an initial jump
in the measured yaw rate (Fig. 3B, triangles in
the first 0.25 s). The theoretical model assumed
no slip. High-speed video (movie S4) also shows
a 20-Hz shimmy, which is due at least in part to
unmodeled steering axis play (SOM text S11).
Nonetheless, after the slipping period—even with
the shimmy—the data reasonably track the low-
dimensional linear model’s predictions.

Both the theoretical analysis and physical ex-
periment show that neither gyroscopic torques nor
trail are necessary for bicycle self-stability. Nor are
they sufficient. Many bicycle designs with gyro-
scopic front wheels and positive trail are unstable

at every forward speed (SOM text S6.3). Also, all
known bicycle and motorcycle designs lose self-
stability at high speeds because of gyroscopic
terms [for example, (6)]. In contrast, the TMS bi-
cycle does not have gyroscopic terms and is pre-
dicted to maintain stability at high speeds.

With no gyroscopic torque and no trail, why
does our experimental TMS bicycle turn in the di-
rection of a fall? A general bicycle is complicated,
with various terms that can cause the needed cou-
pling of leaning to steering. Only some of these
terms depend on positive trail or on positive spin
angular momentum in the front wheel. In the the-
oretical and experimental TMS designs, the front
assembly mass is forward of the steering axis and
lower than the rear-frame mass. When the TMS
bicycle falls, the lower steering-mass would, on its
own, fall faster than the higher frame-mass for
the same reason that a short pencil balanced on
end (an inverted pendulum) falls faster than a tall
broomstick (a slower inverted pendulum). Because
the frames are hinged together, the tendency for
the front steering-assembly mass to fall faster
causes steering in the fall direction. The impor-
tance of front assembly mass for Jones-like static
torques has been noted before (8, 17, 18).

Why does this bicycle steer the proper amounts
at the proper times to assure self-stability? We have
found no simple physical explanation equivalent
to the mathematical statement that all eigenval-
ues must have negative real parts (SOM text S4).
For example, turning toward a fall is not suffi-
cient to guarantee self-stability. For various can-
didate simple sufficient conditions X for stability,
we have found designs that have X but that are
not self-stable. For example, we have found bi-
cycles with gyroscopic wheels and positive trail
that are not stable at any speed (SOM text S6.3).
We also have found no simple necessary condi-
tions for self-stability. Besides the TMS design
with no gyroscope and negative trail, we have
found other counterexamples to common lore. We
have found a bicycle that is self-stable with rear-
wheel steering (SOM text S6.7). We also found
an alternative theoretical TMS design that has,
in addition to no-gyro and negative trail, also a
negative head angle (ls < 0) (SOM text S6.6).

Are there any simply described design fea-
tures that are univerally needed for bicycle self-
stability? Within the domain of our linearized
equations, we have found one simple necessary
condition (SOM text S5): To hold a self-stable
bicycle in a right steady turn requires a left torque
on the handlebars. Equivalently, if the hands are
suddenly released from holding a self-stable
bicycle in a steady turn to the right, the imme-
diate first motion of the handlebars will be a turn
further to the right. This is a rigorous version of
the more general, as-yet-unproved claim that a
stable bicycle must turn toward a fall.

Another simple necessary condition for self-
stability is that at least one factor coupling lean
to steer must be present [at least one ofMdf, Cdf,
or Kdf must be nonzero (SOM text S3)]. These
coupling terms arise from combinations of trail,
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Fig. 3. (A) Stability plot for the experimental TMS stable bicycle. Solutions of the differential equations
are exponential functions of time. Stability corresponds to all such solutions having exponential decay
(rather than exponential growth). Such decay only occurs if all four of the eigenvalues li (which are
generally complex numbers) have negative real parts. The plot shows calculated eigenvalues as a function
of forward speed v. For v > 2.3 m/s (the shaded region), the real parts (solid lines) of all eigenvalues are
negative (below the horizontal axis), and the bicycle is self-stable. (B) Transient motion after a dis-
turbance for the experimental TMS bicycle. Measured and predicted lean and yaw (heading) rates of the
rear frame are shown. The predicted motions show the theoretical (oscillatory) exponential decay. Not
visible in these plots, but visible in high-speed video (movie S4), is a 20-Hz shimmy that is not predicted
by the low-dimensional linearized model (SOM text S10 and S11).
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spin momentum, steer axis tilt, and center of mass
locations and products of inertia of the front and
rear assemblies.

Although we showed that neither front-wheel
spin angular momentum nor trail are necessary
for self-stability, we do not deny that both are
often important contributors. But other parameters
are also important, especially the front-assembly
mass distribution, and all of the parameters interact
in complex ways. As a rule, we have found that
almost any self-stable bicycle can be made unstable
by misadjusting only the trail, or only the front-
wheel gyro, or only the front-assembly center-of-
mass position. Conversely, many unstable bicycles
can be made stable by appropriately adjusting any
one of these three design variables, sometimes in an
unusualway.These results hint that the evolutionary,
and generally incremental, process that has led to
common present bicycle designsmight not yet have
explored potentially useful regions in design space.
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DNA Origami with Complex Curvatures
in Three-Dimensional Space
Dongran Han,1,2* Suchetan Pal,1,2 Jeanette Nangreave,1,2 Zhengtao Deng,1,2

Yan Liu,1,2* Hao Yan1,2*

We present a strategy to design and construct self-assembling DNA nanostructures that define
intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique.
Double-helical DNA is bent to follow the rounded contours of the target object, and potential
strand crossovers are subsequently identified. Concentric rings of DNA are used to generate
in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks.
Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers
between adjacent DNA double helices, whose conformation often deviates from the natural, B-form
twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of
concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.

DNAnanotechnology can now be used to
assemble nanoscale structures with a va-
riety of geometric shapes (1–12) [for a

recent review, see (13)]. Conventionally, a series
of B-form double helices are brought together
and arranged with their helical axes parallel to
one another. The structure is held together by
crossovers between neighboring helices, and the
allowed crossover points are based on the pre-
existing structural characteristics of B-formDNA.
Many DNA nanostructures are variations of po-
lygonal shapes and, although this level of com-
plexity has been sufficient for many purposes, it
remains a challenge tomimic the elaborate geom-

etries in nature because most biological mole-
cules have globular shapes that contain intricate
three-dimensional (3D) curves. Here, we reveal a
DNA origami design strategy to engineer com-
plex, arbitrarily shaped 3D DNA nanostructures
that have substantial intrinsic curvatures. Our ap-
proach does not require strict adherence to con-
ventional design “rules” but instead involves
careful consideration of the ideal placement of
crossovers and nick points into a conceptually
prearranged scaffold to provide a combination of
structural flexibility and stability.

The scaffolded DNA origami folding tech-
nique, in which numerous short single strands of
DNA (staples) are used to direct the folding of a
long single strand of DNA (scaffold), is thus far
one of the most successful construction methods
based on parallel, B-form DNA (14). The most
commonly used scaffold (M13) is ~7000 nucleo-
tides (nts) long and is routinely used to construct

objects with tens to hundreds of nanometer di-
mensions. Several basic, geometric 3D shapes
such as hollow polygons and densely packed
cuboids have been demonstrated, as well as a few
examples of more complex structures, including
a railed bridge and slotted or stacked crosses
(15–17). The biggest limitation with conven-
tional, block-based DNA origami designs is the
level of detail that can be achieved. Analogous to
digitally encoded images, DNA origami struc-
tures are usually organized in a finite, raster grid,
with each square/rectangular unit cell within the
grid (pixel) corresponding to a certain length of
double-helical DNA. The target shape is achieved
by populating the grid with a discrete number of
DNA pixels (for most origami structures, each
DNA pixel has a parallel orientation with respect
to the other pixels) in a pattern that generates the
details and curves of the shape. However, as with
all finite pixel-based techniques, rounded ele-
ments are approximated and intricate details are
often lost.

Recently, Shih and co-workers reported an
elegant strategy to design and construct relatively
complex 3D DNA origami nanostructures that
contain various degrees of twist and curvatures
(18). This strategy uses targeted insertion and
deletion of base pairs (bps) in selected segments
within a 3D building block (a tightly cross-linked
bundle of helices) to induce the desired curvature.
Nevertheless, it remains a daunting task to en-
gineer subtle curvatures on a 3D surface. Our
goal is to develop design principles that will al-
low researchers to model arbitrary 3D shapes
with control over the degree of surface curvature.
In an escape from a rigid lattice model, our
versatile strategy begins by defining the desired
surface features of a target object with the scaf-
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