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The Linac Coherent Light Source (LCLS) is an X-ray free-electron laser at the SLAC National Accelerator Laboratory, which
has been operating since 2009 for a wide range of scientific research. The free-electron laser process at LCLS is based on
self-amplified spontaneous emission (SASE) where spontaneous emission from the initial electron beam shot noise is
amplified by its interaction with the electrons over a long magnetic undulator. Although SASE is very effective, producing
tremendously powerful, ultrashort X-ray beams, the start-up from noise leaves poor temporal coherence and a broad, noisy
spectrum. We present experimental results of a new method, suggested by colleagues at DESY, allowing self-seeding
using X-rays from the first half of the undulator to seed the second half through a diamond-based monochromator,
producing near Fourier-transform-limited X-ray pulses with 0.4–0.5 eV bandwidth at 8–9 keV. These results demonstrate
self-seeding at ångstrom wavelengths with a relative bandwidth reduction of 40–50 with respect to SASE.

X
-ray free-electron lasers (FELs), which demonstrate an
improvement in peak brightness of approximately ten
orders of magnitude over third-generation light sources,

have shown remarkable scientific capabilities in biology, chemistry,
material science, atomic and molecular physics, as well as many
other disciplines. This is exemplified by the successful operation
of the Linac Coherent Light Source (LCLS)1 and SPring-8
Angstrom Compact Free Electron Laser (SACLA)2. Other similar
X-ray FEL light sources are under construction or development
elsewhere in the world. The process of X-ray generation in these
machines is based on self-amplified spontaneous emission
(SASE)3,4, where the initial shot noise in the electron beam
current produces spontaneous emission that is further amplified
by continuous interaction with the electron bunch over the full
undulator length, up to the saturation power. The SASE process at
LCLS has been quite effective, typically producing tens of gigawatts
of tunable X-rays (25–1.2 Å) with pulse lengths as short as 5–10 fs.
The X-rays produced in the SASE process are transversely coherent,
but the start-up from noise leads to poor temporal coherence with a
broad and noisy spectrum. These deficiencies can be corrected if an
external seed signal is used to initiate the amplification process; this
can result in the production of nearly Fourier-transform-limited
X-ray pulses with a much narrower bandwidth than is possible
with the SASE process. In addition, seeding can allow a highly
efficient undulator field taper to draw even more power from the
electron bunch, substantially increasing the photon flux. However,
greater benefits from seeding could be derived from the full
transverse and temporal coherence of the sub-10 fs X-ray pulses
that LCLS will produce.

These radical improvements, on a machine that already rep-
resents a revolution in the technology of X-ray production, will be
extremely useful to many scientific users pursuing fundamental
questions in biology, chemistry, atomic, molecular and materials

science, including studies of matter under extreme conditions.
The increased spectral brightness will directly impact the perform-
ance of specialized X-ray crystal optics, enabling complex pulse
manipulation such as pulse split and delay5, as routinely done
with optical lasers. Recent LCLS results6 indicate that an increased
X-ray flux in combination with a reduction in pulse length has
the potential to revolutionize the technique of diffraction imaging
of biomolecular nanocrystals. In materials science, measuring low-
energy excitations under extreme conditions (created either by
temperature, pressure or fields) with the high-energy resolution
made possible by seeding is critical to the understanding of
complex phase transitions in high-temperature superconductors
and other novel materials. Unique insights into the dynamics of
matter and ultrafast phenomena can also be gained from using
ultrashort and temporally coherent X-ray pulses.

A self-seeded FEL
External laser-seeded FELs have been proposed previously for
extreme ultraviolet (XUV) and soft X-rays7,8. Direct seeding using
signals produced in the process of high harmonic generation in
gases has been demonstrated in XUV9. The first XUV FEL based
on high-gain harmonic generation will soon be ready for user
operation10 and will be extended to the soft X-ray wavelength
range. However, until very recently, it was envisaged that seeding
with ångstrom-scale wavelengths would occur only in the distant
future. Because of the difficulty of carrying out external seeding at
very short wavelengths, the idea of self-seeding the FEL by using X-
rays from the first half of the undulator to seed the second half
(Fig. 1) was proposed at DESY for soft X-rays11 in 1997 and later
for hard X-rays12; in both cases, the first half of the undulator must
operate in the SASE linear regime and the second half should reach
FEL saturation. For such a scheme to generate a narrow spectrum,
an X-ray monochromator is needed between the first and second
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halves, where the FEL power is still low but well above the shot noise
power. A typical monochromator (described in refs 10 and 11) has
the effect of delaying the X-rays by �5–10 ps. To match this, the
electron bunch must be similarly delayed, requiring a set of strong
dipole magnets in a chicane, which are also used to divert the electron
beam around the monochromator. These magnets inevitably generate
electron energy spread as a result of synchrotron radiation, which can
suppress the FEL gain, so an appropriately gentle (long) chicane
would not fit conveniently into one short section at X-ray FELs.
One way of avoiding the need for this long chicane is to use two
separate electron bunches so that the delayed seed from the first
bunch will be amplified by the second bunch13,14.

A more recent hard-X-ray self-seeding scheme16, again proposed at
DESY, consists of using a single diamond crystal in a forward Bragg
diffraction (FBD) geometry to produce a temporal waveform of trans-
mitted X-ray pulses with a relatively long monochromatic tail (wake
pulse). The properties and underlying physics of FBD relevant to
this application are discussed in detail in ref. 17, and briefly in the
Supplementary Information. Here, we only highlight that the time
dependence t of the radiation envelope of FBD, G00(t) (as shown in
Fig. 2c), which represents the crystal response to a very short incident
pulse, can be parameterized with the characteristic timescale T0:
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where T0¼L2sinu/(2p2cd), c is the speed of light, d is the crystal
thickness, u is the X-ray incident angle relative to the crystal
atomic planes (Bragg angle), L is the extinction length, and J1 is
the Bessel function of the first kind.

Using d¼ 0.1 mm, u¼ 56.538, corresponding to the Bragg
reflection condition from the (004) atomic planes of diamond for
8.3 keV photons near the K-edge of nickel, and L≈ 22.6 mm,
typical for the 004 reflection, we obtain from equation (1) ts¼ 19 fs
for the location of the first maximum of the monochromatic field
with respect to the incident pulse, in good agreement with
numeric calculations (Fig. 2). A compact magnetic chicane is then
used to delay the electron bunch by this same amount, thus selecting
a monochromatic field for seeding. With such a small delay this
chicane can fit easily into one 4-m-long space, made available by
removal of one of the 33 LCLS undulator sections. The LCLS was
recently modified using this approach and the new self-seeding
system has been commissioned (Fig. 1).

The existing machine
The LCLS is a hard-X-ray SASE FEL based on the last kilometre of
the SLAC linear accelerator. The linac typically accelerates electrons
with a single bunch charge between 150 and 250 pC to as high as
15 GeV, with two bunch compressor stages amplifying the peak
current to �3 kA. This high-brightness electron beam is then trans-
ported through a 130-m-long magnetic undulator, creating intense
transversely coherent hard X-rays with �2 × 1012 photons per pulse
at 1.5 Å wavelength (8.3 keV), with a beam repetition rate of 120 Hz.

In a special low-charge mode of operation18 (bunch charge,
20–40 pC), the electron bunch length can be compressed to just
5–10 fs, suitable for self-seeding with the 15-fs-long X-ray wake
pulse generated by the diamond monochromator (Fig. 2). The
LCLS has now been modified for self-seeding, while preserving
the option to quickly switch back to SASE mode (high or low
charge) at any time, with no significant loss in FEL performance.

Self-seeding modifications
The self-seeding system (chicane and monochromator) needs to be
located at an optimal location along the 130-m-long undulator. The
peak X-ray power at the input to the monochromator that is needed
to adequately seed the FEL is estimated to be �1 GW (�10 mJ
within a 10 fs pulse length). With normal SASE operation, this
power level (in low-charge mode) is typically observed somewhere
between undulators U13 and U16 (of 33 undulator sections, each
4 m long). To reliably meet the seed power requirements for the
self-seeding experiment, the monochromator and chicane were
‘safely’ located at U16, which is �60 m along the undulator line.
This choice ensures a seed power that is sufficient for self-seeding
to be conclusively tested, although the self-seeding system might
eventually be moved upstream by about two undulator sections to
improve the seeded performance.

The self-seeding chicane
The 3.2-m-long magnetic chicane installed at U16 includes four dipole
magnets, which displace the electrons horizontally by 2.5 mm to
bypass the diamond. This also nominally delays the electrons by
20 fs so as to overlap with the delayed monochromatic X-ray seed
pulse. Each chicane magnet is 36 cm long, separated from its neighbour
by 58 cm, nominally bends the electron beam by �2.7 mrad with
0.34 T fields, and includes a 576-turn main coil and an independently
powered 10-turn trim coil. This allows the chicane to be adjusted
between two different configurations: (i) a self-seeded mode, with the
electron delay set between zero and 40 fs using the main coils, and
(ii) a much weaker ‘phase-shift’ mode, using the trim coils, with a
delay of zero to 10 Å (variable in �0.04 Å steps). The phase-shift
mode (used during SASE operation) allows correction of the
electron-to-radiation phase error introduced by the removal of the
4-m-long undulator section at U16. This correction restores the full
SASE X-ray pulse energy that was available before the undulator
section was removed. In addition, the dependence of the chicane
path length on electron energy (given by the R56 value of the transport
matrix, which is equal to twice the electron delay but expressed in
micrometres) washes out the SASE-induced microbunching after the
chicane, preparing the electron beam for coherent seeding. With a
typical relative electron energy spread of sd≈ 0.01% r.m.s., the
chicane will wash out any temporal structure of wavelength less than
l≈ 2pR56sd (,80 Å), which is very effective in erasing the 1.5 Å
microbunching built up by the 15 undulator sections before the chicane.

The diamond monochromator
The monochromator crystal is a high-quality (see Supplementary
Information), 110-mm-thick type-IIa diamond crystal plate, with a
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Figure 1 | Layout of the LCLS undulator with a self-seeding chicane, diamond monochromator, gas detector and hard-X-ray spectrometer. The chicane is

greatly exaggerated in scale. The last four LCLS undulators (U30–U33) were previously modified as second-harmonic afterburners15 and were not used in

this experiment.
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(004) lattice orientation and a total area of 4.5 mm × 4.0 mm. The
diamond crystal was grown from high-purity (99.9995%) graphite
at the Technological Institute for Super-hard and Novel Carbon
Materials (TISNCM, Troitsk, Russia) using the temperature gradi-
ent method under high-pressure (5 GPa) and high-temperature
(�1,750 K) conditions. The crystal is installed inside a vacuum
vessel, supported gently by a graphite holder, and connected to a
remotely controlled, high-resolution rotational stage (Fig. 3) for
adjusting the Bragg angle (rotation about the horizontal axis
through the middle of the diamond). This is controlled by means
of an in-vacuum rotational stage with a range of u¼ 45–908 and
from the Bragg relation, l¼ 2d sinu, where d¼ (3.56712(2) Å)/4
is the spacing between the crystallographic planes for the (004)
diamond orientation at 298 K (refs 19,20), allowing for any seed
wavelength from �1.4 to 1.7 Å (12.8–14.2 GeV electrons).
Significantly shorter wavelengths are beyond the electron energy
reach of the LCLS. Somewhat longer wavelengths would be available
using lower-index diamond reflections.

The diamond can also be remotely positioned in the horizontal
(x) or vertical ( y) directions using two in-vacuum piezo-controlled
translation stages. The entire motion control system is mounted on a
10-inch flange with control cable feed-through that bolts to the
evacuated monochromator chamber. The monochromator assembly
is shown in Fig. 3.

Experimental results and analysis
The LCLS nominally operates at 150–250 pC of charge in a single
electron bunch at a repetition rate of 120 Hz. However, the
machine can also be run in a low-charge mode17 where only
20–40 pC of charge is used to generate a much shorter pulse length
of 5–10 fs, but with proportionally fewer photons (�0.2 × 1012

photons per pulse at 8 keV). This short pulse provides good
overlap with the short seed wake pulse produced by the diamond
monochromator and is used for the self-seeded mode of operation.
As described above, the low-charge SASE mode of operation

produces very limited longitudinal coherence and a broad, noisy
photon spectrum with a relative spread of �0.25% full-width at
half-maximum (FWHM; 20 eV). The self-seeded mode is designed
to dramatically improve the bandwidth and coherence.

The self-seeded mode is established by inserting the diamond
crystal in the SASE X-ray beam path to generate the monochromatic
seed pulse, using the chicane to delay the electrons by �20 fs to
overlap the seed. The Bragg angle of the diamond crystal is chosen
for the desired seeding wavelength. By adjusting the electron energy,
the SASE spectrum produced by the first undulator stage should
fully cover this seeding wavelength. The transverse overlap between
the seed and the electron beam can be optimized by slightly varying
the electron position and angle using the undulator girder position
remote control at the beginning of the second undulator stage.

Although up to 15 undulator segments upstream of the seeding
section (U1–U15) can be used to generate SASE, which is then
‘filtered’ by the diamond for seeding, too much SASE radiation
actually induces a large growth of the electron energy spread,
which then inhibits the gain process for the seeded FEL in the
second stage. There is therefore a trade-off between seeding power
and seeded FEL gain. Experimentally, we find that using only 13
SASE undulator segments (U3–U15) seems to produce the most
seeded FEL power at the end of the LCLS undulator line. The
typical SASE pulse energy produced by 13 undulator segments is
�20 mJ with 40 pC of bunch charge.

Another 13 undulator segments (U17–U29) downstream of the
seeding section amplify the seeded signal. Figure 4 shows the gas
detector signal (X-ray pulse calorimeter), located well after U29,
when the chicane is operated in the self-seeding mode. The left
side of this time plot is taken when the diamond crystal is retracted
from the X-ray beam path, showing a 19 mJ mean SASE back-
ground, while the right side is taken when the diamond crystal is
inserted, showing a 53 mJ mean seeded FEL signal, including the
19 mJ SASE background. The electron pulse duration at 40 pC was
measured to be �10 fs (FWHM) for SASE operation using a
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Figure 2 | Spectral and temporal intensity dependences of X-ray Bragg diffraction and FBD. Numerical calculations using dynamical theory of X-ray

diffraction for a glancing angle of incidence of u¼ 56.538 to the (004) reflecting atomic planes in diamond, with central X-ray photon energy Ec¼ 8.333 keV.

a, Spectra of Bragg diffraction |R0H(E)|2 (reflectivity). b, Spectra of FBD, with the transmission amplitude far from the Bragg reflection photon energy

subtracted. c, Time responses |G0X(t)|2 to excitation with a short X-ray pulse in Bragg diffraction (X¼H, blue) and FBD (X¼0, red). Results for diamond

crystals with thicknesses d¼0.1 and 0.2 mm are shown in the bottom and top plots, respectively.
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longitudinal mapping technique21. Assuming the X-ray pulse duration
is similar to the electron pulse duration, the average seeded FEL power
is �4 GW and has not reached the saturation level expected at
�10 GW. Because the seed power is generated from the random
SASE process and fluctuates close to 100% when a single longitudinal
mode is selected, the output FEL energy fluctuates nearly as much for
this linear amplifier. In addition, electron energy jitter of 0.05% r.m.s.

also contributes significantly to the FEL intensity fluctuation. Peak
seeded intensities in excess of 200 mJ have been observed at a bunch
charge of 40 pC, but, to date, the variations in shot-to-shot intensity
remain larger than 50%.

Figure 5a shows the single-shot SASE and self-seeded spectra
recorded on a Si(333) bent crystal spectrometer22 with an estimated
resolution of 0.1 eV (see Supplementary Information). The SASE
spectrum is produced with all 28 undulators, that is, with the
chicane off and diamond retracted. In this case, the optimized
SASE pulse energy is �300 mJ with �20 eV FWHM bandwidth.
The seeded signal reaches 240 mJ, and shows a single spectral spike
of 0.4 eV (FWHM). The relative FWHM bandwidth is �5 × 1025

at 8.3 keV, which corresponds to a Fourier-transform-limited X-ray
pulse of �5 fs (FWHM). Figure 5b shows the average SASE spectra
for 20,000 shots taken on an Si(111) spectrometer, with a wider
range so as to accommodate the electron energy jitter (on the order
of 8–10 eV r.m.s.). The FWHM of the average SASE bandwidth is
27 eV without energy jitter correction (as shown) and becomes
20 eV by correcting the electron energy on a shot-by-shot basis. It
also shows the average seeded spectra over 200 shots taken on an
Si(333) spectrometer under good seeding conditions. The FWHM
bandwidth of the average seeded spectrum is �1 eV. The broadened
average bandwidth comes from shot-to-shot spectral variations due
to electron energy jitter and other factors. The seeded FEL has a
Gaussian spatial mode with excellent transverse coherence.

Start-to-end simulations have been performed using an electron
bunch charge of 40 pC, tracking from the photocathode through the
accelerator systems, and finally to the FEL undulator. Simulations
suggest that 20 mJ SASE radiation produced in the SASE stage
(U3–U15) generates sufficient seed power (�5 MW) but degrades
the electron beam energy spread. As a result, the FEL signal grows
slower in the seeded stage due to increased energy spread and
produces 40 mJ FEL pulse energy after 13 undulator segments
(U17–U29), without reaching saturation. The simulations also indi-
cate that the seeded FEL spectra are quite sensitive to the detailed
longitudinal phase space distribution of the electron beam and
suggest further improvements in the seeding performance.
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Figure 3 | Monochromator assembly (left) and zoomed 10-inch flange assembly (right). The diamond can be rotated to any Bragg angle from 45 to 908,
with 56.58 as the nominal at 1.5 Å.
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Finally, the chicane strength has also been varied to scan the elec-
tron delay so as to trace out the monochromatic wake pulse gener-
ated by the diamond crystal. Because the gas detector contains
significant SASE background, we use the spectrometer signal and
zoom into the narrow-bandwidth seeded spectra for this study.
Figure 6 shows the seeded FEL intensity as a function of the
chicane delay, reflecting the time dependence of the FBD intensity
envelope, in reasonable agreement with FBD theory predictions.
The peak seeded signal is reached at a chicane delay of �19 fs, in
agreement with ts in Fig. 2c (lower). The relatively large error bars
for the data (standard deviation) indicate the fluctuating nature of
the seeded power, as discussed above.

Summary
FEL self-seeding has been demonstrated at the LCLS using hard
X-rays in a low-charge mode of operation. A bandwidth reduction
of 40–50 is observed with respect to SASE operation. The SASE
bandwidth is �20 eV (0.25%) FWHM and the single-shot seeded
bandwidth is 0.4–0.5 eV FWHM. The stability of the final seeded
FEL power is still poor (�50% r.m.s. fluctuations), due in part to
shot-to-shot electron energy variations, but also due to the lack of
FEL saturation in the seeded half of the undulator. Since the experi-
ment, the last four undulator sections have been added back into
the LCLS at slots U30–U33 (second-harmonic undulators were

installed in these slots over the previous year for a separate experi-
ment). Future plans include achieving saturation in the seeded
FEL with these four additional undulators, possibly by relocating
the chicane and monochromator assembly upstream by about two
4-m-long undulator sections. In addition, a 150-mm-thick
diamond crystal producing an approximately twofold more power-
ful monochromatic wake may also be tested. In the longer term,
more undulator sections may be added in order to achieve an
aggressive undulator field taper to enhance the seeded FEL power
by perhaps another order of magnitude. Such FEL development
may eventually lead to obtaining fully coherent, transform-
limited, ultrashort hard-X-ray pulses with terawatt power levels23.
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and b. The chicane is turned off for the SASE measurements, but necessarily

switched on for the self-seeded mode.
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