Scaling Theory

Roger Herrigel Advisor: Helmut Katzgraber

7.4.2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

► The scaling hypothesis

- Critical exponents
- The scaling hypothesis
- Derivation of the scaling relations

Heuristic explanation

- Kadanoff construction (1966)
- Scaling for the correlation function

Universality

- Finite size scaling
- Disordered systems / Harris criterion (1974)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polymer statistics

Critical exponents

Summery of the critical exponents for a magnetic system

$$t = \frac{T - T_c}{T_c} \qquad h = \frac{H}{k_B T_c}$$

Exponent	Definition	Description
α	$C_H \sim t ^{-\alpha}$	specific heat at $H = 0$
β	$M \sim t ^eta$	magnetization at $H = 0$
γ	$\chi \sim t ^{-\gamma}$	isothermal susceptibility at $H = 0$
δ	$M \sim h^{rac{1}{\delta}}$	critical isotherm
u	$\xi \sim t ^{- u}$	correlation length
η	$G(r) \sim r ^{-(d-2+\eta)}$	correlation function

• Fundamental thermodynamics \Rightarrow Exponent inequalities such as

$$\alpha + 2\beta + \gamma \ge 2$$
 (Rushbrooke)

Critical exponents

The critical exponent λ of a function f(t) is

$$\lambda = \lim_{t \to 0} \frac{\ln f(t)}{\ln t}$$

The function f(t) near critical temperature T_C (t → 0) is dominated by t^λ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Rightarrow t^{\lambda}$ describes f(t) at the transition.

The scaling hypothesis

The singular part of the free energy density f is a homogeneous function near a second-order phase transition.

Homogeneous functions

1 dim
$$f(\lambda r) = g(\lambda) f(r)$$

the scaling factor g is of the from $g(\lambda) = \lambda^p$

n dim
$$f(\lambda \vec{r}) = g(\lambda) f(\vec{r})$$

Generalized homogeneous functions

(i)
$$\lambda f(x, y) = f(\lambda^a x, \lambda^b y) \Leftrightarrow$$

(ii) $\lambda^c f(x, y) = f(\lambda^a x, \lambda^b y)$

The scaling hypothesis

- The singular part of the free energy density f is a homogeneous function near a second-order phase transition.
- The reduced temperature t and the order parameter h rescale by different factors.

$$f(t,h) = b^{-d}f(b^{y_t}t,b^{y_h}h)$$

If f is a homogeneous function then also its Legendre transform

 \Rightarrow all thermodynamical potentials are homogeneous.

Derivation of the scaling relations I

The scaling hypothesis postulates that the free energy is homogeneous

$$f(t,h) = b^{-d} f(b^{y_t}t, b^{y_h}h)$$
Let:

$$b = |t|^{\frac{1}{y_t}}$$

$$\Rightarrow \quad f(t,h) = |t|^{\frac{d}{y_t}} f\left(\pm 1, |t|^{-\frac{y_h}{y_t}}h\right)$$

$$\Rightarrow \quad f(t,h) = |t|^{\frac{d}{y_t}} \phi\left(|t|^{-\frac{y_h}{y_t}}h\right)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Derivation of the scaling relations II

Derivation of the scaling relations III

$$f(t,h) = |t|^{\frac{d}{y_t}} \phi\left(|t|^{-\frac{y_h}{y_t}} h\right)$$

1. Magnetization: $M \sim |t|^{\beta}$

$$M = \frac{1}{k_B T} \left. \frac{\partial f}{\partial h} \right|_{h=0} = \frac{1}{k_B T} \left| t \right|^{\frac{d-y_h}{y_t}} \phi' \left(\left| t \right|^{-\frac{y_h}{y_t}} h \right) \sim \left| t \right|^{\frac{d-y_h}{y_t}}$$
$$\Rightarrow \quad \left[\beta = \frac{d-y_h}{y_t} \right]$$

2. Critical Isotherm: $M \sim h^{\frac{1}{\delta}}$ M should remain finite as $t \to 0 \Rightarrow \phi'(x) \sim x^{\frac{d}{y_h}-1}$ because then

$$M \sim |t|^{rac{d-y_h}{y_t}} rac{h^{rac{d-y_h}{y_h}}}{|t|^{rac{y_h(d-y_h)}{y_hy_t}}} \quad \Rightarrow \quad \overline{\delta = rac{y_h}{d-y_h}}$$

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → ○ < ⊙

Derivation of the scaling relations IV

$$f(t,h) = |t|^{\frac{d}{y_t}} \phi\left(|t|^{-\frac{y_h}{y_t}}h\right)$$

3. Heat capacity: $C \sim |t|^{-lpha}$

$$C = \left. \frac{\partial^2 f}{\partial t^2} \right|_{h=0} \sim |t|^{\frac{d}{y_t}-2} \qquad \Rightarrow \qquad \left[\alpha = \frac{d}{y_t} - 2 \right]$$

4. Magnetic susceptibility: $\chi \sim |t|^{\gamma}$

$$\chi = \left. \frac{1}{k_B T} \frac{\partial M}{\partial h} \right|_{h=0} = \left. \frac{1}{(k_B T)^2} \left. \frac{\partial^2 f}{\partial h^2} \right|_{h=0} \sim \left| t \right|^{\frac{d-2y_h}{y_t}} \quad \Rightarrow \quad \left[\gamma = \frac{d-2y_h}{y_t} \right]_{t=0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hyperscaling I

$$G(r) = b^{-2(d-y_h)} G\left(\frac{r}{b}, b^{y_t}t\right)$$
$$G(r) = \left|t\right|^{\frac{2(d-y_h)}{y_t}} \Phi\left(\frac{r}{\left|t\right|^{-\frac{1}{y_t}}}\right)$$

5. Correlation length: $\xi \sim |t|^{-\nu}$ We have $G \sim e^{\frac{t}{\xi}} \quad \forall t$ also for $t \neq 0$

$$\xi \sim |t|^{-rac{1}{y_t}} \quad \Rightarrow \quad \overline{
u = rac{1}{y_t}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hyperscaling II

6. Correlation function: $G \sim |r|^{-(d-2-\eta)}$

$$G(r) = b^{-2(d-y_h)}G\left(\frac{r}{b}, b^{y_t}t\right)$$

choose b = r and t = 0

$$G(r) \sim r^{-2(d-y_h)} \quad \Rightarrow \quad \overline{\eta = d + 2 - 2y_h}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scaling relations

We got the following equations:

$$\begin{aligned} \alpha &= \frac{d}{y_t} - 2 \qquad \beta = \frac{d - y_h}{y_t} \\ \gamma &= \frac{d - 2y_h}{y_t} \qquad \delta = \frac{y_h}{d - y_h} \\ \nu &= \frac{1}{y_t} \qquad \eta = d + 2 - 2y_h \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \Rightarrow we can cancel the y_h and y_t which have no experimental relevance.

Scaling relations

From these six equations of the critical exponents one obtains:

$$\alpha + 2\beta + \gamma = 2$$
Rushbrook's Identity $\delta - 1 = \frac{\gamma}{\beta}$ Widom's Identity $2 - \alpha = d\nu$ Josephson's Identity $\gamma = \nu (2 - \eta)$

(ロ)、(型)、(E)、(E)、 E) の(の)

 \Rightarrow There are only 2 independent Exponents

Onsager solution 1944

$$H_{\Omega} = -J\sum_{\langle ij
angle}^{N} s_i s_j - H\sum_i^{N} s_i$$

The exponents of the Onsager solution for the 2-dim Ising model.

$$\alpha = 0 \quad \beta = \frac{1}{8} \quad \gamma = \frac{7}{4}$$
$$\delta = 15 \quad \nu = 1 \quad \eta = \frac{1}{4}$$

 $\begin{array}{ll} \mbox{equations} & \mbox{values} \\ \alpha + 2\beta + \gamma = 2 & \mbox{0} + 2\frac{1}{8} + \frac{7}{4} = 2 \\ \delta - 1 = \frac{\gamma}{\beta} & \mbox{15} - 1 = \frac{7}{4}\frac{8}{1} \\ 2 - \alpha = d\nu & \mbox{2} - 0 = 2 \cdot 1 \\ \gamma = \nu \left(2 - \eta\right) & \mbox{7}{\frac{7}{4}} = 1 \left(2 - \frac{1}{4}\right) \end{array}$

Outline

► The scaling hypothesis

- Critical exponents
- The scaling hypothesis
- Derivation of the scaling relations

Heuristic explanation

- Kadanoff construction (1966)
- Scaling for the correlation function

Universality

- Finite size scaling
- Disordered systems / Harris criterion (1974)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polymer statistics

Motivation:

• heuristic explanation \Rightarrow Idea of Renormalization group

Ising model:

$$H_{\Omega} = -J\sum_{\langle ij
angle}^{N} s_i s_j - H\sum_i^{N} s_i$$

- dimension d
- lattice of N sites with distance a
- spins $s_i = \pm 1$
- only nearest neighbor interactions

For
$$T \to T_C \Rightarrow \xi \to \infty$$

Block spin transformation

- Partition the lattice into blocks of side ba
- Each block is associated with a new spin š. Set š to majority of spins in the block.

	cells	cell length			
original lattice	N	а			
lattice of blocks	$N' = b^{-d}N$	a' = ba			
Each block contains b^d sites of the original lattice					

Assumption 1:

 Block spin interacts only with nearest neighbor block spin and an effective external field

$$egin{aligned} \mathcal{H}_{\Omega} &= -J\sum_{\langle ij
angle}^{N}s_{i}s_{j}-\mathcal{H}\sum_{i}^{N}s_{i}\ \mathcal{H}_{\Omega} &= - ilde{J}\sum_{\langle ij
angle}^{Nb^{-d}} ilde{s}_{i} ilde{s}_{j}- ilde{\mathcal{H}}\sum_{i}^{Nb^{-d}} ilde{s}_{i} \end{aligned}$$

Since Hamiltonians have the same structure \Rightarrow free energy same with (different parameters)

$$Nf(t,h) = Nb^{-d}f\left(\tilde{t},\tilde{h}
ight)$$

$$Nf(t,h) = Nb^{-d}f\left(\tilde{t},\tilde{h}
ight)$$
 $f(t,h) = b^{-d}f\left(\tilde{t},\tilde{h}
ight)$

We expect that $\tilde{h} = \tilde{h}(h, b)$ and $\tilde{t} = \tilde{t}(t, b)$. From the above equation we conclude:

$$\tilde{h} \propto h$$
 $\tilde{t} \propto t$

Assumption 2:

$$\tilde{h} = b^{y_h} h$$
 $\tilde{t} = b^{y_t} t$

$$\Rightarrow \qquad f(t,h) = b^{-d}f(b^{y_t}t,b^{y_h}h)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scaling for the correlation function

Consider Hamiltonian with non-uniform external field h not changing significantly over distances ba.

Define: $\tilde{r} = r/b$

$$\beta H_{\Omega} = \beta H_{\Omega 0} - \sum_{r} h(r) s(r)$$
$$\beta \tilde{H}_{\Omega} (\tilde{s}) = \beta \tilde{H}_{\Omega 0} (\tilde{s}) - \sum_{\tilde{r}} \tilde{h}(\tilde{r}) \tilde{s}(\tilde{r})$$

If Z is the partition function the 2-point correlation function is given by

$$G(r_1 - r_2, H_{\Omega}) = \langle s(r_1) s(r_2) \rangle - \langle s(r_1) \rangle \langle s(r_2) \rangle$$
$$= \frac{\partial^2}{\partial h(r_1) \partial h(r_2)} \ln Z \Big|_{h(r)=0}$$

Scaling for the correlation function

$$\frac{\partial^2}{\partial \tilde{h}(\tilde{r}_1) \partial \tilde{h}(\tilde{r}_2)} \ln \tilde{Z}\left(\tilde{h}\right) = \frac{\partial^2}{\partial \tilde{h}(\tilde{r}_1) \partial \tilde{h}(\tilde{r}_2)} \ln Z(h)$$
LHS: $G(\tilde{r}_1 - \tilde{r}_2, \tilde{H}_\Omega)$
RHS: If $r = |r_1 - r_2| \gg ba \Rightarrow b^{-2y_h} b^{2d} G(r, H_\Omega)$

$$\Rightarrow G\left(\frac{r}{b}, \tilde{H}_\Omega\right) = b^{2d - 2y_h} G(r, H_\Omega)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

► The scaling hypothesis

- Critical exponents
- The scaling hypothesis
- Derivation of the scaling relations

Heuristic explanation

- Kadanoff construction (1966)
- Scaling for the correlation function

Universality

- Finite size scaling
- Disordered systems / Harris criterion (1974)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polymer statistics

Universality classes I

Universality is a prediction of the renormalization group theory

Definition: Systems whose properties near 2nd order phase transition are controlled by the same renormalization group fixed point are in the same universality class.

Properties:

- have the same (relevant) critical exponents
- can have different transition temperatures

3D Heisenberg	eta
Fe	0.34(4)
Ni	0.378(4)
CrB_3	0.368(5)
EuO	0.36(1)
Monte Carlo	0.364(4)

Universality classes II

Universality classes are characterized by:

- spatial dimension
- symmetry of the order parameter
- range and symmetry of Hamiltonian
- The details of the form and magnitude of interactions is not relevant.

If the above properties of a system are the same of an other (well known) system, we already known its critical exponents!

Finite size scaling

- All numerical calculations use finite systems.
- Calculate quantities such as C, M, χ for different lattice size.
- Near the critical temperature.

$$C_L = L^{\frac{\alpha}{\nu}} \widetilde{C} \left(L^{\frac{1}{\nu}} t \right)$$

- \widetilde{C} is independent of lattice site but depends on T_c , α and ν .
- ► If these parameters are chosen correctly and we plot $C_L L^{-\alpha/\nu}$ against $L^{\frac{1}{\nu}}t$ the curve will collapse.

Disordered systems

What happens if the system contains impurities?

- ordered phase is destroyed
- system remains ordered

Harris criterion (1974)

The critical behavior of a quenched disordered system does not differ form that of the pure system if

 $d\nu > 2$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

► The scaling hypothesis

- Critical exponents
- The scaling hypothesis
- Derivation of the scaling relations

Heuristic explanation

- Kadanoff construction (1966)
- Scaling for the correlation function

Universality

- Finite size scaling
- Disordered systems / Harris criterion (1974)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polymer statistics

Polymers

• A polymer is a chain of monomers.

Figure: protein T162

Examples:

- Synthetic Polymers
 - PVC
 - PE
 - PET
- Biopolymers
 - DNA
 - RNA
 - proteins

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Random walk: a crude model for a polymer

Random walk

- There is a starting point 0.
- Distance from one point to the next is a constant.
- Direction is chosen at random with equal probability.

Self avoiding random walk

same but no intersections

Random walk: a crude model for a polymer

Random walk

- There is a starting point 0.
- Distance from one point to the next is a constant.
- Direction is chosen at random with equal probability.

Self avoiding random walk

same but no intersections

Random walk

Properties of a random walk

- $c_N(\vec{r}) =$ number of distinct walks from 0 to \vec{r}
- end-to-end vector

$$\vec{r} = \sum_{n} \vec{a}_{n}$$

average square distance

$$\langle r^2 \rangle = \sum_{n=m} \langle \vec{a}_n \vec{a}_m \rangle + \underbrace{\sum_{n \neq m} \langle \vec{a}_n \vec{a}_m \rangle}_{=0} = Na^2$$

What is $\langle r^2 \rangle$ for a polymer (self-avoiding random walk)?

Solution by mapping to a O(n) vector model

Goal:

Find a connection of self-avoiding random walks and the O(n) $n \rightarrow 0$ model.

Model:

- Hypercubic lattice of dimension d
- ► Spin on each lattice site has *n* components. $\vec{S} = (S_i^1, S_i^2, ..., S_i^n)$
- Normalization:

$$\sum_{\alpha}^{n} \left(\vec{S}^{\alpha} \right)^2 = n$$

only nearest neighbor interactions

Hamiltonian:

$$H_{\Omega} = -K \sum_{\langle ij
angle, lpha} S^{lpha}_i S^{lpha}_j$$

Moment Theorem

Theorem:

Let $\langle ... \rangle_0$ be the average over all spin orientation For $n \to 0$ we have

$$\left\langle S^{\alpha}S^{\beta}
ight
angle _{0}=\delta_{lphaeta}$$

and all other momentum are 0.

Examples:

$$\left\langle S^{\alpha}S^{\beta}S^{\gamma}
ight
angle _{0}=0$$

 $\left\langle S^{\alpha}S^{\alpha}S^{\alpha}S^{\beta}S^{\gamma}
ight
angle _{0}=0$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Mapping to $O(n) \ n \to 0$

The exponent of the Hamiltonian can be written as:

$$\begin{split} \exp(-\beta H_{\Omega}) &= \exp(-\beta K \sum_{\langle ij \rangle, \alpha} S_i^{\alpha} S_j^{\alpha}) = \prod_{\langle ij \rangle} \exp(-\beta K \sum_{\alpha} S_i^{\alpha} S_j^{\alpha}) \\ &= \prod_{\langle ij \rangle} (1 - \beta K \sum_{\langle ij \rangle, \alpha} S_i^{\alpha} S_j^{\alpha} + \frac{1}{2} (\beta K)^2 (\sum_{\langle ij \rangle, \alpha} S_i^{\alpha} S_j^{\alpha})^2 - ...) \end{split}$$

Therefor the partition function Z is given by

$$Z = Tr \exp(-\beta H_{\Omega}) = \prod_{k} \int d\Omega_{k} \langle \exp(-\beta H_{\Omega}) \rangle_{0}$$
$$= \Omega \langle \prod_{\langle ij \rangle} (1 - \beta K \sum_{\alpha} S_{i}^{\alpha} S_{j}^{\alpha} + \frac{1}{2} (\beta K)^{2} (\sum_{\alpha} S_{i}^{\alpha} S_{j}^{\alpha})^{2}) - ... \rangle_{0}$$

where $\Omega = \prod_i \int d\Omega_i$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Diagram Representation

$$Z = \Omega \langle \prod_{\langle ij \rangle} (1 - \beta K \sum_{\alpha} S_i^{\alpha} S_j^{\alpha} + \frac{1}{2} (\beta K)^2 (\sum_{\alpha} S_i^{\alpha} S_j^{\alpha})^2) \rangle_0$$

We expand the product over $\langle ij \rangle$

- choose 1 do nothing
- choose $\beta K \sum_{\alpha} S_i^{\alpha} S_j^{\alpha}$ draw a line form *i* to *j*

• choose $\frac{1}{2}(\beta K)^2 (\sum_{\alpha} S_i^{\alpha} S_j^{\alpha})^2$ draw smallest loop

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Rightarrow 3^B$ diagrams

Diagram Representation

$$Z = \Omega \langle \prod_{\langle ij
angle} (1 - eta K \sum_{lpha} S^{lpha}_i S^{lpha}_j + rac{1}{2} (eta K)^2 (\sum_{lpha} S^{lpha}_i S^{lpha}_j)^2)
angle_0$$

Taking the average

 only vertices with 2 lines survive

 $\langle S_i^{\alpha} S_i^{\alpha} S_i^{\alpha} \rangle_0 = 0 \\ \langle S_i^{\alpha} S_i^{\alpha} S_i^{\alpha} S_i^{\alpha} \rangle_0 = 0$

 index of the spins must be the same

 \Rightarrow less than 3^B diagrams

Diagram Representation

$$Z = \Omega \langle \prod_{\langle ij
angle} (1 - eta K \sum_{lpha} S_i^{lpha} S_j^{lpha} + rac{1}{2} (eta K)^2 (\sum_{lpha} S_i^{lpha} S_j^{lpha})^2)
angle_0$$

Taking the average

- only vertices with 2 lines survive
- index of the spins must be the same

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \Rightarrow less than 3^B diagrams

Mapping to $O(n) \ n \to 0$

Taking the average

$$\langle \sum_{\alpha\beta\ldots} S_i^{\alpha} S_j^{\alpha} S_j^{\beta} S_k^{\beta} \ldots S_q^{\theta} S_i^{\iota} \rangle_0 = \sum_{\alpha\beta\ldots} \delta_{\alpha\beta} \delta_{\beta\gamma} \ldots \delta_{\alpha\iota} = \sum_{\alpha}^n 1 = n$$

It follows:

$$Z = \Omega \sum_{loop \ conf} n^{number \ of \ loops} (\beta K)^{number \ of \ bounds}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $n \to 0$ we obtain $Z = \Omega$.

Mapping to $O(n) \ n \to 0$

Correlation function

$$G(i,j) = \langle S_i^1 S_j^1 \rangle$$

= $Z^{-1} Tr \prod_{\langle ij \rangle} S_i^1 S_j^1 (1 - \beta K \sum_{\alpha} S_i^{\alpha} S_j^{\alpha} + \frac{1}{2} (\beta K)^2 (\sum_{\alpha} S_i^{\alpha} S_j^{\alpha})^2)$

like before

 \Rightarrow surviving diagrams have single line (self-avoiding walk) form *i* to *j*

$$\sum_{N} c_{N}(r) \beta K = \lim_{n \to 0} G(r, \beta K)$$

This is the important relation which connects a self avoiding random walk to the O(n) $n \rightarrow 0$ model.

Critical behavior

Scaling of c_N

Define: $x = \beta K$ $c_N = \sum_r c_N(r)$

$$\sum_{N} c_{N} x^{N} = \sum_{N} \sum_{r} c_{N}(r) x^{N} = \lim_{n \to 0} \sum_{r} G(r, x) = \chi \sim |x - x_{c}|^{-\gamma}$$

Ansatz: $c_N \propto x_c^{-N} N^{\gamma-1}$

Ansatz is correct since:

$$\sum_{N} c_{N} x^{N} \propto \int_{0}^{\infty} dN N^{\gamma - 1} \left(\frac{x}{x_{c}}\right)^{N} \propto \ln\left(\frac{x}{x_{c}}\right)^{-\gamma}$$
$$= \ln\left(1 + \frac{(x - x_{c})}{x_{c}}\right)^{-\gamma} \sim |x - x_{c}|^{-\gamma}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Critical behavior

Scaling of $\left< r^2 \right>$

$$\langle r^2 \rangle = \sum_{\vec{r}} r^2 \frac{c_N(r)}{c_N}$$

Similar calculations

$$\sum_{\vec{r}} r^2 G(r, x) = \sum_{\vec{r}} \sum_{N} c_N(r) x^N r^2 = \sum_{N} \sum_{\vec{r}} c_N(r) r^2 x^N$$
$$G(r, x) \sim r^{-(d-2+\eta)} e^{-\frac{r}{\xi}} \implies \sum_{\vec{r}} c_N(r) r^2 \sim |x_c - x|^{\gamma - 2\nu}$$

$$\Rightarrow \langle r^2 \rangle \sim \frac{x_C^{-N} N^{2\nu+\gamma-1}}{x_C^{-N} N^{\gamma-1}} \sim N^{2\nu}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

 Near the critical point of a second-order phase transition the thermodynamic potentials are assumed to be homogeneous functions

$$f(t,h) = b^{-d}f(b^{y_t}t,b^{y_h}h)$$

- \Rightarrow only 2 independent exponents
 - Systems can be grouped into universality classes
 - ▶ Harris criterion for quenched disordered systems $d\nu > 2$
 - Random walk $\langle r^2 \rangle \sim N$ Self-avoiding random walk $\langle r^2 \rangle \sim N^{2\nu}$