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1. Introduction
This paper has three parts. The first part is a simplified presentation of the basic
ideas of the renormalization group and the ε expansion applied to critical pheno-
mena, following roughly a summary exposition given in 19721. The second part
is an account of the history (as I remember it) of work leading up to the papers
in I971-1972 on the renormalization group. Finally, some of the developments
since 197 1 will be summarized, and an assessment for the future given.

II. Many Length Scales and the Renormalization Group
There are a number of problems in science which have, as a common charac-
teristic, that complex microscopic behavior underlies macroscopic effects.

In simple cases the microscopic fluctuations average out when larger scales
are considered, and the averaged quantities satisfy classical continuum equ-
ations. Hydrodynamics is a standard example of this where atomic fluctuations
average out and the classical hydrodynamic equations emerge. Unfortunately,
there is a much more difficult class of problems where fluctuations persist out
to macroscopic wavelengths, and fluctuations on all intermediate length scales
are important too.

In this last category are the problems of fully developed turbulent fluid flow,
critical phenomena, and elementary particle physics. The problem of magnetic
impurities in non-magnetic metals (the Kondo problem) turns out also to be in
this category.

In fully developed turbulence in the atmosphere, global air circulation
becomes unstable, leading to eddies on a scale of thousands of miles. These
eddies break down into smaller eddies, which in turn break down, until chaotic
motions on all length scales down to millimeters have been excited. On the scale
of millimeters, viscosity damps the turbulent fluctuations and no smaller scales
are important until atomic scales are reached.2

In quantum field theory, “elementary” particles like electrons, photons,
protons and neutrons turn out to have composite internal structure on all size
scales down to 0. At least this is the prediction ofquantum field theory. It is hard
to make observations of this small distance structure directly; instead the particle
scattering cross sections that experimentalists measure must be interpreted
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using quantum field theory. Without the internal structure that appears in the
theory, the predictions of quantum field theory would disagree with the experi-
mental findings.3

A critical point is a special example of‘ a phase transition. Consider, for
example, the water-steam transition. Suppose the water and steam are placed
under pressure, always at the boiling temperature. At the critical point: a
pressure of’218 Atm and temperature of  34’ the distinction between water
and steam disappears, and the whole boiling phenomenon vanishes. The prin-
cipal distinction between water and steam is that they have different densities.
As the pressure and temperature approach their critical values, the difference
in density between water and steam goes to zero. At the critical point one finds
bubbles of steam and drops of water intermixed at all size scales from macro-
scopic, visible sizes down to atomic scales. Away from the critical point, surface
tension makes small drops or bubbles unstable; but as water and steam become
indistinguishable at the critical point, the surface tension between the two phases
vanishes. In particular, drops and bubbles near micron sizes cause strong light
scattering, called “critical opalescence”, and the water and steam become milky.

In the Kondo effect, electrons of all wavelengths from atomic wavelengths
up to very much larger scales, all in the conduction band of a metal, interact with
the magnetic moment of each impurity in the metal.5

Theorists have difficulties with these problems because they involve very
many coupled degrees of freedom. It takes many variables to characterize a
turbulent flow or the state of a fluid near the critical point. Analytic methods are
most effective when functions of only one variable one degree of freedom) are
involved. Some extremely clever transformations have enabled special cases of
the problems mentioned above to be rewritten in terms of independent degrees
of freedom which could be solved analytically. These special examples include
Onsager’s solution of the two dimensional Ising model of a critical point, 6the
solution of Andrei and Wiegmann of the Kondo problem,7 the solution of’ the
Thirring model of a quantum field theory,8 and the simple solutions of noninter-
acting quantum fields. ‘These are however only special cases; the entire problem
of’ fully developed turbulence, many problems in critical phenomena and
virtually all examples of strongly coupled quantum fields have defeated analytic
techniques up till now.

Computers can extend the capabilities of‘ theorists, but even numerical
computer methods are limited in the number of degrees of freedom that are
practical. Normal methods of’ numerical integration fail beyond only 5 to 10
integration variables; partial differential equations likewise become extremely
difficult beyond 3 or so independent variables. Monte Carlo and statistical
averaging methods can treat some cases of’ thousands or even millions of vari-
ables but the slow convergence of these methods versus computing time used
is a perpetual hassle. An atmospheric flow simulation covering all length scales
of turbulence would require a grid with millimeter spacing covering thousands
of miles horizontally and tens of miles vertically: the total number of grid points
would be of order l025 far beyond the capabilities of any present or conceivable
computer.
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The “renormalization group” approach is a strategy for dealing with problems
involving many length scales. The strategy is to tackle the problem in steps, one
step for each length scale. In the case ofcritical phenomena, the problem, tech-
nically, is to carry out statistical averages over thermal fluctuations on all size
scales. The renormalization group approach is to integrate out the fluctuations
in sequence starting with fluctuations on an atomic scale and then moving to
successively larger scales until fluctuations on all scales have been averaged out,

To illustrate the renormalization group ideas the case of’ critical phenomena
will be discussed in more detail. First the mean field theory of Landau will be
described, and important questions defined. The renormalization group will be
presented as an improvment to Landau’s theory.

The Curie point of a ferromagnet will be used as a specific example of a critical
point. Below the Curie temperature, an ideal ferromagnet exhibits spontaneous
magnetization in the absence of’ an external magnetic field; the direction of’ the
magnetization depends on the history of the magnet. Above the Curie tempera-
ture Tc, there is no spontaneous magnetization. Figure 1 shows a typical plot
of’ the spontaneous magnetization versus temperature. Just below the Curie
temperature the magnetization is observed to behave as (Tc -T)β, where β is an
exponent somewhere near l/3 (in three dimensions).9.10 

Magnetism IS caused at the atomic level by unpaired electrons with magnetic
moments, and in a ferromagnet, a pair of nearby electrons with moments aligned
has a lower energy than if the moments are anti-aligned.10 At high temperatures,
thermal fluctuations prevent magnetic order. As the temperature is reduced
towards the Curie temperature, alignment of one moment causes preferential
alignment out to a considerable distance called the correlation length E. At the
Curie temperature, the correlation length becomes infinite, marking the onset of
preferential alignment of the entire system. Just above Tc , the correlation length
is found to behave as (T-Tc)

-v, where v is about 2/3 (in three dimensions).11

A simple statistical mechanical model of a ferromagnet involves a Hamiltonian
which is a sum over nearest neighbor moment pairs with different energies for
the aligned and antialigned case. In the simplest case, the moments are allowed
only to be positive or negative along a fixed spatial axis; the resulting model is
called the Ising model.12

The formal prescription for determining the properties of’ this model is to
compute the partition function Z, which is the sum of the Boltzmann factor
exp(-H/kT) over all configurations of the magnetic moments, where k is Boltz-
mann’s constant. The free energy F is proportional to the negative logarithm of Z.

The Boltzmann factor exp(-H/kT) is an analytic function of T near Tc, in
fact for all T except T = 0. A sum of analytic functions is also analytic. Thus it is
puzzling that magnets (including the Ising model) show complex non-analytic
behavior at T = Tc. The true non-analytic behavior occurs only in the thermo-
dynamic limit of a ferromagnet ofinfinite size; in this limit there are an infinite
number of configurations and there are no analyticity theorems for the infinite
sums appearing in this limit. However, it is difficult to understand how even an
infinite sum can give highly non-analytic behavior. A major challenge has been
to show how the non-analyticity develops.
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Landau’s proposal13 was that if only configurations with a given magne-
tization density M are considered then the free energy is analytic in M. For small
M, the form of the free energy (to fourth order in M) is (from the analyticity
assumption)

F  =  V { R M2+ U M4} (1)

where V is the volume of the magnet and R and U are temperature-dependent
constants. (A constant term independent of M has been omitted). In the absence
of an external magnetic field, the free energy cannot depend on the sign of M,
hence only even powers of M occur. The true free energy is the minimum of
F over all possible values of M. In Landau’s theory, R is 0 at the critical
temperature, and U must be positive so that the minimum of F occurs at
M = 0 when at the critical temperature. The minimum of F continues to be at
M = 0 if R is positive: this corresponds to temperatures above critical. If R is
negative the minimum occurs for non-zero M, namely the M value satisfying

aF
0 = a~ =  ( 2 R M + 4 U M3)

or

(2)

(3)

This corresponds to temperatures below critical.
Along with the analyticity of the free energy in M, Landau assumed analyticity

in T, namely that R and U are analytic functions of T. Near T,. this means that
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to a first approximation, U is a constant and R (which vanishes at T,) is pro-
portional to T-Tc (It is assumed that dR/dT does not vanish at ‘r,).  Then,
below Tc , the magnetization behaves as

M cc (Tc -T)1/2 (4)

i.e. the exponent β is 1/2 which disagrees with the evidence, experimental and
theoretical, that β is about l/3.9

Landau’s theory allows for a slowly varying space-dependent magnetization.
The free energy for this case takes the Landau-Ginzburg form14

F  =  d’x{[v~~l(x)]‘+R~l”(x)+L~~~‘(x)-B(x)%l(x)}
I

(5)

where B(x) is the external magnetic field. The gradient term is the leading term
in an expansion involving arbitrarily many gradients as well as arbitrarily high
powers of M. For slowly varying fields M(x) high er powers of gradients are small
and are neglected. (Normally the V\fj(x)  term has a constant coefficient - in
this paper this coefficient is arbitrarily set to 1) . One use of this generalized free
energy is to compute the correlation length k above ‘I’, For this purpose let B(x)
be very small δ function localized at x = 0. The U term in F can be neglected,
and the magnetization which minimize the free energy satisfies

-v%(x)+R~l(x)  = B@(x) (6)

The solution M(x) is

(7)

and the correlation length can be read off to be

Hence near ‘I‘, . E is predicted to behave as (‘I’-‘I‘,)-“,  which again disagrees
with experimental and theoretical evidence.

The Landau theory assumes implicitly that analyticity is maintained as all space-
dependent fluctuations are averaged out. The loss of analyticity arises only
when averaging over the values of the overall average magnetization M. It is this
overall averaging, over e -I ‘1.1 , which leads to the rule that F must be minimized
over M, and the subsequent non-analytic formula (4) for M. To be precise, if the
volume of the magnet is finite, e -I’ II must be integrated over M, with analytic
results. It is only in the thermodynamic limit V + x that the average of em’. ”
is constructed by minimizing F with respect to M. and the nonanalyticity of
Eqn. (4) occurs.

The Landau theory has the same physical motivation as hydrodynamics.
Landau assumes that only fluctuations on an atomic scale matter. Once these
have been averaged out the magnetization M(x) becomes a continuum, con-
tinous function which fluctuates only in response to external space-dependent
stimuli. M(x) (or, if it is a constant, M) is then determined by a simple classical
equation. Near the critical point the correlation function is itself the solution of
the classical equation (6).
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In a world with greater than four dimensions, the Landau picture is correct.15

Four dimensions is the dividing line - below four dimensions, fluctuations on
all scales up to the correlation length are important and Landau theory breaks
down, 16 as will be shown below. An earlier criterion by Ginzburg15 also would
predict that four dimensions is the dividing line.

The role of long wavelength fluctuations is very much easier to work out near
four dimensions where their effects are small. This is the only case that will be
discussed here. Only the effects ofwavelengths long compared to atomic scales
will be discussed, and it will be assumed that only modest corrections to the
Landau theory are required. For a more careful discussion see ref. 17.

Once the atomic scale fluctuations have been averaged out, the magnetization
is a function M(x) on a continuum, as in Landau theory. However, long wave-
length fluctuations are still present in M(x) - they have not been averaged
out - and the allowed forms of 14(x) must be stated with care. To be precise,
suppose fluctuations with wavelengths < 2πL  have been averaged out, where
L is a length somewhat larger than atomic dimensions. Then M(x) can contain

only Fourier modes with wavelengths > 2nL. This requirement written out,
means

where the integral over k’ means (2x)-“/d”k, d is the number of space dimen-
sions, and the limit on wavelengths means that the integration over k is restricted
to values of k’ with lk’(  < L-1.

Averaging over long wavelength fluctuations now reduces to integrating over
the variables MC, for all Ii(<L-‘.  There are many such variables; normally this
would lead to many coupled integrals to carry out, a hopeless task. Considerable
simplifications will be made below in order to carry out these integrations.

We need an integrand for these integrations. The integrand is a constrained
sum of the Boltzmann factor over all atomic configurations. The constraints an
that all 11 c for II;/ < L-1 are held fixed. This is a generalization of the constrained
sum in the Landau theory; the difference is that in the Landau theory only the

average magnetization is held fixed. The result of the constrained sum will be
written emi’,  similarly to Landau theory except for convenience the exponent is
written F rather than F/kT (i.e. the factor 1 /kT is absorbed into an unconven-
tional definition of F). The exponent F depends on the magnetization function
M(x) of Eq. (9). We shall assume Landau’s analysis is still valid for the form of F,
namely F is given by Eq. (5). However, the importance of long wavelength
fluctations means that the parameters R and U depend on L. Thus F should be
denoted FL:

F L = I
d”x{(v.\l)‘(x)+RJl’(x)+U,.M’(x)} (10)

(in the absence of any external field) (in the simplified analysis presented here,
the coefficient of ∇M2(x) is unchanged at 1). The assumption will be reviewed
later.
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The L dependence of RL and UL will be determined shortly. However, the
breakdown of analyticity at the critical point is a simple consequence of this L
dependence. The L dependence persists only out to the correlation length 5: fluc-
tuations with wavelengths >c will be seen to be always negligible. Once all
wavelengths of fluctuations out to L - 5 have been integrated out, one can use
the Landau theory; this means (roughly speaking) substituting Rg and UE in
the formulae (4) and (8) for the spontaneous magnetization and the correlation
length. Since E is itself non-analytic in T at T = T, the dependence of Rg and Uj
on 5 introduces new complexities at the critical point. Details will be discussed
shortly.

In order to study the effects of fluctuations, only a single wavelength scale will
be considered; this is the basic step in the renormalization group method. To be
precise, consider only fluctuations with wavelengths lying in an infinitesimal
interval L to L+6L.  To average over these wavelengths of fluctuations one starts
with the Boltzmann factor e -‘I where the wavelengths between L and L+61,
are still present in M(x), and then averages over fluctuations in M(x) with wave-
lengths between L and L+6L.  The result of these fluctuation averages is a free
energy FL+bl. for a magnetization function (which will be denoted M,,(x)) with
wavelengths > L&L  only. The Fourier components of MH(x) are the same G
that appear in M(x) except that ILI.IS now restricted to be less than l/(L+6L).

The next step is to count the number of integration variables .Ilrwith  11;l lying
between l/L and l/(1,+61,).  To make this count it is necessary to consider a
finite system in a volume V. Then the number of degrees of freedom with wave-
lengths between 2~ I, and ‘Ln is given by the corresponding phase space
volume, namely the product of k space and position space volumes. This product
is (apart from constant factors like π, etc.) L-“‘+“VGL.

It is convenient to choose the integration variables not to be the Mk.themselves
but linear combinations which correspond to localized wave packets instead of
plane waves. That is, the difference .LIIl(x)-,\l(x)  should be expanded in a set
of wave packet functions v!,(x), each of which has momenta only in the range
l/L to I/(LTGL),  but which is localized in x space as much as possible. Since
each function q,,(x) must (by the uncertainty principle) fill unit volume in phase
space, the position space volume for each q,,(x) is

6V = L”+‘/Gl, (11)

and there are V/6\: wavefunctions q,,(x). We can write

M ( x )  =  MH( x ) + Σ m nψ n( x ) (12)

and the integrations to be performed are integrations over the coefficients m,,.
Because of the local nature of the Landau-Ginzburg free energy, it will be

assumed that the overlap of the different wavefunctions v,! can be neglected.
Then each m11 integration can be treated separately, and only a single such
integration will be discussed here. For this single integration, the form of M(x)
can be written

M(x) = MH(x)+mψ (x) (13)
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since only one term from the sum over n contributes within the spatial volume
occupied by the wavefunction v(x).

The other simplification that will be made is to treat MH(x) as if it were a
constant over the volume occupied by I# (x). In other words the very long wave-
lengths in MH(x) are emphasized relative to wavelengths close to L.

The calculation to be performed is to compute

I
= (14)

where Ft,+bt,  and FL, involve integration only over the volume occupied by q(x).
In expanding out Ft.[Mn+mq]  the following simplifications will be made. First,
all terms linear in IQ(X)  are presumed to integrate to 0 in the x integration defining
FL. Terms of third order and higher in II, are also neglected. The function q(x) is
presumed to be normalized so that

(15)

and due to the limited range ofwavelengths in q(x),  there results

(16)

The result of these simplifications is that the integral becomes

01

(17)

Fl,+,+,t.[Mn]  = Ft,{Mu}+$?n($+Rt,+6Ut.%) (18)

The logarithm must be rewritten as an integral over the volume occupied by
W(x);  this integral can then be extended to an integral over the entire volume V
when the contributions from all other m,, integrations are included. Also the
logarithm must be expanded in powers of MH; only the Mi and MA terms will be
kept. Further it will be assumed that RL, changes slowly with L. When L is at the
correlation length 5, 1 /L2 and RL, are equal (as already argued) so that for values
of L intermediate between atomic sizes and the correlation length, RL, is small
compared to 1/L2. Expanding the logarithm in powers of RL+GUt,Mi, to second
order (to obtain an Mt!, term) gives (of. Eq. (11)):

i.!n
(
$+R,,+6U,,M;

1
= terms independent of MH

+(GV)(GL)L-d-‘{3U,,M~L’-9U;..M~L’-3R,JJ,,M;L4} (19)

One can rewrite 6V as an integral over the volume 6V. There results the
equations

R,,+b,, = R,,+(3U,,L’~d-3R,,U,,L.‘~d)GL (20)

U,.+b,. = U,,-9U;,L~~-d i5L (21)

or

L 2 = 3L2-dU,.-3RI,U,,  . I,‘-d (22)
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L dUL- = -gu;,LJ-d
dL (23)

These equations are valid only for L <E; for L > 5 there is very little further
change in RL, or UL, due to the switchover in the logarithm caused by the dom-
inance of RL rather than 1/L2. If d is  g reater than 4, it can be seen that RL and UL

are constant for large L, as expected in the Landau theory. For example, if one
assumes RL. and UL. are constant for large L it is easily seen that integration of
(22) and (23) only gives negative powers of L. For d<4 the solutions are not
constant. Instead, UL behaves for sufficiently large L as

uL,, ~ (‘+d)Ld-4

9

(which is easily seen to be a solution of (23)), RL. satisfies the equation

whose solution is

R L = cLk-+VL(4-d)
3 2-(4Yd),3LP1

(25)

where c is related to the value of RL. at some initial value of L. For large enough L,
t h e  L-2 term can be neglected.

The parameter c should be analytic in temperature, in fact proportional to
T-T,. Hence, for large L

RI,KL k-J)/+TJ

which is analytic in T for fixed L. However the equation for 5 is

EK RE-‘h = (T-T,)-“E(+-d)/ri

Let

(27)

(28)

ε = 4-d (29)

then the correlation length exponent is
1 1

U=21--E/6
which gives v = 0.6 in 3 dimensions. Similarly, the spontaneous magnetization
below T, behaves as (R,/U$”  giving

These computations give an indication of how non-trivial values can be
obtained for β and v. The formulae derived here are not exact, due to the severe
simplifications made, but at least they show that β and v do not have to be l/2
and in fact can have a complicated dependence on the dimension d.

A correct treatment is much more complex. Once MH(x) is not treated as a
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constant, one could imagine expanding MH(x) in a Taylor’s series about its value
at some central location xo relative to the location of the wavefunction q(x),  thus
bringing in gradients of MH. In addition, higher order terms in the expansion
of the logarithm give higher powers of MH. All this leads to a more complex form
for the free energy functional FL. with more gradient terms and more powers of
MH. The whole idea of the expansion in powers of MH and powers of gradients
can in fact be called into question. The fluctuations have an intrinsic size (i.e.,
m 2 has a size - L2 as a consequence of the form of the integrand in Eq. 17) and
it is not obvious that in the presence of these fluctuations, M is small. Since
arbitrary wavelengths of fluctuations are important the function M is not
sufficiently slowly varying tojustify an expansion in gradients either. This means
that FL[M] could be an arbitrarily complicated function of M, an expression it
is hard to write down, with thousands of parameters, instead of the simple
Landau-Ginzburg form with only two parameters RL and UL.

Fortunately, the problem simplifies near 4 dimensions, due to the small
magnitude of UL, which is proportional to ε = 4-d. All the complications
neglected above arise only to second order or higher in an expansion in U L which
means second order or higher in ε. The computations described here are exact
to order ε. See Ref. 17.

The renormalization group approach that was defined in 1971 embraces both
practical approximations leading to actual computations and a formalism.17 The
full formalism cannot be discussed here but the central idea of “fixed points” can
be illustrated.

As the fluctuations on each length scale are integrated out a new free energy
functional FL+δL is generated from the previous functional F L. This process is
repeated many times. If FL and F L+δL are expressed in dimensionless form, then
one finds that the transformation leading from FL to F,,+b,, is repeated in identical
form many times. (The transformation group thus generated is called the “renor-
malization group"). As L becomes large the free energy FL approaches a fixed
point of the transformation, and thereby becomes independent of details of the
system at the atomic level. This leads to an explanation of the universality18,, of
critical behavior for different kinds of systems at the atomic level. Liquid-gas
transitions, magnetic transitions, alloy transitions, etc. all show the same critical
exponents experimentally; theoretically this can be understood from the hy-
pothesis that the same “fixed point” interaction describes all these systems.

To demonstrate the fixed point form of the free energy functional, it must be
put into dimensionless form. Lengths need to be expressed in units of L, and M,
RL, and UL rewritten in dimensionless form. These changes are easily deter-
mined: write

x = Ly (32)

M(x) = L’-“l’m(y) (33)

R L, = l/L%,, (34)

U L = L”-‘u,, (35)

F L = Id”y{(vm)‘L+r,.m”(y)+u,.m~(y)) (36)
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The asymptotic solution for the dimensionless parameters rL and uL. is

Apart from the term in rL, these dimensionless parameters are independent of L,
denoting a free energy form which is also independent of L. The c term designates
an instability of the fixed point, namely a departure from the fixed point which
grows as L increases. The fixed point is reached only if the thermodynamic
system is at the critical temperature for which c vanishes; any departure from
the critical temperature triggers the instability.

For further analysis of the renormalization group formalism and its relation
to general ideas about critical behavior, see e.g. ref. 17.

II I. Some History Prior to 1971
The first description of a critical point was the description of the liquid-vapor
critical point developed by Van der Waals, 19 developed over a century ago fol-
lowing experiments of Andrews.19 Then Weiss provided a description of the
Curie point in a magnet.“’ Both the Van der Waals and Weiss theories were
special cases of Landau’s mean field theory.” Even before 1900, experiments
indicated discrepancies with mean Geld theory; in particular the experiments
indicated that β was closer to l/3 than l/2.19 In 1944, Onsager6 published his
famous solution to the two dimensional Ising model,12 which explicity violated
the mean field predictions. Onsager obtained v = 1 instead of the mean field
prediction v = l/2, for example. In the 1950’s, Domb, Sykes, Fisher and others21

studied simple models of critical phenomena in three dimensions with the help
of high temperature series expansions carried to very high order, exacting critical
point exponents by various extrapolation methods. They obtained exponents
in disagreement with mean field theory but in reasonable agreement with experi-
ment. Throughout the sixties a major experimental effort pinned down critical
exponents and more generally provided a solid experimental basis for theoretical
studies going beyond mean field theory. Experimentalists such as Voronel;
Fairbanks, Buckingham, and Keller; Heller and Benedek; Ho and Litster,
Kouvel and Rodbell, and Comly; Sengers; Lorentzen; Als-Nielsen and Dietrich;
Birgeneau and Shirane; Rice; Chu; Teaney; Moldover; Wolf and Ahlers all
contributed to this development, with M. Green, Fisher, Widom, and Kadanoff
providing major coordination efforts.” Theoretically, Widom23 proposed a
scaling law for the equation of state near the critical point that accommodated
non-mean field exponents and predicted relations among them. The full set of
scaling hypotheses were developed by Essam and Fisher, Domb and Hunter,
Kadanoff, and Patashinskii, and Pokrovskii.24 See also the inequalities of
Rushbrooke 25 and Griffith.26

My own work began in quantum field theory, not statistical mechanics. A
convenient starting point is the development ofrenormalization theory by Bethe,
Schwinger, Tomonaga, Feynman, Dyson and others27 in the late 1940’s. The
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first discussion of the “renormalization” group appeared in a paper by Stueckel-

berg and Petermann,28 published in 1953.

In 1954 Murray Gell-Mann and Francis Low published a paper entitled

“Quantum Electrodynamics at Small Distances”29 which was the principal

inspiration for my own work prior to Kadanoffs formulation30 of the scaling

hypothesis for critical phenomena in 1966.

Following the definition of Quantum Electrodynamics (QED) in the 1930’s

by Dirac, Fermi, Heisenberg, Pauli, Jordan, Wigner, et al.27, the solution of QED

was worked out as perturbation series in eo, the “bare charge” of QED. The

QED Lagrangian (or Hamiltonian) contains two parameters: eo, and mo, the

latter being the “bare” mass of the electron. As stated in the introduction in QED

the physical electron and photon have composite structure. In consequence of

this structure the measured electric charge e and electron mass m are not

identical to eo and m,, but rather are given by perturbation expansions in powers

of eo. Only in lowest order does one find e = eo, and m = mo. Unfortunately, it

was found in the 30’s that higher order corrections in the series for e and m are

all infinite, due to integrations over momentum that diverge in the large momen-

tum (or small distance) limit.”

In the late 1940’s renormalization theory was developed, which showed that

the divergences of Quantum Electrodynamics could all be eliminated if a change

of parametrization was made from the Lagrangian parameters eo and mo to the

measurable quantities e and m, and if at the same time the electron and electro-

magnetic fields appearing in the Lagrangian were rescaled to insure that observ-

able matrix elements (especially of the electromagnetic field) are finite.27

There are  many reparametr izat ions of  Quantum Electrodynamics that

eliminate the divergences but use different finite quantities than e and m to
replace eoand mo. Stueckelberg and Petermann observed that transformation

groups could be defined which relate different reparametrizations - they called

these groups “groupes de normalization ” which is translated “renormalization

group”. The Gell-Mann and Low paper,29 one year later but independently,

presented a much deeper study of the significance of the ambiguity in the choice

of reparametrization and the renormalization group connecting the difference

choices of reparametrization. Gell-Mann and Low emphasized that e, measured

in classical experiments, is a property of the very long distance behavior of QED

(for example it can be measured using pith balls separated by centimeters,

whereas the natural scale of QED is the Gompton wavelength of the electron,

- 10-11 cm). Gell-Mann and Low showed that a family ofalternative parameters

eh could be introduced, any one of which could be used in place of e to replace
eo. The parameter eh is related to the  behavior  of  QED at  an arbi trary
momentum scale h instead of at very low momenta for which e is appropriate.

The family of parameters eh introduced by Gell-Mann and Low interpolate

between the physical charge e and the bare charge e , namely e is obtained as the

l o w  m o m e n t u m  (h-+0) limit of eh and eo is obtained as the high momentum

(A+ 00) limit of eh.
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Gell-Mann and Low found that ei obeys a differentia1 equation, of the form

h’d(ez)/d(h’)  = Q (ez, m’/h’L) (39)

where the ϕ function has a simple power series expansion with non-divergent

coefficients independently of the value of λ, in fact as λ→∞ 0 ,  ϕ becomes a function

of ei alone. This equation is the forerunner of my own renormalization group

equations such as (22) and (23).

The main observation of Gell-Mann and Low was that despite the ordinary

nature of the differential equation, Eq. (38), the solution was not ordinary, and

in fact predicts that the physical charge e has divergences when expanded in

powers of eo, or vice versa. More generally, if eh is expanded in powers of ex, the

higher order coefficients contain powers of 8n(~*/h”),  and these coefficients

diverge if either λ or h’ go to infinity, and are very large if AZ/h” is either very

large or very small.

Furthermore, Gell-Mann and Low argued that, as a consequence of Eqn. (38),

eo, must have a fixed value independently of the value of e; the fixed value of e o

could be either finite or infinite.

When I entered graduate school at California Institute of Technology, in 1956,

the default for the most promising students was to enter elementary particle

theory, the field in which Murray Gell-Mann, Richard Feynman, and Jon

Mathews were all engaged. I rebelled briefly against this default, spending a

summer at the General Atomic Corp. working for Marshall Rosenbluth on

plasma physics and talking with S. Chandresekhar who was also at General

Atomic for the summer. After about a month of work I was ordered to write up

my results, as a result of which I swore to myself that I would choose a subject

for research where it would take at least five years before I had anything worth

writing about. Elementary particle theory seemed to offer the best prospects of

meeting this criterion and I asked Murray for a problem to work on. He first

suggested a topic in weak interactions of strongly interacting particles (K

mesons, etc.) After a few months I got disgusted with trying to circumvent totally

unknown consequences of strong interactions, and asked Murray to find me a

problem dealing with strong interactions directly, since they seemed to be the

bottleneck. Murray suggested I study K meson-nucleon scattering using the

Low equation in the one meson approximation. I wasn’t very impressed with

the methods then in use to solve the Low equation, so I wound up fiddling with

various methods to solve the simpler case of pion-nucleon scattering. Despite

the fact that the one meson approximation was valid, if at all, only for low ener-

gies, I studied the high energy limit, and found that I could perform a “leading

logarithms” sum very reminiscent of a very mysterious chapter in Bogoliubov

and Shirkov’s field theory text31 ; the chapter was on the renormalization group.

In 1960 I turned in a thesis to Cal Tech containing a mish-mash of curious

calculations. I was already a Junior Fellow at Harvard. In 1962 I went to CERN

for a year. During this period (1960-1963) I partly followed the fashions of the

time. Fixed source meson theory (the basis for the Low equation) died, to be

replaced by S matrix theory. I reinvented the “strip approximation” (Ter-

Martirosyan had invented it first32) and studied the Amati-Fubini-Stanghellini
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theory of multiple production. 33 I was attentive at seminars (the only period of
my life when I was willing to stay fully awake in them) and I also pursued back
waters such as the strong coupling approximation to fixed source meson theory?

By 1963 it was clear that the only subject I wanted to pursue was quantum

field theory applied to strong interactions. I rejected S matrix theory because

the equations of S matrix theory, even if one could write them down, were too

complicated and inelegant to be a theory; in contrast the existence of a strong

coupling approximation as well as a weak coupling approximation to fixed

source meson theory helped me believe that quantum field theory might make

sense. As far as strong interactions were concerned, all that one could say was

that the theories one could write down, such as pseudoscalar meson theory, were

obviously wrong. No one had any idea of a theory that could be correct. One

could make these statements even though no one had the foggiest notion how to

solve these theories in the strong coupling domain.

My very strong desire to work in quantum field did not seem likely to lead to

quick publications; but I had already found out that I seemed to be able to get

jobs even if I didn’t publish anything so I did not worry about ‘publish or perish’

questions.

There was very little I could do in quantum field theory - there were very

few people working in the subject, very few problems open for study. In the

period 1963-1966 I had to clutch at straws. I thought about the “ξ-limiting”

process of Lee and Yang.” I spent a major effort disproving Ken Johnson’s

claims”’ that he could define quantum electrodynamics for arbitrarily small eo, in

total contradiction to the result of Gell-Mann and Low. I listened to K. Hepp

and others describe their results in axiomatic field theory37; I didn’t understand

what they said in detail but I got the message that I should think in position space

rather than momentum space. I translated some of the work I had done on

Feynman diagrams with some very large momenta (to disprove Ken Johnson’s
ideas) into position space and arrived at a short distance expansion for products

of quantum field operators. I described a set of rules for this expansion in a

preprint in 1964. I submitted the paper for publication; the referee suggested

that the solution of the Thirring model might illustrate this expansion. Unfor-

tunately, when I checked out the Thirring model, I found that while indeed there

was a short distance expansion for the Thirring model,38 my rules for how the

coefficient functions behaved were all wrong, in the strong coupling domain.

I put the preprint aside, awaiting resolution of the problem.

Having learned the fixed source meson theory as a graduate student, I con-

tinued to think about it. I applied my analysis of Feynman diagrams for some

large momenta, to the fixed source model. I realized that the results I was

getting became much clearer if I made a simplification of the fixed source model

itself, in which the momentum space continuum was replaced by momentum

slices.39 That is, I rubbed out all momenta except well separated slices, e.g.,

1 d Ikl d 2, Ad Ikl d 212, A’< Ikl d 2A’, , Λ n  d (kl d 2A”, etc. with A a large

number.
This model could be solved by a perturbation theory very different from the

methods previously used in field theory. The energy scales for each slice were
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very different, namely of order Λn for the n th slice. Hence the natural procedure

was to treat the Hamiltonian for the largest momentum slice as the unperturbed

Hamiltonian, and the terms for all lesser slices as the perturbation. In each slice

the Hamiltonian contained both a free meson energy term and an interaction

term, so this new perturbation method was neither a weak coupling nor a strong

coupling perturbation.

I showed that the effect of this perturbation approach was that if one started

with n momentum slices, and selected the ground state of the unperturbed

Hamiltonian for the nth slice, one wound up with an effective Hamiltonian for

the remaining n-l slices. This new Hamiltonian was identical to the original

Hamiltonian with only n-l slices kept, except that the meson-nucleon coupling

constant g was renormalized (i.e., modified): the modification was a factor in-

volving a non-trivial matrix element of the ground state of the nth-slice Hamil-

tonian. 39

This work was a real breakthrough for me. For the first time I had found a

natural basis for renormalization group analysis: namely the solution and elim-

ination of one momentum scale from the problem. There was still much to be

done: but I was no longer grasping at straws. My ideas about renormalization

were now reminiscent of Dyson’s analysis of Quantum Electrodynamics.“’ Dyson

argued that renormalization in Quantum Electrodynamics should be carried

out by solving and eliminating high energies before solving low energies. I

studied Dyson’s papers carefully but was unable to make much use of his work.”

Following this development, I thought very hard about the question “what

is a field theory”, using the φ+ interaction of a scalar field (identical with the

Landau-Ginzburg model of a critical point14 discussed in my 1971 papers) as an

example. Thoughout the ‘60’s I taught quantum mechanics frequently, and I

was very impressed by one’s ability to understand simple quantum mechanical

systems. The first step is a qualitative analysis minimizing the energy (defined
by the Hamiltonian) using the uncertainty principle; the second step might be a

variational calculation with wavefunctions constructed using the qualitative

information from the first step; the final stage (for high accuracy) would be a

numerical computation with a computer helping to achieve high precision. I

felt that one ought to be able to understand a field theory the same way.

I realized that I had to think about the degrees of freedom that make up a

field theory. The problem of solving the φ4 theory was that kinetic term in the

Hamiltonian (involving (vc$)~) was diagonal only in terms of the Fourier com-

ponents & of the field, whereas the φ+ term was diagonal only in terms of the

field +(x) itself. Therefore I looked for a compromise representation in which

both the kinetic term and the interaction term would be at least roughly diagonal.

I needed to expand the field Q( x )  i n  terms of wavefunctions that would have

minimum extent in both position space and momentum space, in other words

wavefunctions occupying the minimum amount of volume in phase space. The

uncertainty principle defines the lower bound for this volume, namely 1, in

suitable units. I thought of phase space being divided up into blocks of unit

volume. The momentum slice analysis indicated that momentum space should

be marked off on a logarithmic scale, i.e. each momentum space volume should
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correspond to a shell like the slices defined earlier, except that I couldn’t leave

out any momentum range so the shells had to be e.g....,  1 < |k| < 2, 2 < Ik( < 4,

etc. By translational invariance the position space blocks would all be the same

size for a given momentum shell, and would define a simple lattice of blocks.

The position space blocks would have different sizes for different momentum

shells.

When I tried to study this Hamiltonian I didn’t get very far. It was clear that

the low momentum terms should be a perturbation relative to the high momen-

tum terms but the details of the perturbative treatment became too complicated.

Also my analysis was too crude to identify the physics of highly relativistic

particles which should be contained in the Hamiltonian of the field theory.”

However, I learned from this picture of the Hamiltonian that the Hamiltonian

would have to be cutoff at some large but finite value of momentum k in order to

make any sense out of it, and that once it was cutoff, I basically had a lattice

theory to deal with, the lattice corresponding roughly to the position space blocks

for the largest momentum scale. More precisely, the sensible procedure for

defining the lattice theory was to define phase space cells covering all of the cutoff

momentum space, in which case there would be a single set of position space

blocks, which in turn defined a position space lattice on which the field φ would

be defined. I saw from this that to understand quantum field theories I would

have to understand quantum field theories on a lattice.

In thinking and trying out ideas about “what is a field theory” I found it very

helpful to demand that a correctly formulated field theory should be soluble by

computer, the same way an ordinary differential equation can be solved on a

computer, namely with arbitrary accuracy in return for sufficient computing

power. It was clear, in the ‘60’s, that no such computing power was available

in practice; all that I was able to actually carry out were some simple exercises

involving free fields on a finite lattice.
In the summer of 1966 I spent a long time at Aspen. While there I carried out

a promise I had made to myself while a graduate student, namely I worked

through Onsager’s solution of the two dimensional Ising model. I read it in

translation, studying the field theoretic form given in Lieb, Mattis and Schultz.‘”

When I entered graduate school, I had carried out the instructions given to

me by my father and had knocked on both Murray Gell-Mann’s and Feynman’s

doors, and asked them what they were currently doing. Murray wrote down the

partition function for the three dimensional Ising model and said it would be

nice if I could solve it (at least that is how I remember the conversation).

Feynman’s answer was “nothing”. Later, Jon Mathews explained some of

Feynman’s tricks for reproducing the solution for the two dimensional Ising

model. I didn’t follow what Jon was saying, but that was when I made my

promise. Sometime before going to Aspen, I was present when Ben Widom

presented his scaling equation of state,23 in a seminar at Cornell. I was puzzled

by the absence of any theoretical basis for the form Widom wrote down; I was

at that time completely ignorant of the background in critical phenomena that

made Widom’s work an important development.

As I worked through the paper of Mattis, Lieb, and Schultz, I realized there
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should be applications of my renormalization group ideas to critical phenomena,

and discussed this with some of the solid state physicists also at Aspen. I was

informed that I had been scooped by Leo Kadanoff and should look at his pre-

p r i n t .3 0

Kadanoff's idea was that near the critial point one could think of blocks of

magnetic moments, for example containing 2x2x2 atoms per block, which

would act like a single effective moment, and these effective moments would have

a simple nearest neighbor interaction like simple models of the original system.

The only change would be that the system would have an effective temperature

and external magnetic field that might be distinct from the original. More

generally the effective moments would exist on a lattice of arbitrary spacing L

times the original atomic spacing; Kadanoffs idea was that there would be

L-dependent temperature and field variables TL. and hL, and that T2 L, and h2 L.

would be analytic functions of TL. and hL. At the critical point, TL, and hL, would

have fixed values independent of L. From this hypothesis Kadanoff was able to

derive the scaling laws of Widom,23 Fisher, etc.24

I now amalgamated my thinking about field theories on a lattice and critical

phenomena. I learned about Euclidean (imaginary time) quantum field theory

and the “transfer matrix” method for statistical mechanical models and found

there was a close analogy between the two (see Ref. 17). I learned that for a field

theory to be relativistic, the corresponding statistical mechanical theory had to

have a large correlation length, i.e., be near a critical point. I studied Schiff’s

strong coupling approximation to the φ4 theory,44 and found that he had ignored

renormalization effects; when these were taken into account the strong coupling

expansion was no longer so easy as he claimed. I thought about the implications

of the scaling theory of Kadanoff, Widom et al. applied to quantum field theory,

along with the scale invariance of the solution of the Thirring model” and the

discussion of Kastrup and Mack of scale invariance in quantum field theory.45

These ideas suggested that scale invariance would apply, at least at short

distances, but that field operators would have non-trivial scale dimensions

corresponding to the non-trivial exponents in critical phenomena. I redid my

theory of short distance expansions based on these scaling ideas and published

the result.
46

 My theory did not seem to lit the main experimental ideas about

short distance behavior (coming from Bjorken’s and Feynman’s analysis
4 7

of deep inelastic electron scattering) but I only felt confused about this problem

and did not worry about it.

I returned to the fixed source theory and the momentum slice approximation.

I made further simplifications on the model. Then I did the perturbative analysis

more carefully. Since in real life the momentum slice separation factor Λ would

be 2 instead of very large, the ratio 1/Λ of successive energy scales would be l/2

rather than very small, and an all orders perturbative treatment was required in

1/Λ. When the lower energy scales were treated to all orders relative to the high-

est energy scale, an infinitely complicated effective Hamiltonian was generated,

with an infinite set of coupling constants. Each time an energy scale was elimin-

ated through a perturbative treatment, a new infinitely complicated Hamil-

tonian was generated. Nevertheless, I found that for sufficiently large Λ I could
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mathematically control rigorously the effective Hamiltonians that were gener-

ated; despite the infinite number of couplings I was able to prove that the higher

orders of perturbation theory had only a small and boundable impact on the

effective Hamiltonians, even after arbitrarily many iterations.48

This work showed me that a renormalization group transformation, whose

purpose was to eliminate an energy scale or a length scale or whatever from a

problem, could produce an effective interaction with arbitrarily many coupling

constants, without being a disaster. The renormalization group formalism based

on fixed points could still be correct, and furthermore one could hope that only

a small finite number of these couplings would be important for the qualitative

behavior of the transformations, with the remaining couplings being important

only for quantitative computations. In other words the couplings should have an

order of importance, and for any desired but given degree of accuracy only a

finite subset of the couplings would be needed. In my model the order of import-

ance was determined by orders in the expansion in powers of l/Λ. I realized

however that in the framework of an interaction on a lattice, especially for

Ising-type models, locality would provide a natural order of importance - in

any finite lattice volume there are only a finite number of Ising spin inter-

actions that can be defined. I decided that Kadanoffs emphasis on the nearest

neighbor coupling of the Ising model30 should be restated: the nearest neighbor

coupling would be the most important coupling because it is the most localized

coupling one can define, but other couplings would be present also in Kadanoff's

effective “block spin” Hamiltonians. A reasonable truncation procedure on

these couplings would be to consider a finite region, say 3 3 or 43 lattice sites in

size, and consider only multispin couplings that could fit into these regions (plus

translations and rotations of these couplings).

Previously all the renormalization group transformations I was familiar with

involved a fixed number of couplings: in the Gell-Mann-Low case just the

electric charge eh, in Kadanoffs case an effective temperature and external field.

I had tried many ways to try to derive transformationsjust for these fixed number

ofcouplings, without success. Liberated from this restriction, it turned out to be

easy to define renormalization group transformations; the hard problem was

to find approximations to these transformations which would be computable in

practice. Indeed a number renormalization group transformations now exist

(see Section IV and its references).

In the fall of 1970 Ben Widom asked me to address his statistical mechanics

seminar on the renormalization group. He was particularly interested because

Di Castro and Jona-Lisinio had proposed applying the field theoretic renormal-

ization group formalism to critical phenomena,49 but no one in Widom’s group

could understand Di Castro and Jona-Lasinio’s paper. In the course oflecturing

on the general ideas of fixed points and the like I realized I would have to provide

a computable example, even if it was not accurate or reliable. I applied the phase

space cell analysis to the Landau-Ginzburg model of the critical point and tried

to simplify it to the point of a calculable equation, making no demands for

accuracy but simply trying to preserve the essence of the phase space cell picture.

The result was a recursion formula in the form of a nonlinear integral trans-
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formation on a function of one variable, which I was able to solve by iterating

the transformation on a computer.50 I was able to compute numbers for expo-

nents from the recursion formula at the same time that I could show (at least in

part) that it had a fixed point and that the scaling theory of critical phenomena

of Widom et al. followed from the fixed point formalism. Two papers of 1971 on

the renormalization group presented this work.50

Some months later I was showing Michael Fisher some numerical results

from the recursion formula, when we realized, together, that the nontrivial

fixed point I was studying became trivial at four dimensions and ought to be

easy to study in the vicinity of four dimensions. The dimension d appeared in a

simple way as a parameter in the recursion formula and working out the details

was straightforward; Michael and I published a letter51 with the results. It was

almost immediately evident that the same analysis could be applied to the full

Landau-Ginzberg model without the approximations that went into the recur-

sion formula. Since the simplifying principle was the presence of a small co-

efficient of the φ4
 term, a Feynman diagram expansion was in order. I used my

field theoretic training to crank out the diagrams and my understanding of the

renormalization group fixed point formalism to determine how to make use of the

diagrams I computed. The results were published in a second letter in early

1972 .52 The consequent explosion of research is discussed in Part IV.

There were independent efforts on the same area taking place while I com-

pleted my work. The connection between critical phenomena and quantum

field theory was recognized by Gribov and Migdal and Polyakov53 and by axiom-

atic field theorists such as Symanzik
54

 T.T. Wu55 worked on both field theory

and the Ising model. Larkin and Khmelnitskii applied the field theoretic renor-

malization group of Gell-Mann and Low to critical phenomena in four dimen-

sions and to the special case of uniaxial ferromagnets in three dimensions,56 i n

both cases deriving logarithmic corrections to Landau’s theory. Dyson formu-

lated a somewhat artificial “hierarchical” model of a phase transition which

was exactly solved by a one dimensional integral recursion formula.54 This

formula was almost identical to the one I wrote down later, in the 1971 paper.

Anderson’ worked out a simple but approximate procedure for eliminating mo-

mentum scales in the Kondo problem, anticipating my own work in the Kondo

problem (see Sec. IV). Many solid state theorists were trying to apply diagram-

matic expansions to critical phenomena, and Abe58 and Scalapino and Ferrell 59

laid the basis for a diagrammatic treatment of models with a large number of

degrees offreedom, for any dimension. (The limit of an infinite number of degrees

of freedom had already been solved by Stanley60). Kadanoff was making exten-

sive studies of the Ising model,61and discovered a short distance expansion for

it similar to my own expansion for Geld theories. Fractional dimensions had

been thought about before in critical phenomena.62 Continuation of Feynman

diagrams to non-integer dimensions was introduced into quantum Geld theory

in order to provide a gauge invariant regularization procedure for non-abelian

gauge theories:63 this was done about simultaneously with its use to develop the

ε expansion.

In the late ‘60’s, Migdal and Polyakov64 developed a “bootstrap” formulation
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of critical phenomena based on a skeleton Feynman graph expansion, in which

all parameters including the expansion parameter inself would be determined

self-consistently. They were unable to solve the bootstrap equations because of

their complexity, although after the ε expansion about four dimensions was

discovered, Mack showed that the bootstrap could be solved to lowest order in

ε65. If the 1971 renormalization group ideas had not been developed, the Migdal-

Polyakov bootstrap would have been the most promising framework of its time

for  t rying to  fur ther  unders tand cr i t ical  phenomena.  However ,  the  renor-

malization group methods have proved both easier to use and more versatile,

and the bootstrap receives very little attention today.

In retrospect the bootstrap solved a problem I tried and failed to solve; namely

how to derive the Gell-Mann-Low and Kadanoff dream of a fixed point involv-

ing only one or two couplings - there was only one coupling constant to be

determined in the Migdal-Polyakov bootstrap. However, I found the bootstrap

approach unacceptable because prior to the discovery of the ε expansion no

formal argument was available to justify truncating the skeleton expansion to

a finite number of terms. Also the skeleton diagrams were too complicated to test

the truncation in practice by means of brute force computation of a large number

of diagrams. Even today, as I review the problems that remain unsolved either

by ε expansion or renormalization group methods, the problem of convergence

of the skeleton expansion leaves me unenthusiastic about pursuing the bootstrap

approach, although its convergence has never actually been tested. In the mean-

time, the Monte Carlo Renormalization group66 has recently provided a frame-

work for using small number of couplings in a reasonably effective and non-

perturbative way: see Section IV.

I am not aware of any other independent work trying to understand the re-

normalization group from first principles as a means to solve field theory or

critical phenomena one length scale at a time, or suggesting that the renor-

malization group should be formulated to allow arbitrarily many couplings to

appear at intermediate stages of the analysis.

IV. Results after 1971
There was an explosion of activity after 1972 in both renormalization group and

E expansion studies. To review everything that has taken place since 1972 would

be hopeless. I have listed a number of review papers and books which provide

more detailed information at the end of this paper. Some principal results

and some thoughts for the future will be outlined here. The “ε expansion” about

four dimensions gave reasonable qualitative results for three dimensional

systems. It enabled a much greater variety of details of critical behavior to be

studied than was previously possible beyond the mean field level. The principal

critical point is characterized by two parameters: the dimension d and the

number of internal components n. Great efforts were made to map out critical

behavior as a function of d and n. ε expansion and related small  coupling
expansions were carried to very high orders by Brézin, Le Guillou, Zinn-Justin, 67

and Nickel”” led to precise results for d = 3 .69 .70  The large n limit and l/n

expansion was pursued further.” A new expansion in 2+ε dimensions was
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developed for n>2 by Polyakov. 72 For n = 1 there is an expansion in 1+ε
dimensions. 73 The full equation of state in the critical region was worked out

in the ε expans ion74 and l/n expansion.75 The special case n = 0 was shown

by De Gennes to describe the excluded volume problem in polymer configuration

problems and random walks.76 Corrections to scaling were first considered by
W e g n e r77. A recent reference is Aharony and Ahlers.78

Besides the careful study of the principal critical point other types of critical

points and critical behavior were pursued. Tricritical phenomena were in-

vestigated by Riedel and Wegner,79 where Landau theory was found to break-

down starting in three dimensions instead of four.80 More general multicritical

points have been analyzed.
81

 Effects of dipolar forces,
82

 other long range forces,83

cub i c  pe r t u rba t i ons  and  an i so t rop i e s84, 85  w e r e  p u r s u e d .  T h e  p r o b l e m s  o f

dynamics of critical behavior were extensively studied.86 Liquid crystal tran-

sitions were studied by Halperin, Lubensky, and Ma.87

Great progress has been made in understanding special features of two di-

mensional critical points, even though two dimensions is too far from four for

the ε expansion to be practical. The Mermin-Wagner theorem
88

 foreshadowed

the complex character of two dimensional order in the presence of continuous

symmetries. The number ofexactly soluble models generalizing the Ising model

steadily increases.89 Kosterlitz and Thouless90 blazed the way for renormal-

ization group applications in two dimensional systems, following earlier work

by Berezinskii.91 They analyzed the transition to topological order in the 2-
dimensional xy model with its peculiar critical point adjoining a critical line at
lower temperatures; for further work see José et al 92 and Fröhlich and
S p e n c e 93,94 . Kadanoff and Brown have given an overview of how a number of

the two-dimensional models interrelate.95 A subject of burning recent interest

is the two-dimensional melting transition.96 Among generalizations of the Ising

model, the 3 and 4 state Potts model have received special attention. The three-

state Potts model has only a first order transition in mean field theory and an

expansion in 6-ε  dimensions but has a second order transition in two dimen-

sions.
97

 Th e f our state Potts model has exceptional behavior in two dimen-

sions (due to  a “marginal  variable”) ,  which provides a  severe chal lenge

to approximate renormalization methods. Notable progress on this model has

been made recently.98

A whole vast area of study concerns critical behavior or ordering in random

systems, such as dilute magnets, spin glasses, and systems with random external

fields. Random systems have qualitative characteristics of a normal system in

two higher dimensions as was discovered by Lacour-Gayet and Toulouse99 Imry,

Ma, Grinstein, Aharony,100 and Young”” and confirmed by Parisi and Sourlas102

in a remarkable paper applying ‘supersymmetry’ ideas from quantum field

t h e o r y .1 0 3  The “replica method” heavily used in the study of random systems104

involves an n+O limit, where n is the number ofreplicas similar to the De Gennes

n+O limit defining random walks.76 There are serious unanswered questions

surrounding this limiting process. Another curious discovery is the existence of

an ε1/2 expansion found by Khmelnitskii and Grinstein and Luther.105

Further major areas for renormalization group applications have been in
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percolation,106 electron localizat ion or  conduction in random media, 107  t h e

problems of structural transitions and “Lifshitz” critical points,
108

 and the

problem of interfaces between two phases.109

Much of the work on the ε  expansion involved purely Feynman graph tech-

niques; the high order computations involved the Callan-Symanzik formul-

at ion 110 of Gell-Mann Low theory. The computations also depended on the

special diagram computation techniques of Nickel68 and approximate formulae

for very large orders of perturbation theory first discussed by Lipatov.111 In

lowest order other diagrammatic techniques also worked, for example the

Migdal-Polyakov bootstrap was solved to order ε by Mack.65

The modern renormalization group has also developed considerably, Weg-

n e r77,112,113 strengthened the renormalization group formalism considerably. A

number ofstudies, practical and formal
114

 were based on the approximate recur-

sion formula introduced in 1971. Migdal and Kadanoff115 developed an alterna-

tive approximate recursion formula (based on “bond moving” techniques).

Real space renormalization group methods were initiated by Niemeijer and

Van Leeuwen 116 and have been extensively developed since.117, 118  The simplest

real space transformation is Kadanoff's “spin decimation” transformation119.120

where roughly speaking some spins are held fixed while other spins are summed

over, producing an effective interaction on the fixed spins.

The decimation method was very successful in two dimensions where the spins

on alternative diagonals of a square lattice were held fixed.120 Other real space

f o r m u l a t i o n s 116 ,  117  involved kernels defining block spin variables related to sums

of spins in a block (the block could be a triangle, square, cube, a lattice site plus

all its nearest neighbors, or whatever).

Many of the early applications of real space renormalization group methods

gave haphazard results - sometimes spectacularly good, sometimes useless.

One could not apply these methods to a totally new problem with any confidence

of success. The trouble was the severe truncations usually applied to set up a

practical calculation; interactions which in principle contained thousands of

parameters were truncated to a handful of parameters. In addition, where

hundreds of degrees of freedom should be summed over (or integrated over) to

execute the real space transformation, a very much simplified computation
would be substituted. A notable exception is the exactly soluble differential re-
normalization group transformation of Hilhorst, Schick and Van Leeuwen,

which unfortunately can be derived only for a few two dimensional models. 121, 122. 

Two general methods have emerged which do not involve severe truncations

and the related unreliability. First of all, I carried out a brute force calculation

for the two dimensional Ising model using the Kadanoff decimation approach119, 120

(as generalized by Kadanoff). Many interaction parameters (418) were kept and

the spin sums were carried out over a very large finite lattice. The results were
ve ry  accu ra t e  and  comple t e ly  con f i rmed  my  hypo thes i s  t ha t  t he  l oca l

couplings of the shortest range were the most important. Most importantly the

results could be an optimization principle. The fixed point of Kadanoff's decimation

transformation depends on a single arbitrary parameter; it was possible to

determine a best value for this parameter from internal consistency consider-
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ations. Complex calculations with potentially serious errors always are most

effective when an optimization principle is available and parameters exist to

optimize on.123 This research has never been followed up, as is often the case

when large scale computing is involved. More recently, the Monte Carlo Re-

normalization group method,
66

 developed by Swendsen, myself, Shenker, and

Tobochnik (see also Hilhorst and Van Leeuwen)“’ has proved very accurate and

may shortly overtake both the high temperature expansions and the ε expansion

as the most accurate source of data on the three dimensional Ising model. The

Monte Carlo Renormalizat ion Group is  current ly  most  successful  on two
dimensional problems where computing requirements are less severe: it has been

applied successfully to tricritical models and the four-state Potts model.124 I n

contrast, the ε expansion is all but useless for two dimensional problems.

Unfortunately, none of the real space methods as yet provide the detailed
information about correlation functions and the like that are easily derived in

the ε expansion.

A serious problem with the renormalization group transformations (real

space or otherwise) is that there is no guarantee that they will exhibit fixed points.

Bell and myself125 and Wegner in a more general and elegant way113 have shown

that for some renormalization group transformations, iteration of a critical point

does not lead to a fixed point, presumably yielding instead interactions with

increasingly long range forces. There is no known principle for avoiding this

possibility, and as Kadanoff has showed using his decimation procedure,120 a

simple approximation to a transformation can misleadingly give a fixed point

even when the full transformation cannot. The treatment that I gave of the two

dimensional Ising model has self consistency checks that signal immediately

when long range forces outside the 418 interactions kept are becoming important.

Nothing is known yet about how the absence of a fixed point would be manifested

in the Monte Carlo renormalization group computations. Cautions about real
space renormalization group methods have also been advanced by Griffiths et
a l .1 2 6

There is a murky connection between scaling ideas in critical phenomena and

Mandelbrot’s “fractals” theory - a theory of scaling of irregular geometrical

structures (such as coastlines).127

Renormalization group methods have been applied to areas other than critical

phenomena. The Kondo problem is one example. Early renormalization group

work was by Anderson” and Fowler and Zawadowski.128 I then carried out a very

careful renormalization group analysis of the Kondo Hamiltonian,129 producing

effective Hamiltonians with many couplings for progressively smaller energy

scales, following almost exactly the prescription I learned for fixed source meson

theory. The result was the zero-temperature susceptibility to about 1 % accu-

racy, which was subsequently confirmed by Andrei and Wiegmann’s 7 exact

solution. Renormalization group methods have been applied to other Hamil-

tonian problems, mostly one dimensional.130 In multidimensional systems and

in many one dimensional systems, the effective Hamiltonians presently involve

too many states to be manageable.

The renormalization group has played a key role in the development of Quan-
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turn Chromodynamics - the current theory of quarks and nuclear forces. The

original Gell-Mann Low theory29 and the variant due to Callan and Symanzik110

was used by Politzer, Gross and Wilczek131  to  show that  nonabel ian gauge

theories are asymptotically free. This means that the short distance couplings

are weak but increase as the length scale increases; it is now clear that this is the

only sensible framework which can explain, qualitatively, the weak coupling

that is evident in the analysis of deep inelastic electron scattering results (off

protons and neutrons) and the strong coupling which is evident in the binding of

quarks to form protons, neutrons, mesons, etc.132 I should have anticipated the

idea of asymptotic freedom133 but did not do so. Unfortunately, it has been hard

to study quantum chromodynamics in detail because of the effects of the strong

binding of quarks at nuclear distances, which cannot be treated by diagram-

matic methods. The development of the lattice gauge theory by Polyakov and

myself134 following pioneering work of Wegner135 has made possible the use of a

variety of lattice methods on the problems of quantum chromodynamics, 136 in-

cluding strong coupling expansions, Monte Carlo simulations, and the Monte

Carlo renormalization group methods.67, 137 As computers become more powerful

I expect there will be more emphasis on various modern renormalization group

methods in these lattice studies, in order to take accurately into account the

crossover from weak coupling at short distances to strong coupling at nuclear

distances.

The study of unified theories ofstrong, weak and electromagnetic interactions

makes heavy use of the renormalization group viewpoint. At laboratory energies

the coupling strengths of the strong and electromagnetic interactions are too
disparate to be unified easily. Instead, a unification energy scale is postulated  at

roughly 1015 GeV; in between renormalization group equations cause the strong

and electroweak couplings to approach each other, making unification possible.

Many grand unified theories posit important energy scales in the region between

1 and 1015 GeV. It is essential to think about these theories one energy scale at a

time to help sort out the wide range of phenomena that are predicted in these

theories. See Langacker138 for a review. The study of grand unification has made

it clear that Lagrangians describing laboratory energies are phenomenological

rather than fundamental, and this continues to be the case through the grand

unification scale, until scales are reached where quantum gravity is important. It

has been evident for a long time that there should be applications of the renor-

malization group to turbulence, but not much success has been achieved yet.

Feigenbaum 138 developed a renormalization group-like treatment of the conver-

sion from order to chaos in some simple dynamical systems,140 and this work

may have applications to the onset of turbulence. Feigenbaum’s method is prob-

ably too specialized to be of broader use, but dynamical systems may be a good

start ing point  for  developing more broadly based renormalizat ion group

methods applicable to classical partial differential equations.141

In my view the extensive research that has already been carried out using the

renormalization group and the ε expansion is only the beginning of the study

of a much larger range of applications that will be discovered over the next

twenty years (or perhaps the next century will be required). The quick successes
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of the ε expansion are now past, and I believe progress now will depend rather

on the more difficult, more painful exercises such as my own computations on

the two dimensional Ising model and the Kondo problem,120 or the Monte Carlo

Renormalizat ion group66 computations. Often these highly quantitative, de-

manding computations will have to precede simpler qualitative analysis in order

to be certain the many traps potentially awaiting any renormalization group

analysis have been avoided.

Important potential areas of application include the theory of the chemical

bond, where an effective interaction describing molecules at the bond level is

desperately needed to replace current ab initio computations starting at the

individual electron level.
142

 A  method for understanding high energy or large

momentum transfer Quantum Chromodynamics (QCD) cross sections (in-

cluding non-perturbative effects) is needed which will enable large QCD back-

grounds to be computed accurately and subtracted away from experimental

results intended to reveal smaller non-QCD effects. Practical areas like per-

colation, frost heaving, crack propagation in metals, and the metallurgical

quench all involve very complex microscopic physics underlying macroscopic

effects, and most likely yield a mixture of some problems exhibiting fluctuations

on all length scales and other problems which become simpler classical problems

without fluctuations in larger scales.

I conclude with some general references. Two semi-popular articles on the

renormalization group are Wilson ( 1979) and Wilson (1975). Books include

Domb and Green (1976); Pfeuty and Toulouse (1977); Ma (1976); Amit (1978);

Patashinskii and Pokrovskii (1979) 143; and Stanley (1971)144. Review articles

and conference proceedings include Widom (1975)
145

; Wilson and Kogut (1974);

Wilson (1975); Fisher (1974)
146

;  Wallace and Zia (1978); Greer and Moldover

(1981); and Lévy et al. (1980).147
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