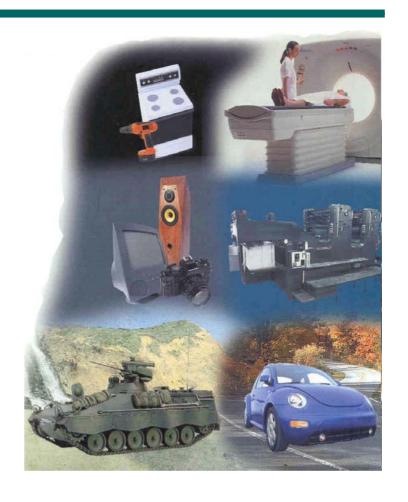
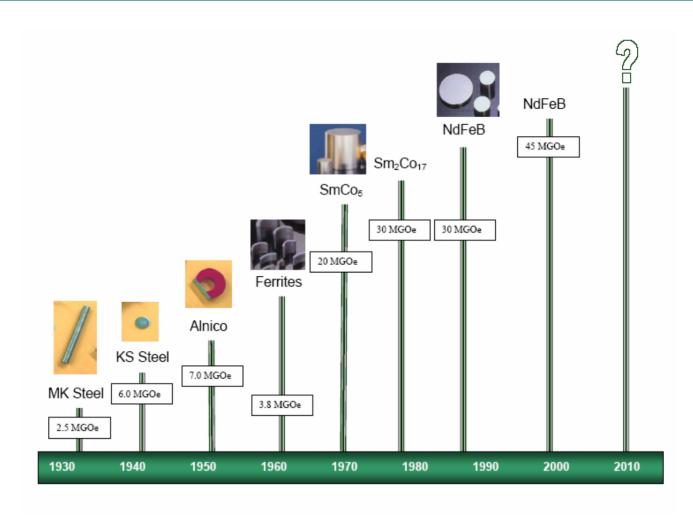
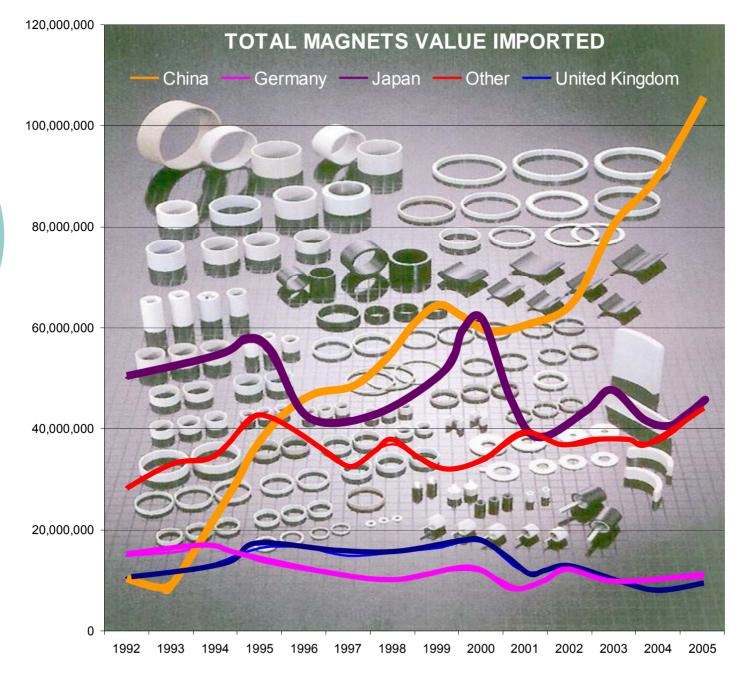

Fundamentals of Permanent Magnets

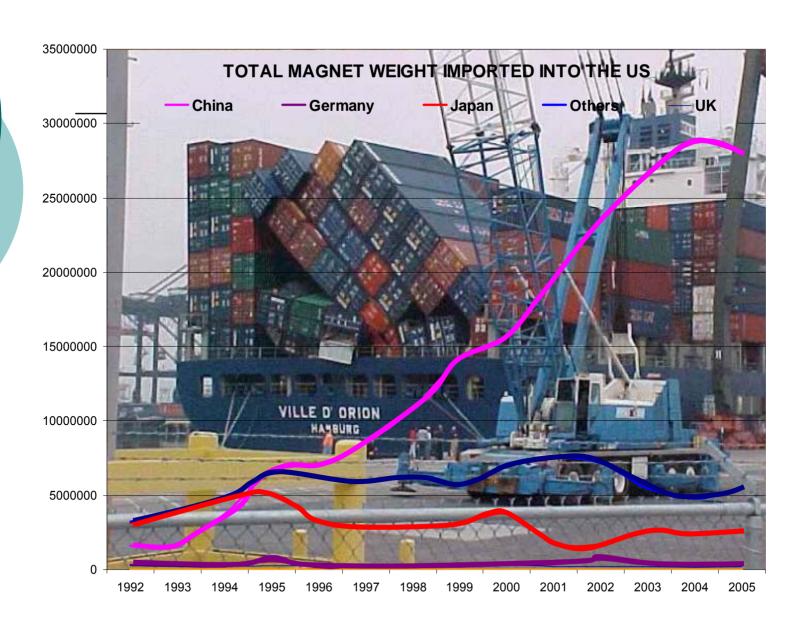

Robert Wolf

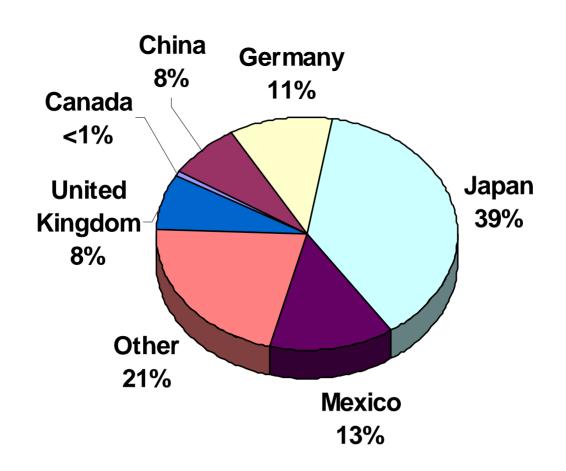
Data Decisions / Alliance LLC

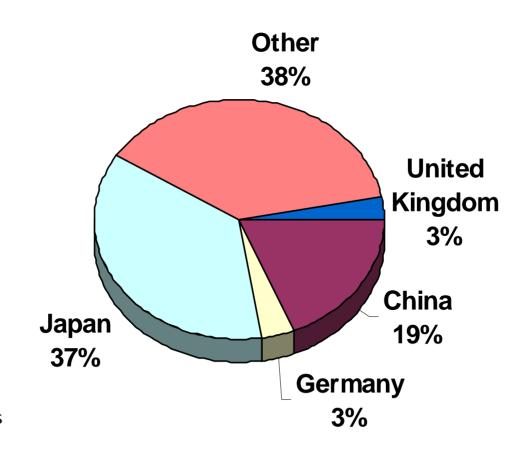
Magnet Markets


- Automotive
- Consumer Electronics
- Appliances
- Medical
- Military / Aerospace
- OfficeAutomation

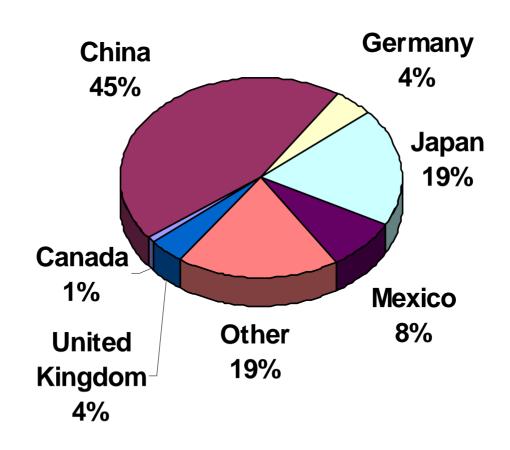



Magnet Applications

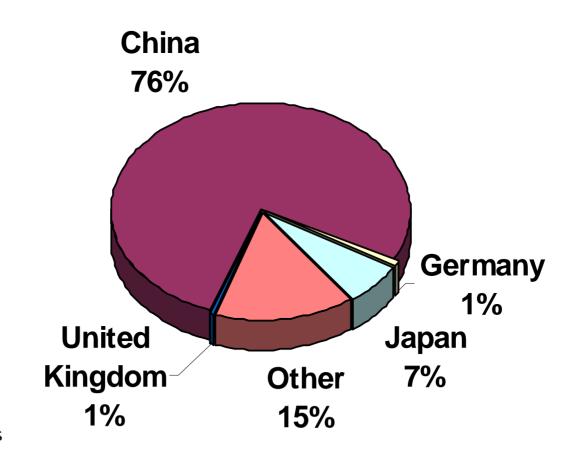

History of Magnetic Materials



1992 Import Magnet Dollars to US

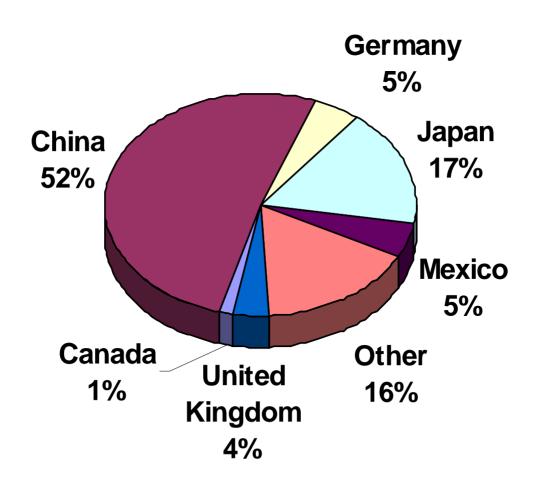


1992 Import Magnet Weight to the US

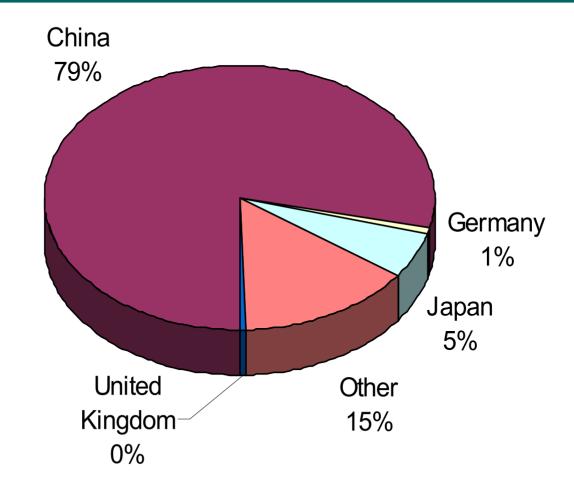


^{*}Mexico and Canada do not report weights

2005 Import Magnet Dollars to the US



2005 Import Magnet Weight to the US



^{*}Mexico and Canada do not report weights

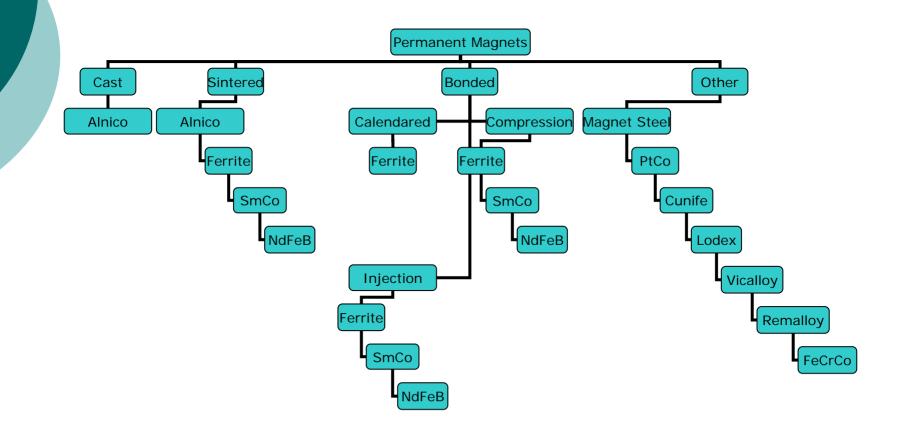
2006 Import Magnet Dollars to the US

2006 Import Magnet Weight to the US

^{*}Mexico and Canada do not report weights

Magnetostatic Equations

General basic design equations


Some Applications Based on Laws

- Coulombs Law
- 1- Compass
- 2- Torque Devices
- 3- Force (Holding/Repulsion) Devices
- Faradays Law
- 1- Alternators
- 2- Generators
- 3- Microphones
- 4- Eddy Current Devices

Some Applications Based on Laws

- Lorentz Force Law
- 1 Loudspeakers
- 2- Motors
- 3- Meters & Instruments
- Lorentz Force on Electrons
- 1- Traveling Wave Tubes
- 2- Magnetic Resonance Imaging
- 3- Spectrometers
- 4- Magnetrons

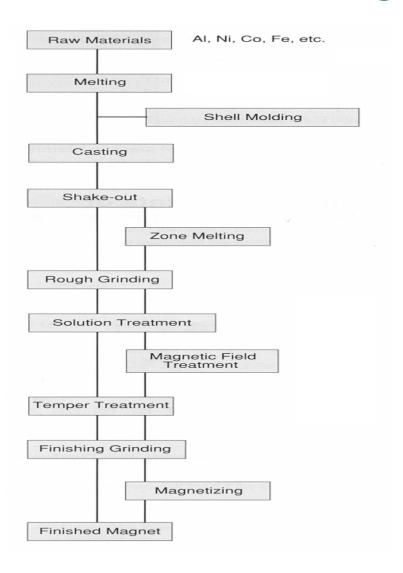
The Magnet Family

Issues When Designing for a Magnet

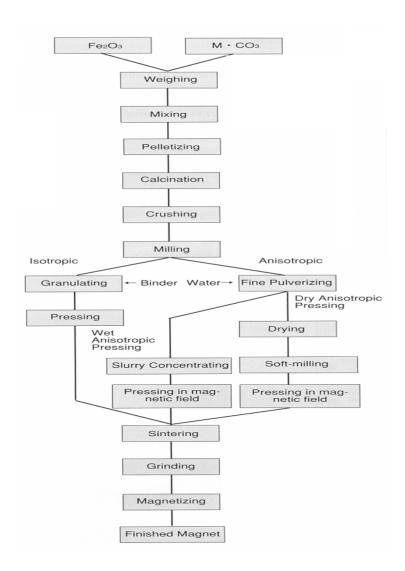
Items to consider
 when specifying a
 permanent magnet in
 an application

The material to be used

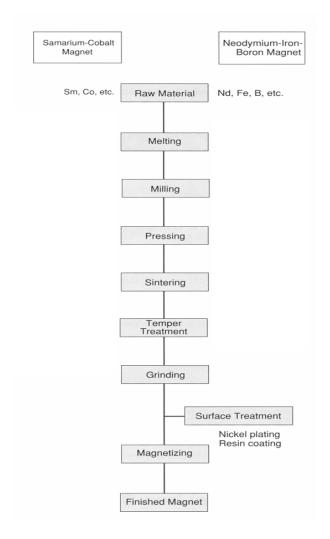
- Alnico
- Ferrite
- Samarium Cobalt
- Neodymium Iron Boron
- Cunife
- Iron Chrome Cobalt


Magnet Characteristics

Materials	Typical Shapes	Pro	Con	
Cast Alnico AlNiCo	Rods, Bars, U shape and other cast type	High Br High working T Good T coef.	Very Low Hc High cost High L/D Requires Cast	
Sintered Alnico AlNiCo	Powder pressed to shape	Complex shapes High Br, T	Requires Tool High cost Low market	
Ceramic/Ferrite SrFe ₂ O ₃	Blocks, Rings, Arcs, Discs	Most flux for \$ High usage Low corrosion	Low Br Requires tool Simple shapes	
Samarium Cobalt SmCo	Blocks, Rings, Discs Arcs, Segments	No corrosion Very low T coef Stable, No tool	Very expensive Simple shapes High Co content	
Neodymium NdFeB	Blocks, Rings, Discs Arcs, Segments	Highest magnetic properties No tooling	Corrodes Low working T Difficult to Mag	
Bonded Grades All materials	Difficult geometries Can be insert molded or over-molded	e insert molded Complex snapes Low magne		


The method of manufacture

- Cast
- Sintered
- Bonded
 - Calendared
 - Injection molded
 - Compression molded
 - Extruded


Alnico Manufacturing


Ceramic Manufacturing

NdFeB & SmCo Manufacturing

Typical Magnet Shapes

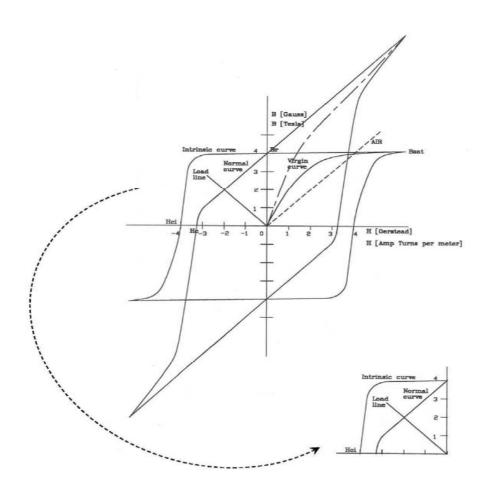
Sintered:

Ring Disc Arc Rod Cylinder Breadloaf Segment

Bonded:

It is up to your imagination

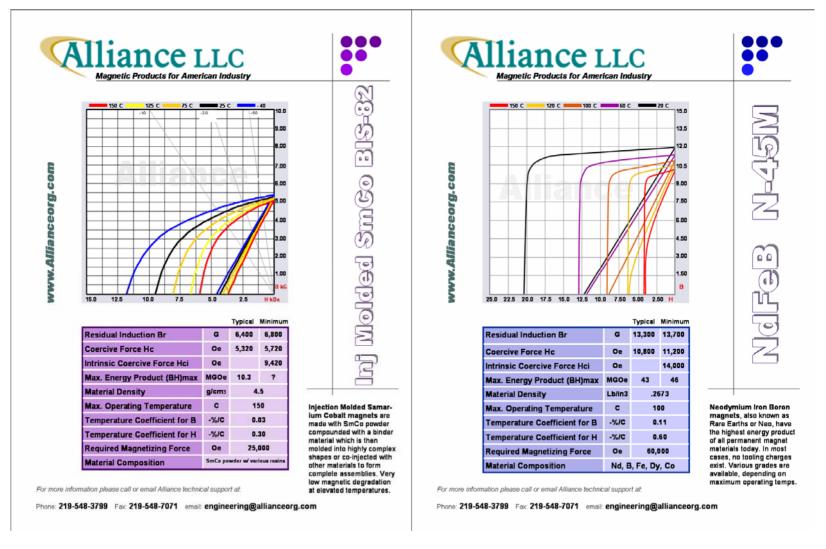
Units


Units of measure for properties, dimensions and tolerances

- British
- Metric
 - o 1 MKS
 - o 2 CGS
 - o 3 SI

Magnetic Properties

- Residual induction B_r
- Coercive force H_c
- Intrinsic coercive force H_{ci}
- Maximum Energy Density (BH)_{max}
- Recoil permeability μ_{rec}
- H_k Value of H_c at 0.9B_r
- Magnetic flux Ф


Hysteresis and Demagnetization Curves

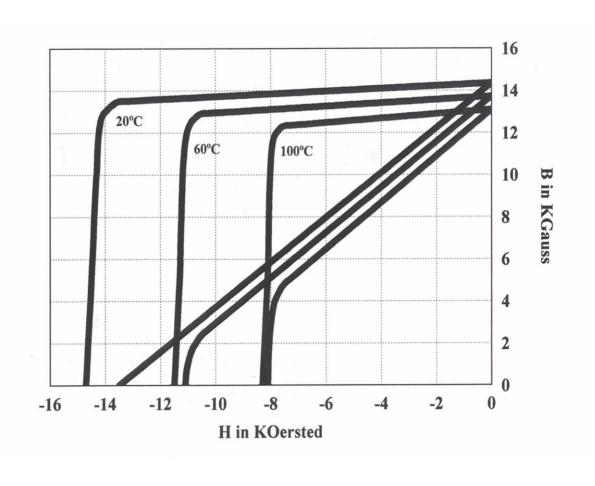
Magnetic Units Conversions

Designation	CGS	SI	Conversion		
Н	Oersted (Oe)	A/m	1A/m = 12.57 x 10 ³ Oe		
В	Gauss (G)	Tesla (T)	1 T = 10,000 G		
ф	Maxwell (M)	Weber (Wb)	1 Wb = 10 ⁸ M		
F	Gilbert	Amp-turn	1 A-t = 1.256 Gilbert		
ВН	MGOe	Joule/m ³	1 J/m ³ = .1257 x 10 ⁶ GOe		

Typical Supplier Data Sheet

Coating and Plating

- Material
- o 1 e-coat
- o 2 Epoxy
- o 3 Nickel
- o 4 Zinc
- o 5 Paralene
- Method of coating
- Coating thickness
- Color or luster


NdFeB Coatings

Properties	Organic: E-Coat	Metallic: Nickel Plating			
Application Type	Immersion Electrodeposition Epoxy/Urethane Water Based	Immersion Barrel Electroplate Electroless			
Pretreat Process	Alkaline Clean Acid Etch/Passivate	Alkaline Clean Electroclean Acid Etch/Activate			
Thickness	15-25 μ (0.6-1.0 mil)	10-50 μ (0.4-2.0 mil)			
Uniformity (Flatness/Edges)	Excellent 20% Edge Loss	Good 50% Edge Gain			
Durability	Good Pencil 2H-4H	Excellent 300-1000 V ₁₀₀			
Temp and Humidity at 85°C and 85% RH	250 Hours	Over 1200 Hours			

Thermal Properties

- Reversible temperature coefficient of residual induction $\alpha_{\rm Br}$
- Reversible temperature coefficient of coercive force $\beta_{\rm Hc}$
- Reversible temperature coefficient of intrinsic coercive force
- Curie temperature
- Maximum service temperature

Temperature Effects

Physical properties

- Density
- Coefficient of thermal expansion
 - 1 parallel to the direction of orientation
 - 2 perpendicular to the direction of orientation
 - Thermal conductivity
 - Electrical resistivity
 - Porosity
 - Modulus of elasticity
 - Compressive strength
 - Tensile strength
 - Flexural strength
 - Hardness

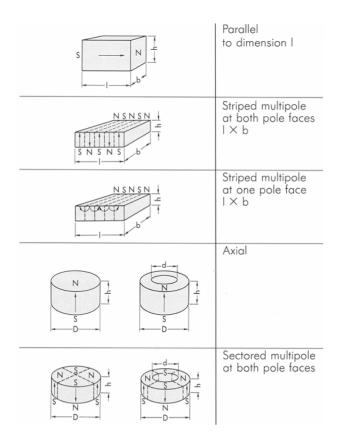
Typical Magnet Properties

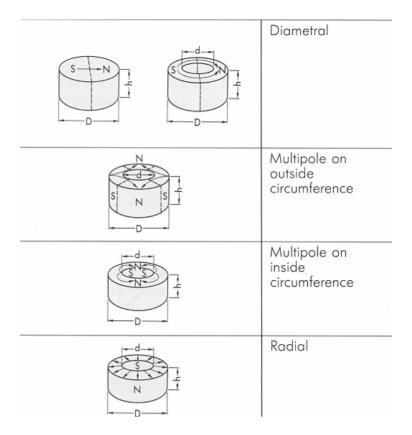
					Sintered	ysical Prope Sintered		_			T	
	Units	Cast Alnico	Sintered Alnico	Sintered Ferrite (Ceramic)	Samarium Cobalt (1:5)	Samarium Cobalt (2:17)	Sintered NdFeB	Bonded (Injection) NdFeB	Bonded (Compression) NdFeB	Bonded (Injection) Ferrite	Bonded (Compression) SmCo	Bonded (Injection) SmCo
Density	g/cm³	7.3	6.9 - 7.3	4.8 – 5.0	8.4	8.4	7.5 – 7.8	4.5 - 5.5	5.6 - 6.0	2.6 - 3.6	6.6-7.2	5.7-6.1
Maximum Operating Temperature	°C	550	550	350	250	350	100 – 200	110	100 180	100 - 200		
Temperature Coefficient B _r (20 – 100 °C)	%/°C	-0.025	-0.025	-0.18	-0.04	-0.03	-0.11	-0.1	-0.11	-0.2	-0.035	-0.035
Temperature Coefficient H _{ci} (20 – 100 °C)	%°C	0.01	0.01	0.4	-0.045	-0.18	-0.72	-0.4	-0.39	0.3		
Coefficient Thermal Expansion ⊥DOM	10 ⁻⁶ /°C			8	13	12	-1	_				
Coefficient Thermal Expansion // DOM	10⁴°°C	11 - 13	10 – 13	9.0 - 9.5	7	10	5	60 - 80	10 - 30	30 – 50	13	
Bending (Flexural) Strength	MPa			55	120	90 – 150	180 - 270	60 - 80		50 - 100		
Compressive Strength	MPa		300 - 400	700	1000	650	850 - 1050		80 - 120		31	
Young's Modulus	GPa		100 - 200	150	110	150	150 - 160		0.7 – 1.0	4.0 - 5.5	29	30
Tensile Strength	MPa		80 - 300	20 - 50			80	25 - 40	37	30 - 80		29
Curie Temperature	°C	960	750	450	720	800	330 - 350	300 - 470	300 - 470	450		
Thermal Conductivity	W/(m•C)		10 - 200	-	10	12	9		2			
Vickers Hardness	H _V	450 - 700	300 - 500	480 - 580	550	640	570 - 580				80-120	90-130
Electrical Resistivity	μΩm	0.47 - 0.53	0.4 - 0.7	>104	0.5 - 0.6	0.75 - 0.85	1.2 – 1.6	40 - 70	10 - 30	>104	>104	>104
Specific Heat	J/Kg°C		350 - 500		370	390	440		400	25 - 200		. 10

DOM = Direction of Magnetization

Robert Wolf

Alliance LLC


11/30/2006


Magnetization

- Direction of magnetization (orientation)
- Magnetized
- Not magnetized

Magnetization Styles

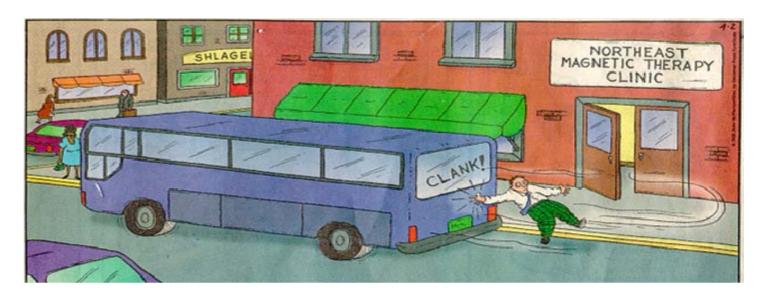
Mechanical Characteristics

- Dimensions (apply before or after coating or plating)
- Parallelism
- Squareness
- Concentricity
- Surface finish
- Chips, cracks, burrs

Test Methods

- Helmholtz coils
- Total flux
- Permeameter
- Functional test fixture
- Drop through (go, no-go) gauges
- Snap gauges

Magnet Environment


- Immersed in a fluid what type
- Sealed enclosure
- Subject to forces acceleration, shock etc
- Subject to radiation what type, level and duration
- Temperature extremes in use
- Demagnetization fields

Special Conditions

- Conform to some older standard like MMPA 0100-XX
- Humidity testing
- Coating cross hatch tests
- Conform to European Union directive 2002/95/EC (RoHS)
- Certificate of Origin
- Material Certifications
- Material Safety Data Sheet (MSDS)

Conclusion

Magnets are everywhere, may as well get to know them

