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REPORT ON 3D MAGNETIC 
FIELD SIMULATIONS 
 

 

In this report, results of 3D magnetic field simulations by FEMLAB and input 
parameters for the final version of the design are reported. Theoretical 
foundations of the simulations, with special emphasis of Nd-Fe-B magnets 
modeling, are briefly presented in the first part of the report. 
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1. Methods of Problems Solving in Magnetostatics   
 

The basic equations in magnetostatic are: 
 

0=⋅∇ B


 and   jHx


=∇ . ( 1 ) 
  
Additional equations relate the magnetic flux density B


 and the field strength 

H


 in the problem subdomains. The relationships depend on the subdomain 
material. In vacuum B


 is parallel to H


and proportional in magnitude.  

HB


0µ= , ( 2 ) 

where 0µ  = 4π10-7 is the vacuum magnetic permeability. In ferromagnetic 

materials B


is the non linear function of H


 that depends on the material, the 
problem geometry, and the material magnetic history.  This dependency on the 
variety of parameters is the main obstacle in solving problems in 
magnetostatic. 
 
Ideal soft ferromagnetic materials are considered to have not histeresis and the 
magnetic flux density B


 is then also parallel to H


 but generally not 

proportional in magnitude. The relationship between B


 and H


 can be usually 
accepted as linear in virgin, soft ferromagnetic materials in weak applied 
magnetic field strength and the proportionality constant is, 

HB


µ= , ( 3 ) 

where µ is the magnetic permeability of material. The permeability  µ is related 
to µ0 through the relative permeability µr, 

rµµµ 0= .  ( 4 ) 

In hard magnetic materials B


 and H


 are generally not parallel because of 
material contribution to the flux density throughout magnetization vector M


 

that resists to changes in magnitude and direction by coercivity mechanism. 
Consequently it is convenient to represent the material contribution separately 
from the free space component, 

( )MHB


+= 0µ ,  ( 5 ) 

where B is in the units of tesla (T) or webers per square meter (Wb/m2), H and 
M are in ampers  per metr (A/m) and µ0 in henry per meter (H/m). The 
equation ( 5 ) for  flux density is written in either of four ways, 
 

iBHB


+= 0µ  or JHB


+= 0µ  ( 6a ) 
 

iBBB


+= 0   or JBB


+= 0  ( 6b ) 
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The material property carried by iB


or J


 is called ‘intrinsic induction”, 
“intrinsic flux density”, or ‘magnetic polarization”. The relationship between 
magnetic flux density, field intensity and magnetization as in ( 6b ) has the 
advantage that all three quantities involved are of the same kind and are 
measured in teslas. In the ideal linear materials M is related to H throughout 
magnetic susceptibility χ, 
 

HM χ=  ( 7 ) 
 
The substitution of ( 7 ) to ( 5 ) gives, 

 
( )HB


χµ += 10 . ( 8 ) 

 
It follows from the comparison of ( 8 ) with ( 3 ) and ( 4 ) that  magnetic 
susceptibility differs of 1 from relative magnetic permeability, 
 

χµ +=1r  ( 9 ) 
 
Magnetic field may be produced either by ferromagnetic materials or by 
electric currents. If like in the Nd-Fe-B magnet for MRI scanner the magnetic 
field is produced only by permanent magnets, the current density in the 
problem volume is equal to 0 and consequently rotation of field intensity in ( 1) 
vanishes. For the problems of that kind we can introduce magnetic scalar 
potential Vm,  
 

mVH −∇=


. ( 10 ) 
 
The relationship ( 7 ) is not valid for premagnetized materials (permanent 
magnets), but still magnetization can be related  to the field intensity by linear 
expression, 
 

HMHMM r


)1(00 −+=+= µχ  , ( 11 ) 

 
where  0M


 is premagnetization of the magnet. Substituting the right side of ( 

11 ) for M


 in ( 5 ) we obtain, 
 

000 MHB r


µµµ +=  ( 12 ) 

 
Combining  ( 12 ) together with the first equation ( 1 ) we can derive an 
equation for  magnetostatic potential, 
 

0)( 000 =−∇⋅∇− MVmr µµµ . ( 13 ) 

 

All simulations described in this report were based on this equation.  
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2. Permanent magnets 
Within magnetic material magnetic field strength H


 is determined by 

divergence of polarization that negative is called magnetic pole or charge 
density ρm by analogy to the electrical charge density, 
 

Jm


⋅∇−=ρ . ( 14 ) 

 
Continuing the analogy, an incremental magnetic charge can be related to 
volume charge distribution,  
 

 dvdq mm ρ=  ( 15 ) 

 
or to the a surface charge distribution, 
 

sdJdqm


⋅= . ( 16 ) 

 
The incremental magnetic charge located  1r

  contributes to the magnetic field 
H


 at a location 2r
  with an increment Hd


 defined by the magnetostatic 

Coulomb law, 
 

3
0

2 4
)(

r
dqr

rHd m

πµ




= , ( 17 ) 

 
where 12 rrr 

−=  
 
H


 is the integral of Eq. ( 17 ) over all magnetic charges. To map the field the 
integration must be repeated for each point of the mapped region. This 
procedure, though conceptually very simple is a formidable problem in practice 
since generally magnetic charge distribution is not known. Consequently 
complex numerical methods are developed to make the procedure useful for 
solving magnetostatic problems.  The problem extremely simplifies if the 
magnetic region has a simple geometry and is homogeneously polarized like an 
ideal cylindrical permanent magnet homogeneously polarized along its 
symmetry axis. The divergence of J


 vanishes then in the magnet volume and 

magnetic field is produced only by the surface charge ( 16 ) homogeneously 
distributed at the pole magnet surfaces. The results of numerical integration of  
( 17 ) postprocessed to the H


 field lines image are presented in Fig. 1.   
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Fig. 1. H field produced by a cylindrical magnet homogeneously magnetized 
parallel to its axis. 
 
The H filed lines distribution can be easy understood if to notice that due to 
vanishing of the volume charge density the ideal permanent magnet can be 
replaced with two opposite churched discs like these shown in Fig. 2.  It should 
be remembered that the concept of magnetic charge is a useful   fiction, since 
magnetic field is sourceless.  It is apparent that the filed outside the disks 
planes must be opposite too that between the planes in such configuration. The 
H-field produced by magnet within its own volume is called demagnetization 
field Hd since it tries to reduce J


. 

Fig. 2. An ideal cylindrical magnet from Fig. 1. can be replaced with two 
opposite charged discs.   

 
B


 field can be derived from H


field by ( 6a ). The result is in Fig. 3 
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Fig. 3. The calculated B field of ideal cylindrical magnet. 

 
Eq. ( 17 ) can be easy integrated for the observation points on the magnet axis1

Fig. 4

.  
Let the magnet of length 2h and radius r has the symmetry center at the center 
of coordinate s and the symmetry axis directed along z axis, as it is shown in  

.     
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J

z = h
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Fig. 4. Homogenously polarized magnet located at the centre of coordinate 
system. 

 
Two equations are the result of integration one of which describes H outside 
the magnet and the second inside it, 
 

( )2cos1cos
02

)( θθ
µ

−=
JzH



 for  hz > , ( 18 a ) 
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( )22cos1cos
02

)( −−= θθ
µ
JzH



 for hz < , ( 18 b) 

   
where 
 

 [ ]22)(
1cos

rhz

hz

++

+
=θ     ( 19a )  

and  
 

 [ ]22)(
2cos

rhz

hz

+−

−
=θ .    ( 19b )   

 
 

The substitution of right side of ( 18 a ) as well ( 18 a )  for H


 in ( 6a ) gives 
the same equation for the flux density both in and outside the magnet,  
 

( )2cos1cos
02

)( θθ
µ

−=
JzB



,   ( 20 ) 

 
in accordance with the general Bz component continuity condition at the 
boundary. Eq. ( 20 ) solved for J


gives, 

  

( )22cos1cos
2
11

)(

−−+
=

θθ

zBJ



 . ( 21 ) 

 
It is convenient to relate both z and h in Eqs. ( 19a )  to the magnet diameter D 

by the replacement  of  z  with   
D
zz =′   and r with the aspect ratio 

D
Lk = , 

where hL 2= is the magnet length and D is the magnet diameter. This 
substitution makes solutions of the magnetostatic equations depend only on the 
relative spatial dimensions of the problem geometry. The cosines equations 
transforms then to:  
 





 ++′

+′
=

4
12)

2
(

2
1cos

kz

kz
θ ,  ( 22 a) 
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 +−′

−′
=

4
12)

2
(

2
2cos

kz

kz
θ .  ( 22b ) 

   

At the magnets surface S+h crossing z′  axis at
2
kz =′ , 





 +

=+

4
121

cos
k

k
h

θ ,  ( 23 a) 

and 
 

0
2

cos =+h
θ . ( 23b ) 

 

At the magnets surface S-h crossing z′  axis at
2
kz −=′ , 

 

0
1

cos =−h
θ   ( 24 a) 

 
and 
 





 +

−=−

4
122

cos
k

k
h

θ  .  ( 24 a) 

 
Let us consider two extreme cases: infinitely long and infinitely thin magnet. In 
the first case ±∞→k  and it follows from  ( 23 ) and ( 24 ) that  

1cos 1 →+hθ , 0cos 2 =+hθ , 0cos 1 =−hθ  and 1cos 2 −→−hθ .  Substitution of 
these limiting values to ( 18a ) gives,   
 

022
lim

µ
JkH

k




=





±

∞→
 ,  ( 25a )  

 
for the outer faces of  surfaces  S+h and S-h  and  substitution to ( 18b) results in 
 

022
lim

µ
JkH

k




−=





±

∞→
,  ( 25b ) 

  
for the inner faces of  surfaces S+h and S-h.  
 
Magnetic flux density at the centre of the pole surface Bsc can be easy 
measured with a Hall probe. J is equal to B divided by the geometric factor in 



 10 

0 1 2 3 4

0,0

0,1

0,2

0,3

0,4

0,5

B s [
T]

L/D

the denominator of Eq. (20b) that is a function of the magnet aspect ratio k. 
Since for ideal magnet Br = J the remanence of the magnet can be determined 
from this simple measurement. When the aspect ratio is very high then, as it 
follows from (25a), Bsc = Br/2.  The comparison of experimental Bsc(k) curve 
with that theoretical is given in Fig. 5. 
 
For the infinitely thin magnets 0→k , 0cos 1 →+hθ , 0cos 2 =+hθ , 0cos 1 =−hθ  
and 0cos 2 →−hθ . Consequently ( 18 b) gives the following limiting values: 
 

0
20

lim =





±

→

kH
k


   ( 26a ) 

 
for the outside faces of  surfaces  S+h and S-h  and 
 

020
lim

µ
JkH

k




=





±

→
   ( 25b ) 

 
for the inside faces of the  surfaces.  
 
 
The plots of field strength calculated from ( 18 a )  for the magnets of   various 
aspect are presented in Fig. 6 and plots of  flux density in Fig. 7. 

Fig. 5. Magnetic flux density at the centre of  pole Nd-Fe-B cylindrical magnet 
versus its aspect ration k =L/D (circles) and the theoretical curve Bsc(k) (solid 
line). 
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Fig. 6. Plots of the Eqs ( 18 a )  for the magnets of  various aspect ratio of its 
length L = 2h to diameter D. 
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Fig. 7. Plots of the Eqs ( 18 a )  for the magnets of  various aspect ratio of its 
length L = 2h to diameter D. 
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The field produced by a magnet can be also calculated as the integral of dipole 
fields at a point 2r

  from each of magnetic moment ( )dvrM 1
  

 

( ) ( ) dv
R
M

R
RRMrHd 








−

⋅
= 352

3
4
1




π
  ( 27 ) 

 

3. Energy considerations 
 
Energy of the magnetic field is, 
 

∫ ⋅= dvHBU


2
1 . ( 28 ) 

 
Consider a domain in empty space consisting of magnetized subdomains. The 
first of  Eqs ( 1 )  allows to write the flux density as the rotation of vector 
potential A


, 

 
.AxB


∇=  ( 29 ) 
 
Application of vector identity  
 

( ) )()( HAHAxHA


×∇⋅−⋅∇=×⋅∇  ( 30 ) 
 
to the integral in ( 28 ) yields: 
 
( )∫ ∫∫ ×⋅∇+×∇⋅=⋅∇ dvHAdvHAdvHAx )()(


. ( 31 ) 

 
The first integral at the right side of ( 31 ) is 0 since 0=×∇ H


. Using the 

Gauss law the second term can be written as the surface integral, 
 

∫ ∫∫ ⋅×=×⋅∇ sdHAdvHA 
)()( . ( 32 )  

 
This integral vanishes at the boundary of infinite large sphere since 

223 ~ and /1~,/1~ rSrArH  and consequently 
 

∫ =⋅ 0dvHB


,  ( 33 ) 
 
when the integral is calculated over all space.  
 
The integral ( 33 ) may be written as a sum of two integrals, one evaluated in 
the volume occupied by the magnet and the second in the remaining empty 
space; hence, 
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∫∫ ⋅−=⋅
magnetspaceempty 

dvHBdvHB


. ( 34 ) 

 
 The left hand side must be positive since    
 

∫∫ =⋅
spaceempty 

2
0

spaceempty 

dvHdvHB µ


   

( 35 ) 
   
The integral ( 35 ) is equal to twice potential energy associated with the field 
produced by the magnet outside its own  volume.  
 
It follows from the Eq. 4. that the potential energy can be associated with the 
magnet itself through the formula: 
 

∫ ⋅−=
magnet2

1 dvHBU


  ( 36 ) 

 
Since the left hand side of ( 34 ) is positive, U must be also positive and 
consequently B


 and H


 tend to be antiparallel within the magnetized domain. 

We came to the same conclusion considering the particular case of magnetized 
domain, the ideal cylindrical magnet. 
 
The average energy density is versus aspect ratio k, calculated by FEMLAB, is 
plotted in Fig. 8. For the aspect ratio of 0.5 energy density reaches the 
maximum that is half of quantity specified in the magnets characteristics as 
(BH)max. 
 
 

4. Nd-Fe-B magnets 
 
Since rare-earth permanent magnets appeared at the market of magnetic 
materials, a model of an ideal magnet has become closer to reality. The ideal 
magnet is a magnet with constant and homogenous high magnetic polarisation 
J in its whole volume, no matter how large demagnetizing field is. Thank of 
this property, called magnetic rigidity  it is now possible to prepare uniformly 
magnetized blocks of any desired shape, even in the form of thin plates 
magnetized perpendicular to the flat surfaces, despite very high internal 
demagnetizing field Hd produced by such plates 
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Fig. 8.  Average energy density in the cylindrical magnet versus aspect ratio k 
= L/D. 

In the previous generations of metallic permanent magnets external field 
usually changes the polarization in a nonlinear and irreversible way, as it is 
shown in  

Fig. 9. The major histeresis loop is symmetric and is reproduced in each cycle 
of the magnetic field strength H


changes, centered at H


= 0, provided the 

amplitude of the cycle is sufficient to achieve saturation sJ


. If saturation is not 
achieved in the cycle then the curve J(H) takes form of minor loop totally 
contained within the major loop. For each of the coordinate system J,H and 
B,H there is a pair of characteristic points where the major  histeresis loop cuts 
the axis: polarization remanence Jr and polarization coercivity JHc ; induction 
remanence Br and induction coercivity BHc. Js is an intrinsic property of the 
ferromagnetic phase but both  remanences Jr, Br  and coercivities  JHc, BHc  
depend in a complex way on the particle size, shape and metallurgical 
microstructure of the magnet. The B:H loop of Fig. 9. is related to the J:H loop 
by ( 6a ). The ideal permanent magnets have a square hysteresis loop, |J|=Jr for 
|H|<JHc, like this plotted in Fig. 10, that implies Jr to be equal to Js.  The 
induction coercivity in the ideal magnets with square histeresis loop and high 
polarization coercivity µ0JHc > Jr, fulfill the condition: µ0BHc = Jr. Since Hd is 
less than J and opposite in direction, coordinates J,Hd or B,Hd set points on the 
second quadrant of  histeresis loop known as the magnet operating points. This 
quadrant is featured on manufacturers’ data sheets, like this shown in Fig. 11. 
The maximum potential energy is obtained at the point on the loop where the 
product -B⋅H reaches maximum and for ideal magnet, 
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( )
4

0
max

cr HBHB µ
=⋅ . ( 37 ) 

Br in ( 37 ) can be replaced with Jr or Js. 
 
Since histeresis loop of real magnet is always included in that of ideal magnet 
general condition for maximum energy product is: 

( )
4

0
max

cr HBHB µ
≤⋅ . ( 38 ) 

Demagnetization curves of the main four types of magnets: Nd-Fe-B, Sm-Co, 
Alnico and hard ferrite are shown in Fig. 12 
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Fig. 9. The histeresis loop of magnet with the coercivity too low to keep 
polarization rigid. 
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Fig. 10. The histeresis loops of ideal permanent magnet with rigid polarization 
(solid line) and usual magnet (dashed line). 
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Fig. 12. Demagnetization curves for different types of magnet. 
 
 

Fig. 11. Example of manufacturers’ data sheet with the second quadrant of the 
histeresis loop. 
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