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Abstract

In the proton-boron colliding beam fusion reactor, the power which must

be supplied to maintain an optimal colliding beam configuration is estimated

to be at least 5.1 times greater than the fusion power. This implies that

effective power conversion efficiencies to electrical power in excess of 84% will

be required. Furthermore, if the transverse collisional spread of the proton

beam is to be limited by electron drag, the boron density is constrained to

have magnitudes well below the optimal value at which the fusion power is

maximised.
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I. INTRODUCTION

Rostoker, Binderbauer, and Monkhorst [1] (RBM) have proposed a conceptual fusion

reactor design which combines the environmentally attractive neutron-free property of the

proton-boron (p-B) fusion reaction with the compact magnetic field geometry of the Field

Reversed Configuration (FRC). The reaction products are energetic charged alpha particles

which can be confined by the magnetic field. Since no neutrons are produced in the primary

reaction, radiative activation of the containing walls by particle bombardment is not a

major concern. This design concept offers the vision of a small fusion power source with

the possibility for high-efficiency direct energy conversion into electricity and with minimal

radiation shielding requirements.

In the FRC, beams of large orbit fuel ions propagate across the magnetic field, with

enough electrons present for the system to be quasi-neutral. The energetic fuel ions follow

confined orbits in an annular field-reversed layer with annular width small compared to the

annular radius, and they carry a significant fraction of the current required for magnetic

field reversal.

Two modes of operation are envisaged:

(1) Fuel ions move with essentially the same cross-field velocities and with effective

perpendicular temperatures in “betatron” motion of ∼ 235 KeV where the fusion cross-

section for a thermal plasma is close to its maximum value. The beam energies of protons

and borons are of the order of 300 KeV and 3.3 MeV respectively.

(2) Cold beams of fuel ions move at different cross-field velocities with relative energy

of collision at 600 KeV. At this “resonant” energy, the fusion cross-section is a maximum

which is approximately three times larger than the fusion cross-section for a thermal plasma

of protons and borons. The perpendicular temperature of the beams must be substantially

less than 140 KeV while the sum of the beam energies of the fuel ions need not be larger

than 1 MeV.

The proposed fusion reactor concept presents formidable challenges when compared to
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more conventional design concepts such as the Tokamak. The interaction energies of the

fuel ions are higher: ∼ 235 KeV in the case of mode 1, and ∼ 600 KeV in the case of mode

2. The energy gain per fusion reaction is smaller: the energy output per fusion reaction

is ∼ 8.7 MeV (H + B11 = 3 He4 + 8.68 MeV), and thus in mode 1 the energy gain factor

is ∼ 2.4 if the energy invested in the beam energy of the fuel ions is ∼ 3.6 MeV, while in

mode 2 the energy gain factor can be no more than ∼ 14.5 for a resonant collisional energy

of interaction of ∼ 600 KeV. Furthermore, in mode 2 operation, an optimal colliding beam

configuration must be maintained in the face of ion collisional effects: collisional heating

and expansion of the beam ions, and deviations from the resonant interaction energy due to

collisional drag.

In our review and evaluation of the physics issues involved in (p-B) fusion reactors, we

will focus on mode 2 operation since the reactor design concept based on colliding beams of

protons and borons has been the subject of considerable controversy.

Lampe and Manheimer [2] (L and M) have emphasized that the collisional rate νpB for

(p-B) momentum exchange scattering is 37 times faster than the fusion reaction rate νF ,

and that the collisional (p-B) drag rate although slower than νpB by a factor of twice the

mass ratio mp/mB is still faster than νF by a factor 7. They discussed a variety of collisional

processes which would destroy the colliding beam equilibrium on time scales much faster

than the fusion reaction time. They considered an explicit equation for the time evolution

of the transverse spread of the proton beam, based on the Fokker-Planck kinetic equation,

and their calculations clearly showed the heating of the proton beam due to p-B collisions

in the limit νpB > νpe, where νpe is the collisional rate for proton-electron (p-e) momentum

transfer. They concluded that the required colliding beam equilibrium “cannot be sustained

for long enough to provide fusion gain.”

RBM responded that the criticisms of L and M are relevant “if one considers only colli-

sions and omits the rest of the physics of magnetic confinement which L and M proceed to

do in the balance of their report.” As stated by RBM, the problem with the calculation of L

and M is that: “there is no current, no magnetic field, and no inductance, and they consider
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only an initial value problem”; “not a steady-state problem”; “there are no external sources

for the protons, and the sink due to burning is also not considered.” They suggested that it

may be possible to maintain the fuel ion velocities by the injection of pulsed beams.

The comments of L and M underline the difficult problem posed by particle collisions.

The fusion reactivity decreases if the temperatures of the fuel ion beams acquire a thermal

spread and/or if the interaction energy deviates from the resonant energy. Efficient oper-

ation therefore requires that optimal conditions be maintained for times long enough for a

significant number of fusion reactions to occur. The technological issues involved in form-

ing and maintaining an appropriate colliding beam configuration are indeed very serious.

Nevertheless, the ”rest of the physics,” alluded to by RBM, does in principle allow for the

possibility of quasi-stationary colliding beam configurations with lifetimes longer than col-

lisional times, and it may be somewhat premature for L and M to declare, without further

investigations, that “the concept is fundamentally flawed.”

The ion beam velocities can be maintained constant by counterbalancing the particle drag

forces with the forces due to an inductive electric field and/or by transferring momentum

to the ion beams by some appropriate mechanism (e.g. injecting additional beams). The

control of the transverse velocity spread (“temperature”) of the proton beam presents a

greater challenge. However, the rate of increase of the proton ”temperature” is proportional

to the boron density, and at sufficiently low boron density, the proton ”temperature” can

be limited by electron drag when νpB < νpe.

Given that quasi-stationary colliding beam configurations are in principle not precluded,

the essential issue becomes that of determining whether or not there are beam configurations

which could provide the basis for a viable fusion reactor.

RBM have analyzed a set of multifluid equations obtained by taking moments of the

Fokker-Planck equation. The particle distribution functions were taken to be drifted Maxwell

distributions where the temperature and mean velocity may be time dependent. These equa-

tions were used to obtain design parameters for fusion reactors based on mode 1 operation.

These equations are however inadequate for the investigation of reactor designs based on
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mode 2 operation since Maxwellian distributions are not solutions of the lowest order Fokker-

Planck kinetic equations for colliding ion beam configurations. The merits of fusion reactor

designs based on mode 2 operation are still being evaluated by RBM.

In this report, we limit the scope of our discussion to two topics which have a direct

bearing on the the design of colliding beam fusion reactors:

(1) We consider two quasi-stationary colliding beam scenarios subject to the constraint

that the relative (p-B) energy EpB is equal to the resonant energy of 600 KeV, one involving

an inductive electric field and the other non-inductive “external” forces acting on the fuel

ions. From momentum balance we estimate the minimum power which must be supplied to

sustain “steady state.” We find that the power required is significantly smaller when non-

inductive “external” forces are used rather than inductive electric fields. Nevertheless, even

with non-inductive “external” forces, the required power is still quite large when compared

to the fusion power; it is estimated that the required power must be at least > 5 times the

fusion power. In addition, it is a major problem in itself to sustain highly efficient “external”

forces acting on the ion beams, and we have not addressed this difficulty.

(2) We explore the conditions required for electron drag to be effective in limiting the

transverse velocity spread of the proton beam. Electron drag is effective if νpB/νpe < 1. At

“steady state,” the transverse “temperature” T⊥ of the proton beam is approximately given

by T⊥/EpB ∼ νpB/νpe. Since T⊥/EpB is required to be small, we must have νpB/νpe < 1, an

inequality which can be satisfied if the electron temperature and/or the boron to electron

density ratio nB/ne are sufficiently small. However, the fusion power is proportional to the

product of the proton and boron densities npnB, and with quasi neutrality ne = np + ZnB

(where Z = 5), the fusion power is a maximum when nB/ne = 0.1; hence it would be

undesirable to have the density ratio nB/ne of borons to electrons much below 10%.

This report is organized into 3 sections. In Sec. II, we describe two quasi-stationary

colliding beam configurations, and we estimate the minimum power required to sustain

these quasi-stationary states. In Sec. III, we discuss the effect of electron drag in limiting

the increase in the transverse velocity spread induced by proton-boron Coulomb collisions.
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In Sec. IV, we state our conclusions.

II. POWER REQUIRED TO MAINTAIN QUASI-STATIONARY COLLIDING

BEAM CONFIGURATION

A. Inductive Electric Field

An inductive electric field accelerating electrons and ions in opposite directions can be

used to balance the collisional drag forces which act to decrease the relative velocity between

the particle species.

Let us consider a simplified model of a colliding beam configuration in which beams of

electrons, protons and borons are in motion relative to each other with velocities V e = Veẑ,

V p = Vpẑ and V B = VBẑ respectively. The direction of beam propagation is taken to be

parallel to the z-axis (ẑ is the unit vector in the z-direction).

The beam configuration is assumed to be in steady state on the collisional time scale.

The components of the momentum equation in the z-direction with inclusion of an inductive

electric field E = Eẑ are

eE = mpνpe(Vp − Ve) + mBνBp(Vp − VB)
nB
np

(1)

ZeE = mpZ
2νpe(VB − Ve) + mBνBp(VB − Vp) (2)

−eE = mpνpe(Ve − Vp)
np
ne

+ mpZ
2νpe(Ve − VB)

nB
ne

(3)

where Ze = 5e is the boron charge, ma and na are the mass and density of species “a”

(a=e,p,B), νpe and νpB are the proton-electron (p-e) and proton-boron (p-B) Coulomb col-

lision frequencies respectively, and manaνab = mbnbνba.

Note that these equations are consistent with quasineutrality ne = np + ZnB. From

Eq. (1), Eq. (3), and quasi-neutrality, we obtain the following equation relating Ve, Vp, VB:

VB − Ve =
(

1 + S

Z + S

)
(Vp − Ve)

where the parameter S is defined by:
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S =
mB

mp

ne
Znp

νBp
νpe

(4)

and is proportional to the ratio of collision frequencies νBp/νpe. Substituting in Eq. (4) the

collision frequencies given by (see reference [2]):

νpe = 2.6× 10−14ne (10 KeV/Te)
3/2 sec−1

νpB = 1.09× 10−12nB (100 KeV/EpB)3/2 sec−1

νBp = 9.9× 10−14np (100 KeV/EpB)3/2 sec−1

where Te (in kev) is the electron temperature and EpB is defined to be

EpB =
1

2
mp (Vp − VB)2 = 600 KeV

we obtain:

S = 120.0
mB

Zmp

(
Te
EpB

)3/2

.

Expressing the relative streaming velocities of ions to electrons {(Vp − Ve), (Vb − Ve)} in

terms of the relative streaming velocity of the ions (Vp − VB), we obtain:

Vp − Ve =
(
Z + S

Z − 1

)
(Vp − VB)

VB − Ve =
(

1 + S

Z − 1

)
(Vp − VB).

In order to sustain the steady state, the inductive electric field acting on ions and elec-

trons must supply energy at a rate sufficient to replace the streaming energy transformed

into thermal energy by particle collisions. This power constitutes circulating power in a

reactor that is dissipated into thermal energy.

The magnitude of the plasma current J is

J = e (npVp + ZnBVB − neVe) = ene

{(
Z + S

Z − 1

)
− ZnB

ne

}
(Vp − VB)

and the power PD dissipated by collisions is therefore given by:

PD = EJ

=
2mBnBνBp

mp

[
(Z + S)2

(Z − 1)2

ne
nBZS

+
(1 + S)2

(Z − 1)2

Zne
Snp

+ 1

]
EpB. (5)
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The first and second terms on the right hand side of Eq. (5) are due to electron-ion

collisions, while the third term is due to proton-boron collisions.

The fusion power Pf due to (p-B) collisions is :

Pf = npnB 〈σv〉 Ef (6)

where 〈σv〉 is the fusion reactivity and Ef = 8.68 MeV is the fusion energy released by a

fusion reaction. For polarized fuel ions with energy of collision equal to the “resonant”

energy EpB = 600 KeV, the fusion reaction rate is (see reference [2]):

〈σv〉 = 2.0× 10−15 cm3 sec−1 .

The ratio of the power dissipated by collisions to the fusion power is therefore

PD
Pf

= 5.1

{
ne

nBZS

(Z + S)2

(Z − 1)2
+
neZ

npS

(1 + S)2

(Z − 1)2
+ 1

}
. (7)

For a given value of nB/ne, the power ratio PD/Pf has a minimum at S =

Z{1−(Z−1)nB/ne}1/2
{1+Z(Z−1)nB/ne}1/2 , while for a given value of S the minimum occurs at nB/ne =

Z+S
Z(Z1/2+S)(Z1/2+1)

.

The power ratio PD/Pf has an absolute minimum at nB/ne = 1/(2Z) and S = Z1/2, and

its minimum value (PD/Pf )min is :(
PD
Pf

)
min

= 5.1

{
1 +

4Z1/2

(Z1/2 − 1)2

}
.

For Z = 5 (borons), this ratio is equal to ∼ 35.

In Fig. 1 we plot PD/Pf as a function of the electron temperature Te for nB/ne =

0.05, 0.1, 0.15. It has an absolute minimum of 35 for nB/ne = 0.1 at Te ∼ 25 KeV. The

required circulating power, much of which is dissipated into thermal energy, will therefore

be a large multiple of the fusion power.

The power available for conversion into electrical power is Pf + PD. If the effective

conversion efficiency is η, net electrical power is available only if η(Pf + PD) is greater than

the power PD required to maintain steady state, η(Pf + PD) > PD. For PD/Pf = 35, the
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conversion efficiency must satisfy the inequality η > 35/36 = 0.97. Thus, a steady state

established by inductive electric fields is not attractive as the basis for a fusion reactor

producing net electrical power.

B. Non-inductive External Forces

In an alternative “steady state,” the ion streaming velocities can be held constant by

“external” forces, while the electrons have an intermediate mean velocity determined by

equality of the opposite proton and boron drag forces on the electrons. It is here assumed

that there is some appropriate and efficient means of transferring momentum to the proton

and boron beams to make up the losses due to collisional drag.

Let Fp and FB represent the equivalent “external” forces which maintain the streaming

velocities of the ions. The modified momentum equations are:

Fp = mpνpe(Vp − Ve) + mBνBp(Vp − VB)
nB
np

(8)

FB = mpZ
2νpe(VB − Ve) + mBνBp(VB − Vp) (9)

0 = mpνpe(Ve − Vp)
np
ne

+ mpZ
2νpe(Ve − VB)

nB
ne

. (10)

The relative streaming velocity of the ions to electrons are now related to Vp − VB by:

Vp − Ve =
Z2nB

np + Z2nB
(Vp − VB)

Ve − VB =
np

np + Z2nB
(Vp − VB) .

The magnitude of the plasma current J is

J = enp (Vp − Ve) + ZenB (VB − Ve) =
enpnBZ(Z − 1)

np + Z2nB
(Vp − VB) .

The dissipated power, equal to the rate at which work is done by the forces Fp and FB,

is therefore given by:

PD = npVpFp + nBVBFB
2mBnBνBp

mp

[
1 +

Zne
S(np + Z2nB)

]
Er
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and the ratio of dissipated power to fusion power is

PD
Pf

= 5.1

[
1 +

Zne
S(ne + Z(Z − 1)nB)

]
. (11)

In Fig. 2 we plot PD/Pf as a function of the electron temperature Te for nB/ne =

0.01, 0.1, 0.15.

The dissipated power is lower than that for a steady state with inductive electric fields.

For density ratio nB/ne = 0.1 and electron temperature Te = 25 KeV, the dissipated power

is a factor of ∼ 9 times the fusion power. The power ratio PD/Pf decreases with increasing

electron temperature but increases with decreasing density ratio nB/ne.

In the limit S > Z
1+Z(Z−1)nB/ne

(or Te > 42.6/(1 + 20nB/ne)
2/3 KeV), the dissipated

power tends to its minimum value and it is then due essentially to proton-boron collisions.

Nevertheless, it is at least ∼ 5 times the fusion power (see also reference [2]), corresponding

to a required effective efficiency of conversion to electrical power of η = 5/6 = 0.83.

In Appendix A we establish that the inclusion of an additional inductive electric field

always results in an increase in the dissipated power. It is preferable therefore to maintain

the ion velocities only by non-inductive “external” forces in order to reduce the dissipated

power to the lowest level possible.

III. LIMITATION OF TRANSVERSE VELOCITY SPREAD OF PROTON BEAM

BY ELECTRON DRAG

In addition to maintaining the energy of collision of the fuel ion beams close to the

resonant energy, it is essential to control the increase in the transverse velocity spread of the

ion beams. Otherwise, the annular width of the field-reversed layer will increase until the

particle trajectories intersect the nearby walls and/or particles are lost axially through the

x-points at the ends of the FRC.

In this section, we investigate the effect of electron drag on the transverse velocity spread

of the proton beam induced by (p-B) Coulomb collisions. We first consider time dependent
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solutions of the Fokker-Planck equation (with and without an inductive electric field) for

the distribution function of a proton beam which is injected into a plasma of boron ions

and electrons. We establish that the velocity spread of the proton beam remains small if

the (p-B) collision frequency is less than the (p-e) collision frequency, νpB/νpe < 1. We then

derive a beam envelope equation to describe the time dependence of the mean square width

of the proton beam by taking appropriate moments of the Fokker-Planck equation. We

confirm that essentially the same condition is required for small transverse velocity spread

of the proton beam when a field reversed magnetic field and a transverse electrostatic field

are included in the analysis.

We describe the time evolution of the proton beam distribution function Fp in the boron

frame of reference where the boron ions are stationary. The boron ions have zero tempera-

ture while the electron distribution function is approximated by a drifting Maxwellian with

temperature Te and mean velocity V e = Veẑ which is taken to be parallel to the z-axis.

The time evolution of Fp(v, t) is determined by the simplified Fokker-Planck equation (see

Appendix B):

∂Fp
∂t

+
e

mp

E · ∂Fp
∂v

= Cpe(Fp, Fe) + CpB(Fp, FB) + S(v, t) (12)

where the collision operators Cpe and CpB are approximated by :

Cpe = νpe
∂

∂vα
Fp(vα − V eα ))

CpB = νpB v
3
0

{
mp

(mp + mB)

∂

∂vα
Fp

vα
v3

+
mB

(mp + mB)

1

2

∂

∂vα

1

v
(δαβ −

vαvβ
v2

)
∂Fp
∂vβ

}
.

We include a source term S(v, t) to model the injection of the proton beam in the z-

direction and an inductive electric field E = Eẑ to balance the collisional drag forces on

the protons. We neglect proton-proton collisions. The subscripts α, β of vα, vβ denote the

cartesian components x, y, z of the velocity vector v. A sum over repeated indices α, β is

implied. v0 is the characteristic speed of the proton beam.

We introduce spherical coordinates v, θ, φ where vx = v sin θ cosφ, vy =

v sin θ sinφ, vz = v cos θ, and we assume cylindrical symmetry about the z-axis. The
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Fokker-Planck equation for Fp can then be expressed in the form :

∂Fp
∂τ

=
1

u2

∂

∂u
u3Fp −

(
eE

mpνpev0

+
Ve
v0

) {
1

u2

∂

∂u
u2 cos θFp −

1

u sin θ

∂

∂θ
sin2 θFp

}
(13)

+
νpB

νpe

mB

(mp + mB)

{
mp

mB

1

u2

∂Fp
∂u

+
1

2u3 sin θ

∂

∂θ
sin θ

∂Fp
∂θ

}
+ S(u, θ, τ) (14)

where τ = νpet, u = v/v0.

We consider the injected proton beam to be monoenergetic and sharply peaked in the

direction of propagation, and we model the source term S by :

S = S0Θ(τ)δ(u− ui)2a0 exp

(
−a0 sin2 θ

2

)

where the injection speed is given by ui, the parameter a0
>∼ 1 determines the initial angular

spread, and S is finite only for values of θ <∼ 1. Θ(τ) is a step function of the time variable

τ .

We are interested in solutions for which the proton distribution function remains sharply

peaked in the direction of propagation, and we simplify the Fokker-Planck equation further

by making the substitution sin θ → θ, cos θ → 1− θ2/2.

A. Zero Inductive Electric Field E = 0 and V e = 0

In the case where there is no inductive electric field (E = 0) and the electron mean

velocity V e = 0, we have:

∂Fp
∂τ

=
1

u2

∂

∂u
q(u)Fp +

A

2u3θ

∂

∂θ
θ
∂Fp
∂θ

+ S0Θ(τ)δ(u− ui)2a0 exp(−a0θ
2/2) (15)

q(u) = u3 + εmA

εm =
mp

mB

A =
νpB

νpe

1

(1 + εm)
.

The solution of this equation is [4] :

Fp(u, τ) = F p(u, τ)2a(u) exp{−a(u)θ2/2} (16)
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where

F p(u, τ) =
S0u

2
i

u3 + εmA
{Θ(u− u(ui, τ))−Θ(u− ui)}

a(u) =
a0[

1 + a0
3εm

log {(1 + εmA/u3) / (1 + εmA/u3
i )}

]
and u(ui, τ) is the solution of the characteristic equation du

dτ
= − q(u)

u2 with initial conditions

u = ui at τ = 0:

u(ui, τ) =
{(
u3
i + εmA

)
exp(−3τ)− εmA

}1/3
> 0.

Note that the proton speed is reduced significantly below its initial value u < ui on a time

scale of the order of the (p-e) collision time ∼ 1/νpe. The angular spread is determined by

the magnitude of a(u). In the limit a0 →∞ and u3
i > u3 > εmA,

a(u) =
3u3

A

1

(1− u3/u3
i )
.

Hence, for A < 1 and u ∼ 1, a(u) > 1 and the angular spread of the proton beam remains

small.

On the other hand, for A > 1 and u ∼ 1, a(u) < 1 and the above solution is no longer

valid. L and M investigated this limit and observed growth in the transverse velocity spread

of the proton beam [1].

B. Electron Drag Balanced by Inductive Electric Field E �= 0 and V e �= 0

In the case where an inductive field E �= 0 (or an equivalent “external” force) is present

to balance the drag forces on the protons, and V e �= 0, we have

∂Fp
∂τ

=
1

u2

∂

∂u

(
q(u) +

u2θ2

2

)
Fp +

1

uθ

∂

∂θ
θ2Fp +

A

2u3θ

∂

∂θ
θ
∂Fp
∂θ

(17)

+S0Θ(τ)δ(u− ui)2a0 exp(−a0θ
2/2) (18)

q(u) = u3 − u2

where τ = νpet, u = v/v0, and v0 is now defined to be the proton beam speed at which the

electron drag is balanced by the inductive electric field eE = mpνpe(v0 − V e). We assume

A < 1 and we ignore the boron drag εmA <∼ 1.
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For values of u such that q(u) > (uθ)2/2, the solution for Fp(u, τ) is:

Fp(u, τ) = F p(u, τ)2a(u) exp{−a(u)θ2/2} (19)

where

F p(u, τ) =
S0u

2
i

q(u)
{Θ(u− u(ui, τ))−Θ(u− ui)}

a(u) =
a0h2(u)

(1 + a0Ah1(u))

h1(u) =
∫ ui

u
du

h2(u)

uq(u)

h2(u) = exp

(
2

∫ ui

u
du

u

q(u)

)

and u(ui, τ) is the solution of the characteristic equation du
dτ

= − q(u)
u2 with initial conditions

u = ui at τ = 0:

u(ui, τ) = 1 + (ui − 1) exp(−τ).

The proton velocity u decreases from ui and approaches u→ 1.

In the limit a0 →∞ and 1 > (u− 1) > θ2/2, we have a(u) ∼ 2/A > 1, and the angular

spread remains small.

For (u − 1) ∼ θ2/2, the above solution is no longer valid. The Fokker-Planck equation

for a proton distribution sharply peaked about u = 1 can then be approximated by

∂Fp
∂τ

=
∂

∂ξ

ξ +
θ

2

2

Fp +
1

θ

∂

∂θ
θ

2
Fp +

1

θ

∂

∂θ
θ
∂Fp

∂θ
} (20)

where we have introduced new dimensionless variables, θ = (2/A)1/2θ and ξ defined by

u− 1 = (A/2)ξ.

We do not have an analytic solution of this equation. However, the averaged distribution

function F̂p =
∫
dξFp, is determined by:

∂F̂p
∂τ

=
1

θ

∂

∂θ
θ

2
F̂p +

1

θ

∂

∂θ
θ
∂F̂p

∂θ

}

and the time independent solution of F̂p is:

F̂p → exp(−θ2
/2) = exp(−θ2/A).
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The transverse velocity spread v2
⊥ of the proton beam is therefore:

v2
⊥/v

2
0 ∼

1

A
=

νpB

νpe
.

A similar result is also obtained from a consideration of the beam-envelope equation de-

rived in the next section with the inclusion of a field-reversed magnetic field and a transverse

electrostatic field.

C. Beam-envelope Equation

By taking appropriate moments of the Fokker-Planck equation, we derive a set of coupled

equations to describe the mean square width of the proton beam [5].

Let the mean square width of the proton beam X2 be

X2 =
〈
x2

〉
=

∫
d3r

∫
d3vFx2∫

d3r
∫
d3vF

. (21)

Then, from the Fokker-Planck equation (see Appendix B), we have:

d

dt

〈
x2

2

〉
− 〈xvx〉 = 0 (22)

d

dt
〈xvx〉 −

〈
v2
x

〉
−

〈
e

m

(
xEx −

xvzB

c

)〉
= 〈xvxCpe〉+ 〈xvxCpB〉 (23)

d

dt

〈
v2
x

〉
−

〈
2e

m

(
vxEx −

vxvzB

c

)〉
=

〈
v2
xCpe

〉
+

〈
v2
xCpB

〉
(24)

d

dt

〈
v2
y

〉
=

〈
v2
yCpe

〉
+

〈
v2
yCpB.+

〉
(25)

We now make the ansatz that the x-component of the particle velocity vx be expressed

in the form

vx =
x

X

dX

dt
+ δvx (26)

and we assume that Ex and By vary linearly with x:

Ex = E ′xx By = B′x

Then from Eq (22),

〈xδvx〉 = 0
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and we have

〈xvx〉 = X
dX

dt〈
v2
x

〉
=

(
dX

dt

)2

+
〈
(δvx)

2
〉

〈
e

m

(
xEx −

xvzBy
c

)〉
= −Ω2

βX
2

〈
e

m

(
vxEx −

vxvzBy
c

)〉
= −Ω2

βX
dX

dt

where the betatron frequency Ωβ is

Ω2
β =

eB′

mpc
Vp −

e

mp

E ′x (27)

and the mean velocity of the proton beam is V p = Vpẑ.

From Eq (23) and Eq (24), we have

X
d2X

dt2
+ Ω2

βX
2 =

〈
(δvx)

2
〉

+ 〈xvxCpe〉+ 〈xvxCpB〉

=
〈
(δvx)

2
〉
− (νpe + νpB)X

dX

dt
+ · · · (28)

d

dt
X2

〈
(δvx)

2
〉

= X2
〈
v2
xCpe

〉
+ X2

〈
v2
xCpB

〉
− 2 〈xvxCpe〉X

dX

dt
− 2 〈xvxCpB〉X

dX

dt

= −2νpeX
2

〈
(δvx)

2
〉

+ νpBX
2 mB

mp + mB

V 2
p + · · · (29)

d

dt

〈
(vy)

2
〉

= −2νpe
〈
(vy)

2
〉

+ νpBX
2 mB

mp + mB

V 2
p + · · · (30)

where we have assumed that V 2
p > {〈(δvx)2〉 , 〈(vy)2〉} > Te/mp.

The square root of the mean square equilibrium width X, neglecting collisions, is:

X =
〈(δvx)2〉1/2

Ωβ
.

In the presence of collisions, the proton beam expands due to p-B collisions. However, a

stationary state can be achieved if the heating of the proton beam due to p-B collisions is

balanced by cooling due to electron drag. At steady state, we have:

〈(δvx)2〉+ 〈(vy)2〉
V 2
p

=
v2
⊥
V 2
p

∼ νpB

νpe
= 1.3(10)3

(
Te
EpB

)3/2
nB
ne

.
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In summary, the transverse velocity spread
v2⊥
V 2
p

of the proton beam remains small if

νpB/νpe < 1. For
v2⊥
V 2
p
∼ νpB/νpe ≤ 0.25, the electron temperature and the density ratio of

borons to electrons are bounded by the inequality(
Te
EpB

)3/2
nB
ne
≤ 1.9(10)−4.

IV. SUMMARY AND CONCLUSIONS

In the proton-boron colliding beam fusion reactor design concept of Rostoker, Binder-

bauer, and Monkhorst, proton and boron beams collide with a relative resonant energy EpB

of collision equal to EpB ∼ 600 KeV. The fusion reactivity decreases if the temperatures of

the fuel ion beams acquire a thermal spread or if the interaction energy deviates from the res-

onant energy. Efficient operation therefore requires that optimal conditions be maintained

for times long enough for a significant number of fusion reactions to occur.

Quasi-stationary colliding beam configurations can in principle be sustained for times

longer than Coulomb collisional times. Collisional drag forces reduce the relative velocity

between particle species. However, if the drag forces are balanced with inductive electric

fields and/or “external” forces acting on the proton and boron beams, the energy of collision

of the fuel ion beams can be maintained close to the resonant energy. It is also essential to

control the transverse velocity spread of the proton beam induced by proton-boron collisions.

This can be achieved by means of electron drag if the boron density is sufficiently low.

However, in order to sustain steady state, energy must be supplied at a rate sufficient

to replace the streaming energy transformed into thermal energy by particle collisions. This

energy supply constitutes circulating power in a reactor.

From the momentum balance equations, the magnitude of the inductive electric fields or

the “external” forces necessary for steady state can be calculated. The power which must

be supplied can then be readily estimated.

We find that in the case of inductive electric fields, the ratio of the circulating power

17



Pc = PD (required to maintain the quasi-stationary state) to the fusion power Pf is

Pc
Pf

= 5.1

{
ne

nBZS

(Z + S)2

(Z − 1)2
+
neZ

npS

(1 + S)2

(Z − 1)2
+ 1

}

where the parameter S is defined to be S ≡ ne
ZnB

νpB

νpe
∼ 264

(
Te
EpB

)3/2
, Te is the electron tem-

perature, Z the boron atomic number, ni (i = e, p, B) the species density, mi (i = p,B) the

species mass, νpB the proton-boron collision frequency, and νpe the proton-electron collision

frequency.

The absolute minimum value of Pc/Pf is 35, which corresponds to a density ratio of

nB/ne = 0.1 and S = Z1/2 (or equivalently Te = 25 KeV). The large magnitude of Pc/Pf is

undesirable since it implies the need for very efficient means of converting the available power

into electrical power. The power available for conversion into electrical power is Pf + Pc.

Then, introducing an effective conversion efficiency parameter denoted by η, we find that

net electrical power is available only if η(Pf + Pc) is greater than the power Pc required to

maintain steady state. Thus the effective conversion efficiency must be greater than 97%,

that is, η > 35/36 ∼ 0.97.

In the case of “external” forces, we find that the power required to maintain the quasi-

stationary state is

Pc
Pf

= 5.1

[
1 +

Zne
S(ne + Z(Z − 1)nB)

]
.

This power is lower than that required for a quasi-stationary state with inductive electric

fields. At an electron temperature of Te = 25 KeV and for the optimal density ratio of

nB/ne = 0.1 (at which value the fusion power is maximized), the circulating power is

a factor of ∼ 9 times the fusion power (Pc/Pf ∼ 9). At higher electron temperatures,

the magnitude of Pc/Pf is reduced and tends to a minimum of Pc/Pf → 5.1 in the limit

Te > 42.6/(1 + 20nB/ne)
2/3 KeV (or > Z

1+Z(Z−1)nB/ne
). The required effective efficiency of

conversion to electrical power must therefore be greater than 84%, that is, η > 5.1/6.1 ∼

0.84.

Unfortunately, at the high electron temperatures necessary to keep the power ratio Pc/Pf

close to its minimum value, electron drag will not be strong enough to cool the proton
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beam (i.e., suppress the transverse velocity spread) unless the boron density is considerably

below its optimal value of nB/ne = 0.1. From steady-state solutions of the Fokker-Planck

equation for the proton distribution function, we estimate that the transverse proton beam

temperature T⊥ is given by

T⊥
EpB

∼ νpB

νpe
=

ZnB
ne

S = 1.32(10)3nB
ne

(
Te
EpB

)3/2

.

At Te ∼ 68 KeV, electron drag will be effective in limiting the transverse proton beam

temperature (T⊥/EpB < 0.25) only if the density ratio is nB/ne < 0.005. At this low boron

density of nB/ne = 0.005, the fusion power is reduced to 10% of the maximum possible. The

power ratio is Pc/Pf ∼ 7.4 at Te = 68 KeV and nB/ne = 0.005, and the required effective

conversion efficiency would then have to be greater than 88%, that is, η > 7.4/8.4 = 0.88.

The preferred scenario is the one involving “external” forces. It will be essential to have

a highly efficient means of generating the “external” forces necessary to transfer momentum

to the ion beams. It is as yet unclear how this can possibly be accomplished. But even

if the means for efficiently generating the “external” forces were available, the ratio of the

circulating power to the fusion power is still very high, Pc/Pf > 5.1, which implies that

effective conversion efficiencies greater than 84% are required.

It should be noted that even this high value of η ∼ 0.84 still underestimates the required

effective conversion efficiency for the following reasons:

(1) In our simplified calculation of η, we assumed that the mechanism for transferring

momentum to the proton and boron beams to make up the losses due to collisional drag is

100% efficient. It is unlikely that this level of efficiency can ever be achieved.

(2) We also assumed that the conversion efficiency is the same uniformly high value for

all the various forms of the energy available for conversion into electricity (e.g. thermal

energy, directed energy, bremsstrahlung). If the transverse spread of the proton beam is

limited by electron cooling, the dissipated energy is eventually transferred to electron energy

and must be removed through the electron loss channels. At the above nominal electron

temperatures and boron densities, the bremsstrahlung loss rate is much smaller than the
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dissipated power, and a large fraction of the electron energy will have to be removed as

electron thermal energy. The conversion efficiency for thermal energy is ∼ 0.4, well below

the required effective conversion efficiency of η > 0.84. At the present time, direct energy

converters (which convert energetic charged particle into electricity) have been designed with

conversion efficiencies no higher than ∼ 75% [6].

In addition, Pc/Pf ∼ 5.1 is possible only at high electron temperatures. However, at such

temperatures, the boron density will have to be well below its optimal value (nB/ne < 0.1)

if electron drag is to be effective in limiting the transverse proton beam temperature. The

fusion power Pf is then only a fraction of the maximum possible.

In summary, we conclude that the proton-boron colliding beam fusion reactor is not a

viable concept unless technology capable of very high energy conversion efficiencies (no less

than 84%) can be developed.
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Appendix A: Mixture of Inductive Electric Field and Non-inductive “External”

Forces

We now consider a “steady state” maintained by the presence of an inductive electric

field E of arbitrary magnitude and by additional “external” forces forces Fp and FB which

act to maintain the streaming velocities of the ions at fixed prescribed values. We take E

to be a parameter and we establish that the dissipated power is minimized when E = 0.

The modified momentum equations are:

Fp + eE = mpνpe(Vp − Ve) + mBνBp(Vp − VB)
nB
np

(A1)

FB + ZeE = mpZ
2νpe(VB − Ve) + mBνBp(VB − Vp) (A2)

−eE = mpνpe(Ve − Vp)
np
ne

+ mpZ
2νpe(Ve − VB)

nB
ne

(A3)

Solving for (Vp − Ve), (VB − Ve),Fp,FB in terms of Vp − VB and E, we obtain

Vp − Ve =
1

(np + Z2nB)

(
Z2nB(Vp − VB) +

eEne
mpνpe

)
(A4)

VB − Ve = − 1

(np + Z2nB)

(
np(Vp − VB)− eEne

mpνpe

)
(A5)

Fp = mpνpe

{
Z2nB

np + Z2nB
+
SZnB
ne

}
(Vp − VB)− eEnBZ(Z − 1)

np + Z2nB

= −nB
np
FB. (A6)

The dissipated power is

PD = npFpVp + nBFBVB + eE(npVp + ZnBVB − neVe)

= mBnBνBp(Vp − VB)2

[
1 +

Zne
S(np + Z2nB)

]
+

(eEne)
2

mpνpe(np + Z2nB)
. (A7)

Note that finite values of E increases the magnitude of PD.
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Appendix B: Fokker-Planck Equation

The Fokker-Planck which determines the time evolution of the distribution function

Fa(r,v, t) of the particle species in a collisional plasma is [3]:

∂Fa
∂t

+ v · ∂Fa
∂r

+
ea
ma

(
E +

v ×B
c

)
· ∂Fa
∂v

=
∑
b

Cab(Fa, Fb) (B1)

where the collision operator Cab for multiple small angle Coulomb scattering between species

“a” and species “b” is given by:

Cab = Γab

[
−

(
1 +

ma

mb

)
∂

∂vα

(
Fa

∂hb
∂vα

)
+

1

2

∂2

∂vα∂vβ

(
Fa

∂2gb
∂vα∂vβ

)]

and

Γab =
4πe2

ae
2
bλab

m2
a

hb =
∫
d3v′

Fb(v
′)

|v − v′|
gb =

∫
d3v′ Fb(v

′)|v − v′|.

The subscripts α, β of vα, vβ denote the cartesian components x, y, z of the velocity vector

v. A sum over repeated indices α, β is implied. ea and ma are the charge and mass of species

“a” and λab the Coulomb logarithm.

Particle number, total momenta, and total energy are conserved during collisions,∫
d3vCab = 0,

∫
d3v mavCab +

∫
d3v mbvCba = 0, 1

2

∫
d3v mav

2Cab + 1
2

∫
d3v mbv

2Cba = 0.

For proton-electron collisions, where Fe is taken to be a drifting Maxwellian Fe(v) =

ne
(
me

2πTe

)3/2
exp(−me(v − V e)2/2Te) and the electron thermal velocity is much larger than

typical proton velocities v(me/2Te)
1/2 <∼ 1, we can approximate the collision operator Cpe

by:

Cpe = Γpe
Ne
3

(
2

π

)1/2 (
me

Te

)3/2
{

(1 +
mp

me

)
∂

∂vα
Fpuα +

Te
me

∂2

∂vα∂vα
Fp

}
+ · · ·

= νpe

{
∂

∂vα
Fpuα +

Te
mp

∂2

∂vα∂vα
Fp

}
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where uα = vα − V eα and νpe = Γpe
Ne
3

(
2
π

)1/2 (
me
Te

)3/2 mp
me

is the proton-electron frequency.

For proton-boron collisions, where Fb is a drifting Maxwellian and the boron thermal

velocity is much less than typical proton velocities v(mB/2TB)1/2 >∼ 1, we have:

CpB = ΓpBNB

{
(1 +

mp

mB

)
∂

∂vα
Fp

uα
u3

+
1

2

∂2

∂vα∂vβ

Fp
u

(
δαβ −

uαuβ
u2

)}
+ · · ·

= νpB v
3
0

mB

mB + mp

{
mp

mB

∂

∂vα
Fp

uα
u3

+
1

2

∂

∂vα

1

u

(
δαβ −

uαuβ
u2

)
∂Fp
∂vβ

}
+ · · ·

where uα = vα − V Bα , νpB = ΓpBNB(1 +mp/mB)/v3
0 is the proton-boron collision frequency,

and v0 is the characteristic speed |V p − V B| of the protons relative to the borons.

Acknowledgments

This work was supported in part by the U.S. Dept. of Energy Contract No. DE-FG03-

96ER-54346 and the Office of Naval Research, U.S. Department of Defense Grant num-

ber N00014-99-1-0888.

23



REFERENCES

1. N. Rostoker, M. W. Binderbauer, and H. J. Monkhorst, Final Report For ONR Con-

tract N00014-96-1-1188 (1998).

2. M. Lampe and W. Manheimer, NRL Report, NRL/MR/6709-989-8305, October 30,

1998.

3. M. N. Rosenbluth, W. Macdonald, and D. Judd, Phys. Rev. 138, 1 (1957).

4. H. L. Berk, W. Horton Jr., M. N. Rosenbluth, and P. H. Rutherford, Nucl. Fusion 15,

819 (1975).

5. E. P. Lee, R. K. Cooper, Particle Accelerators 7, 83 (1976).

6. H. Momota, A. Ishida, Y. Kohzaki, G. H. Miley, S. Ohi, M. Ohnishi, K. Sato, L. C.

Steinhauer, Y. Tomita, M. Tuszewski, Fusion Tech. 21, 2307 (1992).

24



FIGURE CAPTIONS

FIG. 1. Quasi-stationary state maintained by inductive electric field; PD/Pf vs Te(KeV) for

nb/ne = 0.05, 0.1, 0.15.

FIG. 2. Quasi-stationary state maintained by non-inductive “external” forces; PD/Pf vs.

Te(KeV) for nb/ne = 0.01, 0.1, 0.15.
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