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BACKGROUND: Despite providing a rela-
tively small percentage of total global energy
supply, solar energy systems generally receive
enthusiastic support from technologists, reg-
ulators, politicians, and environmental groups.
The energy in sunlight can be converted into
electricity, heat, or fuel. Although the costs
of solar panels have declined rapidly, tech-
nology gaps still exist for achieving cost-
effective scalable deployment combined with
storage technologies to provide reliable, dis-
patchable energy.

ADVANCES: The costs of Si-based solar pan-
els have declined so rapidly that panel costs
now make up <30% of the costs of a fully

installed solar-electricity system. Research
and development (R&D) opportunities hence
lie in the development of very high efficien-
cy conversion materials, to advantageously
leverage the associated reduction in area-
related balance-of-systems costs. Such mate-
rials would optimally either leverage or mate
with existing, low-cost Si photovoltaic (PV)
technology. Ultralightweight, flexible, robust,
and efficient materials could also greatly
reduce the installation costs and could allow
for enhanced automation and inexpensive
support structures.
The development of cost-effective persis-

tent grid-scale storage to compensate for the
intermittency of sunlight is a major area for

R&D. Possibilities include new types of bat-
teries and flow batteries, as well as geologic
storage of hydrogen, methane, or com-
pressed air.
Opportunities also exist to improve the

capabilities of concentrated solar power
systems that convert sunlight into heat. Im-
proved thermal storage fluids would pro-
vide longer-term storage to compensate for

cloudy days in areas of
high direct insolation.
Thermoelectrics, in prin-
ciple, could replace en-
gines to provide efficient
conversion systems that
have no moving parts.

New thermochemical cycles could allow for
the highly efficient, cost-effective conversion
of solar heat into fuels by promoting en-
dothermic reactions, such as water splitting,
carbon dioxide reduction, or thermochemical
conversion of feedstocks, such as methane
to high energy-density liquid hydrocarbon
fuels that are needed in the transportation
sector.
Artificial photosynthetic systems that di-

rectly produce fuel from sunlight are in the
proof-of-concept stage. Such technologies of-
fer the potential to provide renewable hy-
drogen by solar-driven water splitting or to
produce hydrocarbons directly from sunlight,
water, and CO2. Key goals for R&D are devel-
opment of materials that can absorb and con-
vert sunlight efficiently that are seamlessly
integrated with catalysts that promote the
production of fuel, with the production of O2

from water also required to complete a sus-
tainable, scalable chemical cycle. Systems
must simultaneously be efficient, robust, cost-
effective, and safe.

OUTLOOK: Considerable opportunities for
cost reduction that can achieve both evolu-
tionary and revolutionary performance im-
provements are present for all types of solar
energy–conversion technologies. Learning by
doing and R&D will both be needed to produce
an innovation ecosystem that can sustain the
historical rate of cost reductions in PVs and
concentrated solar thermal technology. Dis-
ruptive approaches to storage technologies
are needed to compensate for the intermit-
tency of sunlight and allow for develop-
ment of a full clean-energy system. Solar
fuels technology contains abundant oppor-
tunities for discovery of new materials and
systems that will allow for deployable, cost-
effective routes to the direct production of
fuels from sunlight.▪
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Solar energy–conversion and storage technologies. (A) Nellis Solar Power Station, a 14-MW PV
installation at Nellis Air Force Base, NV. (B) Concentrated solar thermal power 392-MW installation
at Ivanpah, CA. (C) World’s largest battery (NiCd) storage installation (40 MW for 7 min, 26 MW for
15 min), Fairbanks, AK. (D) Solar fuels demonstration of a photoelectrode evolving hydrogen gas.
[Image sources: (A) Nellis Air Force Base PV installation, https://commons.wikimedia.org/wiki/
Category:Nellis_Solar_Power_Plant. (B) Ivanpah solar electric generation installation, http://i.ytimg.
com/vi/M5yzgfCNpvM/maxresdefault.jpg. (C) Fairbanks battery installation, http://blog.gvea.com/
wordpress/?p=1677]
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Research opportunities to advance
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Major developments, as well as remaining challenges and the associated research
opportunities, are evaluated for three technologically distinct approaches to solar energy
utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been
made, but research opportunities are still present for all approaches. Both evolutionary and
revolutionary technology development, involving foundational research, applied research,
learning bydoing, demonstration projects, and deployment at scalewill be needed to continue this
technology-innovation ecosystem. Most of the approaches still offer the potential to provide
much higher efficiencies, much lower costs, improved scalability, and new functionality, relative
to the embodiments of solar energy-conversion systems that have been developed to date.

B
ecause of its unmatched resource poten-
tial, solar energy utilization has been the
subject of intense research, development,
and deployment efforts that have acceler-
ated during the past decade (1). Efforts

have focused on the development of photovol-
taics (PVs) for production of solar electricity, on

conversion of solar energy into electricity or heat,
and on artificial photosynthetic systems that di-
rectly produce fuels from sunlight. The dramatic
increases in deployment and concomitant de-
creases in the cost of solar energy-conversion
systems in the past decade attest to the impor-
tance of investments in innovation (1).

The cost-effectiveness of terrestrial solar en-
ergy systems is dictated by two fundamental
constraints. First, as compared with fossil fuels
or nuclear fission, the relatively low average ter-
restrial power density of sunlight, typically ~200
to 250 W/m2, requires very inexpensive materials
and systems to cost-effectively cover the large
areas needed to capture and convert solar power
on a terawatt global scale (2, 3). Second, the in-
termittency of sunlight requires cost-effective
energy-storage technologies to provide energy
on demand with high reliability. This review pro-
vides an update on many of the developments
that have occurred during the past decade (4)
and identifies some of the promising oppor-
tunities for further research and development
(R&D) in light of the present status and economics
of solar energy-conversion technologies.

Solar electricity
Photoactive materials

Solar cells can be conveniently categorized on
the basis of the type of light-absorbing mate-
rial in the photoactive layer (Table 1). Devices
based on crystalline silicon rely on a p-n junction
formed through spatially directed doping of a
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Table 1. List of PV materials and defining commercial and technical attributes. n/a, not applicable.

PVmaterial Maturity
2013

production (GWp)
Efficiency [best module (35), highest reported cell (7)]; attributes

CdTe Commercial 1.9 17.5%, 21.5%; thin film, sublimes congruently and enables

monolithic module manufacturing
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

a-Si:H Commercial 0.8 12.3%, 13.6%; flexible modules when material is deposited onto

stainless steel substrates; efficiency decays with time
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

CuInGaSe2 Commercial 0.8 17.5%, 21.7%; requires stringent process control to maintain stoichiometry

of four-element material over large areas
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Mono-Si Commercial 13.9 22.9%, 25%; highest Si module efficiencies; implements technology

for extensive control of bulk and surface recombination losses; high

efficiency yields reduced area-related balance-of-systems costs
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Multi-Si Commercial 21.3 18.5%, 20.8%; market leader
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Ribbon Si Commercial 0 Continuous instead of batch process to make the Si substrate
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

GaAs Demo n/a 24.1%, 28.8%; thin-film epitaxial layers require facile removal

from the lattice-matched, expensive substrate; radiation tolerance and

light weight are advantageous for space power applications
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Multijunction (high concentration PV) Demo 0.05 38.9%, 46%; high efficiency; limited to high locations with high direct

normal irradiance, optimal performance requires complex dual-axis

tracking and optical focusing
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Organic PVs R&D n/a 8.3%, 11.5%; readily processable, flexible cells; modest cell efficiencies;

long-term decay of efficiency;
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Quantum dots n/a, 9.9%; potential for very high efficiencies through multiple exciton

generation processes; growth of large single crystals not required
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Perovskites n/a, 20.1%; very rapid increase in demonstrated cell efficiency;

stability unproven; soluble, toxic Pb salt; material dissolves in water
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Dye-sensitized solar cells n/a, 11.9%; wet chemical processing of titania substrate followed by

adsorption of dye; fabrication of cell requires sealing gel or liquid

electrolyte; small improvement in efficiency over past decade
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .



planar silicon (Si) structure to effect charge
separation and to allow for efficient production
of photocurrent and photovoltage (Fig. 1) (5, 6).
The cost of Si solar panels, measured in dollars
per peak watt ($/Wp) has decreased by ~20% for
each doubling in cumulative global module pro-
duction (2, 3). Commercially available Si panels,
which accounted for ~90% of total solar panel
production in 2013, now have an energy payback
period of <2.5 years and ~16 to 21% power-
conversion efficiencies (2, 3). The dramatic re-
ductions in panel cost have been realized largely
through sustained, systemic reductions in spe-
cific manufacturing costs, including those of the
polymer encapsulant, the screen-printing of the
silver electrical contacts, and even the production
of the Si wafers themselves, along with economies
of scale enabled by construction of very large
panel-production facilities. Research opportuni-
ties to further lower costs include methods to
integrate higher band-gap materials with Si to
create a high-efficiency tandem device in a scala-
ble, cost-effective process that is compatible with
existing Si PV manufacturing methods.
Gallium arsenide and other “III–V” single-

junction andmultijunction PV devices (7–10) are
highly efficient and used on satellites but are
currently only considered cost-effective for ter-
restrial applications by combining small device
areas with high-concentration-factor optics that
utilize active solar tracking and optical concen-
trating systems. Opportunities exist for obtaining
improved efficiencies through spectral-splitting
approaches (11, 12), aswell as throughnovel designs
for both one-dimensional (1D) and 2Doptical con-
centration and tracking systems and structures,
aswell as indevelopment of newapproaches to the
low-cost growth of high-quality, high-performance
III–V monolithic devices and structures.
In contrast to active materials based on single-

crystal substrates, thin-film materials, such as
cadmium telluride (CdTe), CuInGaSe2, amorphous
hydrogenated Si, and organic PVs can provide
flexible, lightweight modules that could result
in reduced system installation costs. Engineered
CdS/CdTe heterostructures provide control over
junction recombination at themetallurgical inter-
face (3). Toxicity concerns related to release of Cd
into the environment have been raised, especially
in Europe, but have been addressed by rigorous
encapsulation of the active material, in conjunc-
tion with proposed panel-recycling programs (13).
Scarcity issues related to the availability of Te
may preclude scaling of CdTe PV technology to
terawatt levels (14), but the lower CdTe module
efficiencies of <15%, as compared with 16 to
21% efficiencies for Si panels, are presently more
important considerations in determining the
cost-competitiveness of the various PV panel
technologies. Research opportunities involve
grain-boundary passivation to allow thin films to
exhibit the high mobilities and efficiencies of
single crystals. Solar cells based on perovskites
formed from lead salts with organic ammonium
cations have demonstrated that extraordinary
performance can be obtained using simple depo-
sition techniques in novel materials systems

(7, 15–17). The long-term stability of these mate-
rials at the highest reported efficiencies remains
to be established (17, 18). Intense efforts are cur-
rently being devoted to understanding the fun-
damental behavior of such systems, as well as
to discover other similarly behaving classes of
materials that are environmentally benign, do
not release toxic lead ions upon dissolution in
water, and combine efficiency with stability. Such
considerations underscore the complex techno-
logical, political, and economic aspects associated
with the development a sustainable, cost-effective
solar energy-utilization system (1).
Earth-abundant light absorbers that could pro-

vide alternative materials options for solar ab-
sorbers, including Zn3P2 (19, 20), ZnSnN2 (21, 22),
and Cu2O (23, 24), are receiving renewed interest
after preliminary investigations in the early 1980s
(25, 26). Research opportunities involve control
over the bulk and surface properties of such ma-
terials to obtain high efficiencies, preferably in
thin-film form.
The performance of organic PV cells, such as

thosebasedoncompositesofpoly-phenylenevinylene
(PPV)with a functionalizedC60 that servesas the
lightabsorber(27–30), inprinciple, canbesystemat-
ically varied by chemical control over the compo-
sition and structure of the components of the
device (29). Radical-related side reactions under
visible and ultraviolet illumination of the organic
materials that form the active components of
the device structuremust beminimized to obtain
long-term stability while preserving high effi-
ciency. Research opportunities for dye-sensitized
solar cells include the development of molecular
sensitizers that exhibit improved photovoltages,
as well as enhanced stability, while retaining de-
vice efficiency (31, 32).
Quantum-confined systems, including inorganic

quantumdots, canprovidemultiple electronsupon
absorption of a photon having an energy greater
than twice the band gap of the absorber (33).
Organic materials exhibit an analogous process
denoted as singlet fission (34). Both phenomena
could form the basis for solar cells that exhibit ef-
ficiencies in excess of the conventional, Shockley-
Queisser (S-Q), theoretical limit of 32% for a
single–band gap material under unconcentrated
sunlight (33). Research opportunities involve in-
corporation of this phenomenon into operational

devices that exhibit high photovoltages in con-
junction with quantum yields in excess of unity
for photocurrent production. These materials sys-
tems will ultimately have to compete with other
approaches to obtain device efficiencies that ex-
ceed the S-Q limit, such as multijunction cells,
which have already exhibited efficiencies >40%
under high concentration (7, 35).

Balance of systems

The cost of Si solar panels now constitutes ~30%
of the cost of a fully installed utility-scale system
(Fig. 2) (36, 37). The “hard” materials costs, in-
cluding the inverter, support structures, and
electrical wiring, make up ~30% of the system
costs. “Soft” costs, including installation labor,
permitting, inspection and interconnection, fi-
nancing, and customer acquisition,make up ~40%
of the installed system costs. These balance-of-
systems costs have not declined nearly as rapidly
as module costs.
For an installation having a specific peak out-

put power, increases in module efficiency would
correspondingly reduce the area-related balance-
of-systems cost (Fig. 2B). Any viable alternative to
Si, or any PV technology that leverages or mates
with Si PV technology will ultimately have to ex-
hibit long-term stability and superior efficiency at
competitive manufactured panel costs. Improve-
ments in efficiency, especially through R&D, that
result in the development of new materials and
PV systems having efficiencies higher than the
S-Q limit, would havemore of an impact on lower-
ing the cost of installed solar electricity than pro-
portionate reductions in the manufacturing costs
of present Si-based panels, as shown in Fig. 3.
To be certified for sale in the marketplace,

solar panels are required to contain protective
glass that can survive a hailstorm. The cost of the
float-glass material is relatively low (38), but the
stiffness and weight of the resulting panels pro-
duces sizable costs for shipping, requires the
use of costly support structures, and produces
substantial labor costs for installation. Soft costs
are lower in Germany and Australia than in the
United States, because permitting and installa-
tion processes and protocols have been stream-
lined (39, 40). Obtaining much lower installed
PV system costs will not only require ultralight-
weight, flexible, robust, and efficient materials

aad1920-2 22 JANUARY 2016 • VOL 351 ISSUE 6271 sciencemag.org SCIENCE

Fig. 1. Components of a typical silicon solar cell. The diagram shows the absorber layer, the p-n
junction, antireflection coating, grid and contact lines, encapsulation, and glass support structures.
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and panel technology in the photoactive, encap-
sulating, and structural components, but also will
require disruptive engineering approaches, in-
cluding very inexpensive support structures, in-
creasing automation, and streamlined protocols
thatminimize the skill level and effort associated
with system installation (Fig. 3) (6).
Although the capital costs can be firmly es-

tablished for a given PV installation (for example,
Figs. 2 and 3), the levelized cost of electricity
(LCOE) depends on the deployment site, which
dictates the electrical energy that is produced by
the panels over their useful lifetime and requires
assumptions involving the discount rate (i.e., the
time value of money), useful system life, and op-
erating costs. For utility-scale Si PV systems having
fully installed costs of $1.80/Wp, conventional
assumptions yield LCOEs of $0.10 to $0.15/kWh,
with the lower value for favorable sites, such as
in California (41). In 2014, the average U.S. elec-
tricity price for large industrial customers, includ-
ing generation, transmission, and distribution
costs, as well as profit, was ~$0.07/kWh (42).

Grid integration and energy storage

Regardless of the competitiveness on a levelized
cost basis of solar electricity relative to fossil-
based or nuclear-based electricity, the value of
electricity produced from an intermittent re-
source is not the same as the value of energy that
can be provided on demand. In some market
scenarios, such as residential installations in
areas with high peak electricity pricing, PV cur-
rently has a favorable value proposition, especially
with tax incentives or other subsidies (41, 43). The
full costs of solar electricity must also eventually
include costs associated with grid integration, as

SCIENCE sciencemag.org 22 JANUARY 2016 • VOL 351 ISSUE 6271 aad1920-3

Fig. 3. Costs for installed utility-scale PV projects as a function of module efficiency and module
cost. Movement parallel to the abscissa assumes that all costs are held constant other than the module
cost (Fig. 2A), whereas movement parallel to the ordinate is based on the assumption that there is a
linear proportionality of all area-related costs (Fig. 2B) to the module efficiency. The red dot is repre-
sentative as an example of recent utility-scale projects for which citable data are available (38, 39)
with 15% efficient Si-based panels at a cost of $90/m2 and with a total installed project fixed
capital cost of $2.25/Wp. Utility-scale projects have been chosen because they are less expensive
per Wp and less variable than rooftop installations, which have similar Si module costs but had, at
the time, fully installed project costs of ~ $4.90/Wp in California as compared with $2.20/Wp in
Germany, with the difference caused primarily by differences in permitting, labor, inspection, and
other soft costs.

Fig. 2. Breakdown of capital costs for installed utility-scale PV systems. (A) Costs of finished modules (panels) made from Si solar cells, as well as hard
and soft balance-of-systems (BoS) costs as tabulated by Goodrich et al. (35). The solar cell and module costs have been updated from those listed in (35) to
reflect the rapidly declining price of these components (36). (B) Breakdown of the same capital costs for installed utility-scale PV systems as in (A), except that
the costs are broken down into items that scale with the area of the installation (and hence, panel efficiency) and (area-independent) items that are related to
the power produced by the installation and described in terms of dollars per peak watt of direct current.
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well as the accompanying cost of energy storage
to compensate for daily, weekly, and seasonal
variability in insolation (2, 41). To ensure relia-
bility, utilities currently back up intermittent re-
newables, including solar and wind installations,
to nearly their full rated peak capacity with
dispatchable generation, generally derived from
natural-gas-fired power plants. The cost of per-
sistent grid-scale storage currently far exceeds the
levelized cost of solar electricity (43, 44).
Pumped hydroelectricity is near its technoe-

conomic potential globally (44). Compressed-air
energy storage will require cost-effective tech-
nologies to create robust, full-volume seals in
very large underground geological cavities, such
as salt caverns (44). Superconducting magnetic-
energy storage and flywheels are best suited for
high-power, low-energy applications (44, 45).
Batteries currently are expensive grid-scale

electrical energy–storage technologies, especially
when the costs are amortized over the >30-year
lifetime of an installed solar electricity system
(44). If one assumes a 15- to 20-year battery life-
time with one cycle per day, conventional or ad-
vanced lead-acid batteries have a levelized cost of
energy storage (LCES) (not including generation
costs) for renewable energy storage and/or time-
shifting applications of $0.80 to 1.0/kWh and
$0.40 to 0.50/kWh, respectively (46). Under the
same assumptions, Na-S batteries, which require
operation at ~350°C to obtain sufficient con-
ductivity through the beta-alumina solid electrolyte
that separates the liquid sodium negative electrode
from the positive electrode composed of a sur-
rounding layer of sulfur, have an LCES of $0.30 to
$0.40/kWh (46). Capital costs of $250/kWh for
the battery cells are part of the $1000/kWh cur-
rent cost of a fully installed secondary lithium-ion
(Li-ion) battery system for PV storage applications,
which results in an LCES of $0.49/kWh, if one
assumes a 10-year service life, one cycle per day, a
10% discount rate, a linear capacity decline to
80%of rated capacity at the endof life, 92%charge-
discharge energy-storage efficiency, and no op-
erating costs (46, 47). Although the underlying
battery chemistry and materials have been rel-
atively unchanged for more than 20 years, Li-ion
cells are following an ~25% learning curve, as cal-
culated from sales and production data spanning
2000 to the present (48).
Given current average cell costs of $270/kWh,

at the historical rate of cost decline, obtaining a
$100/kWh Li-ion cell cost would require produc-
tion and learning for >25 years, if one assumes
a fixed 100 GWh worldwide annual capacity
during that time, in accord with expectations for
Li-ion battery-production capacity when new,
large-production-capacity additions that are cur-
rently under construction become operational
(48). Chemical reactions between the electro-
lyte and solvent in current Li-ion batteries fun-
damentally limit the useful lifetime of such
batteries (49), regardless of the depth of dis-
charge or power-management technology incor-
porated into the system. The costs associated
with battery-pack integration and management,
inverters, and other hardware and labor costs

that dominate the total installed system costs are
currently much higher than the battery cell costs.
Lithium-air (50), lithium sulfur (51), zinc-air (52),
solid-state Li (53), and advanced Li-ion battery
chemistries (53), among others, are all being
explored.
Flow batteries, based on electrically charging

an anolyte and catholyte and storing the fluids in
separate holding tanks until discharge, are a
focus of major early-stage R&D efforts (44, 54).
Electrochemical couples being developed include
aqueous vanadium as V3+/2+, Zn-Br, V-Cr, Fe-Cr,
or H2/Br2 systems (54), as well as quinone-
hydroquinone redox species (55). Relatively large
storage volumes are required because the energy
density of flow batteries is typically 20 Wh/liter,
compared with an energy density of >200 Wh/
liter for Li-ion batteries and >12,000 Wh/liter
for liquid hydrocarbon fuels, such as gasoline. If
one assumes a 20-year lifetime and one cycle per
day, at typical 65 to 75% charge-discharge effi-
ciencies, Fe/Cr and V-based redox flow batteries
have an estimated LCES of $0.20 to $0.30 and
$0.30 to $0.40/kWh, respectively, with the latter
costs resulting from higher materials costs for
the V-based system relative to the Fe/Cr or Zn-Br
systems (46). Electrically discharging the con-
tents of the holding tanks rapidly will require
pumping large quantities of liquid into effective
contact with highly porous, high–surface area
electrodes, which will add to the system cost.
Notwithstanding associated carbon emissions,
cost-effective generation technology to compen-
sate for the intermittency of solar electricity and
to provide back-up and firming capabilities for

daily and seasonal variability in new solar gen-
eration capacity currently uses natural-gas plants
(46), with costs expected to remain low where
shale gas is abundant.

Solar thermal systems

The four main types of solar collectors are
parabolic trough collectors, linear Fresnel reflec-
tors, power towers (i.e., central receiver systems),
and dish-engine systems, which produce local
temperatures of 550°C, 550°C, >1000°C, and
1200°C, respectively (56–58). To generate elec-
tricity, either an oil or a molten salt heat-storage
fluid, typically an eutecticmixture of 60weight%
(wt %) sodium nitrate to 40 wt % potassium
nitrate, known as solar salt, is heated. The heat
then is exchanged to produce steam, which is
used to drive a turbine to generate electricity
(Fig. 4) (5). Power conversion units are either
separate or combined Rankine-Brayton cycles.
As of 2014, the installed global capacity of PV
was 177 GWp, as compared with <5 GWp of solar
thermal capacity (59, 60). Solar thermal instal-
lations are preferably sited in regions with a high
direct normal irradiance value, typically in desert
regions of the southwestern United States or
Australia, or, for example, Morocco or southern
Spain (61).
Although large-scale solar thermal electricity

projects were planned both in the United States
and in Morocco, driven by mandates, renewable
portfolio standards, and low-carbon electricity
incentives, the generation costs have proven to
be greater than $0.15/kWh when all installation
and operational expenses are included (62, 63).

aad1920-4 22 JANUARY 2016 • VOL 351 ISSUE 6271 sciencemag.org SCIENCE

Fig. 4. Schematic of a typical 1D concentrating solar thermal system. The sunlight is focused
along one dimension to heat up a thermal fluid—typically, either an oil or a molten salt—which is then
passed through a heat exchanger to produce steam that is used in a turbine to produce electricity.
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Between 6 and 8 hours of storage can be ob-
tained by use of molten salts as the thermal
fluid, but compensation for cloudy days requires
36 hours, or more, of storage. Improved thermal
storage fluids are an active area of R&D (64).
The all-inclusive costs for solar thermal systems
have not declined substantially since the early
1980s (62) (Fig. 5), in contrast to the costs of PV
modules and installed PV systems. For example,
the Ivanpah Solar Electric Generation system
commissioned in 2013 in the Mojave Desert of
California is an air-cooled, 392MW capacity, power-
tower system consisting of 300,000 mirrors and
three towers. The project had a capital cost of
$2.2 billion and is producing electricity under a
25-year power purchase agreement for a price
estimated as >$0.13/kWh to the cognizant utilities
(41). Research efforts include development of
power cycles that allow for higher-temperature
operation, along with the development of ad-
vanced materials for the fabrication of the col-
lectors (65), in conjunctionwith new engineering
approaches to the design of the collectors and
integration with the rest of the plant (66–68).
Thermoelectrics could also serve as the technol-
ogy that converts heat into electricity, provided
that their performance can be improved to the
necessary levels under the high temperatures that
are produced in an operational solar thermal
system (5, 69).

Extensive deployment of either PV or solar
thermal electricity-generating systems in remote
regions with high direct insolation would re-
quire installation of new transmission lines. The
Sunrise Powerlink—a 117-mile-long, 1-GW capac-
ity, 500-kV, >90% above-ground transmission
line built between 2010 and 2012 to provide solar
and wind power from the Imperial Valley to San
Diego—had a project cost of $1.9 billion (70). Con-
centrated solar power can also be used to provide
a source of heat to drive endothermic chemical
reactions. In one demonstration system, solar
heat is used as a supplement to process heat, to
produce synthetic fuel from CO and H2 (syngas)
by using the Fischer-Tropsch process (71). For
the solar-driven process to be economically viable,
the cost of solar-derived heat must be less than the
cost of heat derived from combustion of fossil
energy, such as natural gas. The capital costs of
the solar thermal part of the facility—including
the costs associated with siting constraints, as
well as underutilization of the plant during night
time and periods of off-peak insolation—must be
covered by the value of the solar-derived heat
production.
Solar-derived heat can also be used to promote

the formation of fuels, such as H2 produced
through solar-driven water splitting (72). In an
exemplary two-step cycle, CeO2 is first reduced
thermally to Ce2O3 with the production of O2,

followed by the thermally driven oxidation of
Ce2O3 by water to produce CeO2 and H2 (73).
Other thermochemical cycles are based on sulfur
iodine, hybrid sulfur, photolytic sulfur ammonia,
zinc oxide, cadmium oxide, or FeAl2O4 (74). Gen-
erally, the cycles exploit temperature swings to
evolve O2 and H2 separately, which creates re-
search opportunities to explore methods of ob-
taining high levels of heat recovery so as to ensure
high system efficiencies. Isothermal redox cycles
have been proposed to alleviate heat-rejection
issues, by use of an open system in which a par-
tial pressure change promotes the evolution of
O2 by the thermal reaction of CoFe2O4 with
Al2O3, and the CoAl2O4 and FeAl2O4 then react
with steam to produce H2 and close the chemical
cycle (75). Many of these thermochemical water-
splitting cycles are also of interest for the produc-
tion of H2 from the heat produced by gas-cooled
nuclear fission reactors.
These thermochemical cycles to date have been

demonstrated in process steps at the laboratory or
pilot scales. Implementation of these thermo-
chemical processes in deployed solar thermal
systemswill require R&D that enables the needed
mass flows of reagents into the reactor while
allowing facile product egress from the reactor,
in addition to effectively confining the heat in the
reactor while allowing for the optical excitation
to enter, but not leave, the reactor. The reactor
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Fig. 5. Chronology of the total installed cost for some large solar thermal projects. Names of projects and rated capacity of each installation. IEA
SSPS, International Energy Agency Small Solar Power Systems (Europe); SEGS, Solar Energy Generating Systems (California); P10 (Spain).
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materials must also be cost-effective, efficient,
and robust under extreme operating conditions
and environments (5, 76).

Solar Fuels

The direct production of fuels from sunlight
could provide a scalable grid storage technology.
Liquid fuels are required for ships, aircraft, and
heavy-duty trucks, which collectively total 40%of
current global transportation fuel demand. Solar
fuels technology has thus received recent atten-
tion at the proof-of-concept R&D stage in various
laboratories worldwide (5). The status of various
approaches to solar fuels generation is summa-
rized in Table 2. Exquisite chemical synthetic
methods have been used to assemble various
chlorophyll-based and -related light absorbers in
conjunction with precisely connected electron
donors and acceptors, to achieve separation of
the light-induced electron-hole pairs produced by
the chromophore of interest (5, 77, 78). The ex-
istence of the natural photosynthetic system
implies that it ought to be possible to assemble
a fully nonbiological photosynthetic assembly,
which provides a goal for research efforts in
synthetic organic, inorganic, and materials chem-
istry. Particles of inorganic semiconductors, in
conjunction with heterogeneous cocatalysts, have
been shown to act as artificial photosynthetic
systems (5, 79). A research goal is to develop an
efficient, stable photocatalytic system that does
not produce stoichiometric, flammable mixtures
of H2 and O2 (79).
In artificial photosynthetic systems based on

photoelectrochemical (PEC) cells, (Fig. 6), the
charge separation is facilitated by an electric
field that is formed at or near a semiconductor-
liquid interface (79, 80). Production of fuel gener-
ally requires coupling of the separated electrical
charges with multielectron catalysts for the half-
reactions of interest. In many respects, PEC cells
represent the integration of a discrete PV module
with an electrolyzer to achieve the conversion of
sunlight into H2 and O2 by solar-driven water
splitting (79, 81). Regardless of how it is produced,
the solar H2 could be used in a turbine or fuel
cell for grid storage, and could be used as a
transportation fuel either directly as H2, or in-
directly by reacting the H2 with CO2 or other
carbon-based feedstocks, such as biomass, to pro-
duce methanol or other reduced carbon-based

fuels (82, 83). Additionally, solar-derived H2 could
readily be used as a feedstock to produce am-
monia, for use in agriculture, as well as in com-
merce and transportation.
For a solar-driven PEC-based water-splitting

system to be deployed in the marketplace, the
PEC system must be advantageous in cost rela-
tive to the established, discrete PV + electrolyzer
(E) combination that provides the same system-
level functionality (79). The levelized cost of H2

(LCH) from a discrete PV+E system has been es-
timated to be $7 to $20/kg (84, 85), because of
the relatively high cost of electricity from PV in
conjunction with a low capacity factor for utili-
zation of the electrolysis unit. In contrast, the
LCH produced by steam reforming of natural
gas is only $2/kg (86). Research opportunities
involve the development of a disruptive tech-
nology for electrolytic H2 generation, noting that
the chlor-alkali electrolysis process has been prac-
ticed at scale for more than a century (87). Stor-
age in geologic formations has been proposed
for renewable hydrogen produced by electrol-
ysis (88).
In state-of-the-art polymer-electrolyte-membrane

(PEM) electrolyzers, the cost of the noble metal
catalysts is <6% of the total system costs (89).
Even less expensive catalysts—based on Ni-Mo
and related alloys on the cathode and mixed Ni
(Fe, La, and so on) oxides on the anode—are used
in alkaline electrolysis (90), with a facility rated to
produce 100 MW of electricity constructed in the
1980s at Aswan Dam (91). Moreover, available
electrocatalysts in acidic or alkalinemedia display
much lower overpotentials (92) than available
electrocatalysts operatedatnear-neutral pH (93–95).
Hence, an integratedphotoelectrochemical system
must take advantage of substantial cost reductions
enabled by integration, other than purely a reduc-
tion in catalyst cost, to be advantageous in cost rel-
ative to adiscretePV+Ecombination.Opportunities
for such cost reduction are provided by syner-
gistic integration of very inexpensive materials
in novel form factors and geometries, such as
arrays of semiconducting microwires in flexible
polymeric membranes (96, 97) coupled to earth-
abundant electrocatalysts, with the system able
to take up water from the atmosphere as an input
feedstock (98).
A technology for an integrated solar fuels gen-

erator must be robust, efficient, safe, and cost-

effective. At present, viable integrated systems
can simultaneously meet at most three of these
desiderata. Systems that are very efficient and
stable are currently made from expensive, com-
plexmaterials assemblies, such as a high-efficiency
III–V PV tandem cell connected electrically in
series with, but isolated physically from, an elec-
trolysis cell (99). Use of an analogous multi-
junction III–V cell as a photoelectrode in an
aqueous electrolyte in either a wired or wireless
configuration produces H2 transiently, because
integration results in corrosion of the photo-
electrode by the electrolyte (100, 101). Electrodes
that are cheap and robust—such as spray-painted
coatings of iron oxide as photoelectrodes by
themselves or with coatings of electrocatalysts—
are inefficient (5). Electrolysis or photoelectrol-
ysis under bulk near-neutral pH conditions
(93, 102–104) is inefficient and/or produces po-
tentially explosive, stoichiometric mixtures of
H2 andO2 over active catalysts for recombination
of the products (95, 105–108).
Photocathodes made from p-type indium

phosphide coated with nearly transparent noble
metal electrocatalyst films have yielded >13%
ideal regenerative cell efficiencies for the pro-
duction of H2 from 1 M HCl (aqueous) (109),
which illustrates the possibilities for obtaining
efficient and stable photoelectrodes for solar
fuels production. Operation in acidic or alkaline
liquid or polymeric electrolytes is important
because intrinsically safe, efficient solar-driven
water-splitting systems can be built in these me-
dia (81, 110). Some recent examples along this
R&Dpath include the discovery of earth-abundant
alternatives to Pt that are stable and highly active
for H2 evolution in acidic media (111) and the
integration of earth-abundant electrocatalysts
into Simicrowire arrays for efficientH2 production
from acidic media (112). Research opportunities
include methods to minimize the obscuring of
light associatedwith typicalmetal andmetal oxide
electrocatalysts for fuel-forming half-reactions (113).
Porous films allow electrolyte to permeate to

the underlying semiconductor and, thus, only par-
tiallymitigate deleterious corrosion or passivation
processes (114). For oxidative processes, amor-
phous TiO2 films in conjunction with Ni oxide
islands (115), or alternatively the use of reactively
sputteredNi oxide films, have recently been shown
to provide extended stability for photoanodes
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Table 2. List of solar fuel systems and their defining technical attributes.

Solar fuels system State of development Example systems

Molecular systems Persistent charge separation demonstrated;

fuel-producing systems, including efficient, stable

molecular electrocatalysts, must be discovered

Porphyrins linked to quinones either in diads, triads,

or tetrads; Ru-bipyridyl inorganic chromophores linked

to Pt particles or hydrogenases, and linked to

molecular catalysts for water oxidation
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Inorganic semiconductor particles Solar-driven water-splitting devices demonstrated; efficiency,

safety, stability need to be addressed simultaneously

GaN:ZnO w/ RuO2, Cr2O3-coated Rh cocatalysts (123)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Semiconductor photoelectrodes Efficient, safe systems demonstrated; long-term stability,

cost-effectiveness need to be improved

Si/Al0.15Ga0.85As (124), GaAs/GaInP2 (100)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Photovoltaic electrolysis Demo Si PV coupled to electrolyzer (125, 126)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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performing water oxidation in alkaline media
(114, 116, 117). These approaches to photoanode
protection, which have shown operational stabil-
ity and efficiency for water oxidation while op-
erating continuously for thousands of hours under
simulated sunlight, i.e., passing the charge equiv-
alent to >1 year of outdoor operation (114), may
allow for new combinations of materials to be
utilized. These components will have to be com-
bined with other materials and components at
scale to realize the full potential of an integrated
approach to solar fuels generation. Research op-
portunities also lie in the development of a cost-
effective balance-of-plant that would provide
feedstock water of the requisite purity, as well
as facilitate the safe, cost-effective collection of
the solar-derived H2 over relatively large areas
for distribution and end-use, either as H2 or by
conversion to carbon-containing fuels through
known thermochemical conversion processes.
The multielectron reduction of CO2 to a liquid

fuel will require the development of entirely new,
unprecedented families of catalysts to effect such
a transformation in an energy-efficient and selec-
tive fashion. To date, metal electrodes require
high overpotentials, are generally unstable at the
required reducing potentials, and also produce a
wide array of trace organic products (118) that
would require an expensive and energy-intensive
process step to separate and concentrate the pro-
ducts. On specific electrode surfaces, substituted
pyridiniums yield partial formation of methanol
and other alcohols (119). An engineered bacterial
system has been used to produce low concentra-
tions of isopropanol from electrolytically gener-
atedH2 (120), complementing previous studies that
have coupled the enzyme formate dehydrogenase

to a semiconductor electrode to demonstrate the
direct enzyme-catalyzed photoelectrochemical
production of fuel (121). Extensive research ef-
forts aim to extend the stability of such enzymes
in vitro.
Other challenges for CO2 reduction involve the

flux limitations associated with utilization of
atmospheric CO2 as a sustainable CO2 source,
as well as the expense of concentration of CO2

for use as a reagent (122). In conjunction with
advances in materials and methods, additional
systems-based technoeconomic analysis is re-
quired to ascertain whether an artificial system
can be constructed, in principle, withmuch higher
efficiency, lower cost, and utility than either natu-
ral photosynthesis or direct or indirect solar H2

production followedby thermochemical conversion
of H2 with N2, CO2, or other carbon-containing
reactants, such as ethylene or biofuels, to produce
value-added, energy-rich fuels and/or chemicals.

Promise and potential

The remarkable progress that has been made in
cost reduction and commercial deployment of
solar energy technologies underscores the bene-
fits of investment in R&D and indicates the pro-
mise of, and necessity for, continued innovation
to produce further advances in the field. Both evo-
lutionary and revolutionary technology devel-
opment, involving foundational research, applied
research, learning by doing, demonstration pro-
jects, and deployment at scale will be needed to
continue this technology-innovation ecosystem.
Relative to the embodiments of solar energy–
conversion systems that have been developed to
date, higher efficiencies, lower costs, improved
scalability, and new functionality are in principle

achievable.Hence, research, engineering andman-
ufacturing will need to be pursued in harmony
and in a sustained fashion to allow realization of
the full potential of solar energy utilization,
and to allow the energy in sunlight to make a
material, and perhaps dominant, contribution to
a sustainable, cost-effective, global energy system.
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