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Spontaneous emission of matter waves from a 
tunable open quantum system
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The decay of an excited atom undergoing spontaneous photon 
emission into the fluctuating quantum-electrodynamic vacuum 
is an emblematic  example of the dynamics of an open quantum 
system. Recent experiments have demonstrated that the gapped 
photon dispersion in periodic structures, which prevents photons 
in certain frequency ranges from propagating, can give rise to 
unusual spontaneous-decay behaviour, including the formation of 
dissipative bound states1–3. So far, these effects have been restricted 
to the optical domain. Here we demonstrate similar behaviour in 
a system of artificial emitters, realized using ultracold atoms in an 
optical lattice, which decay by emitting matter-wave, rather than 
optical, radiation into free space. By controlling vacuum coupling 
and the excitation energy, we directly observe exponential and 
partly reversible non-Markovian dynamics and detect a tunable 
bound state that contains evanescent matter waves. Our system 
provides a flexible platform for simulating open-system quantum 
electrodynamics and for studying dissipative many-body physics 
with ultracold atoms4–6.

The Weisskopf–Wigner model of spontaneous emission7,8, a cen-
tral concept in quantum optics9, describes how an excited atom can 
decay to its ground state owing to coupling to zero-point oscillations 
of the electromagnetic vacuum. It simultaneously represents one of 
the first open quantum systems discussed in the literature and an area 
of research that has recently seen a resurgence of intense theoretical 
efforts10–13. In its usual Markovian formulation, the model makes the 
assumption that the decay proceeds on a much slower timescale than 
the optical period, which leads to a memoryless, exponential decay 
of the excited-state amplitude and to an associated Lamb shift of the 
transition frequency. For free-space emission, the Markovian approx-
imation is generally fulfilled to high accuracy.

On the other hand, modifications to the mode density of the vacuum 
can change the features of spontaneous decay. This was recognized first 
in the 1940s14 and again decades later15, during the development of 
cavity quantum electrodynamics16–18, where the decay can be altered 
to the extreme point of coherent vacuum Rabi oscillations when the 
spectrum is restricted to a single mode. Between these two limits lies 
the regime of a vacuum with a bounded continuous spectrum, in 
which a strong modification of spontaneous decay behaviour occurs 
close to the boundary. An example is photonic crystals (also called 
photonic-bandgap materials)19,20, where a periodic spatial modula-
tion of the refractive index gives rise to a gapped dispersion relation. 
For emission close to a bandgap, the Markovian approximation can 
no longer be applied, and novel features appear, including oscillatory 
decay dynamics for energies above the band edge and the formation 
of atom–photon bound states below it21. Over the past two decades, 
experiments on spontaneous emission in photonic-bandgap materi-
als, including the microwave domain, have observed some of these 
effects, specifically modified spontaneous emission rates22,23 and Lamb 
shifts24, as well as spectral signatures for non-exponential decay1. Very 
recently, experiments have probed the long-predicted atom–photon 
bound state25,26, using both transmon qubits coupled to corrugated 
microwave guides3 and atoms in photonic-crystal waveguides2, 

with the prospect of engineering systems with optical long-range 
interactions27.

Here, we realize an atom–optical analogue4–6 of emission in a 
one-dimensional photonic-bandgap material, where the singularity 
in the mode density near the edge of the continuum leads to particu-
larly strong deviations from Markovian behaviour. In our system of 
matter-wave emitters, the free tunability of the excitation energy and 
decay strength allows for a systematic exploration of the emergence 
of non-Markovian dynamics, including partial reversibility and the 
formation of a matter-wave bound state that can be directly detected. 
Importantly, the close spacing of emitters gives rise to collectively 
enhanced dynamics beyond the Weisskopf–Wigner model.

The experimental configuration is shown in Fig. 1a. Using a deep 
three-dimensional optical lattice with state selectivity along one axis, 
we prepare a sparse array of atoms confined to sites that are embedded 
in a system of isolated tubes acting as one-dimensional waveguides 
(see Methods for details). An atom’s internal state (|r〉, red) is coher-
ently coupled to a second, unconfined internal state (|b〉, blue) using an 
oscillatory magnetic field. Each site thus acts as a two-level matter-wave 
emitter, with harmonic-oscillator ground-state occupational levels |g〉 
(empty) and |e〉 (full), supporting both the emission (for |e〉 → |g〉) and 
the absorption (for |g〉 → |e〉) of a |b〉 atom. The excitation energy of 
the emitter, which is given by the detuning, Δ, of the coherent coupling 
from the atomic resonance, is converted into kinetic energy for atomic 
motion along the axis of the waveguide.

One of the main features of each matter-wave emitter is its ability to 
undergo spontaneous decay, as described by the Weisskopf–Wigner 
model. Assuming no lattice potential, the driven atom performs simple 
Rabi oscillations between two internal states |r〉 and |b〉. These oscilla-
tions are described by the Hamiltonian Ω= / + . .δH ħ rbˆ ( 2)e ˆˆ h ci t †

, where 
Ω denotes the strength and δ the detuning of the coupling from the bare 
atomic resonance, ħ is the Planck constant and ‘h.c.’ denotes the 
Hermitian conjugate. The tight confinement of just one of the states 
(here, |r〉) strongly couples the atom’s internal and motional degrees of 
freedom, producing a zero-point energy shift of ε̄ ω Ω= / ħ ħ20 0 , 
where ω0 is the harmonic-oscillator frequency in the potential, as well 
as a kinetic-energy shift of εk = ħ2k2/(2m) for the motion of the free  
|b〉 state at ħk momentum. As a consequence, the detuning and  
strength of the coupling are shifted to ˉΔ δ ε ε= + − /ħ( )k k0  and Ωk =  
Ωγk, respectively, with γk = 〈k|ψe〉 denoting the overlap of the  
external wavefunctions. Integration over all possible momenta k then 
yields6 ∣ ⟩⟨ ∣= ∑ + . .ΔH ħg g e bˆ e ˆ h ck k

i t
k
†

k , with gk = Ωk/2; that is, the stand-
ard Weisskopf–Wigner Hamiltonian describing spontaneous emission 
into a vacuum of modes (k, εk) (see Fig. 1b). In contrast to optical 
emission in free space, the dispersion relation εk is quadratic, as in a 
photonic crystal (see Fig. 1c). In such crystals, the emission energy 
relative to the edge of the continuum may be adjusted through the 
crystal’s band structure; in our system, the excitation energy, 
ħΔ ≡ ħΔk=0, itself is tunable, including the case Δ < 0. Importantly, 
the tunability also includes the vacuum coupling, gk, which is set by Ω.

A common scenario considered in the Wigner–Weisskopf model is 
emission deep into the continuum, such that the decay dynamics is 
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much slower than the timescale set by the excited-state energy (or the 
elevation above the band edge in the case of a photonic crystal). This 
allows for a Markovian treatment and results in exponential decay of 
the excited state. Following Fermi’s golden rule, the decay width, Γ, is 
the product of the mode density, ρ, and the square of a matrix element, 
Hge, which for optical decay is the product of the electric dipole moment 
and the zero-point field of the resonant mode. For our system, an  
analogous analysis6 (valid for Ω/Δ  1) leads to ˉΓ Ω ω Δ= /k

2
0 , con-

taining the one-dimensional mode density ρ Δ∝ /1  and ˉΩ∝H ħge k, 
where ˉ Δ= /k m ħ2  represents the resonant mode.

Because of the residual axial tube confinement, ωz, all measurements 
are taken for Ω/ωz > 1 and associated timescales shorter than 
τz = 2π/ωz ≈ 10 ms. The measured |r〉 population is shown in Fig. 2 for 
parameters in the (quasi-)Markovian regime (Ω/Δ)2  1 as a function 

of time (Fig. 2a) and detuning (Fig. 2b); the data in Fig. 2a are for 
Ω/Δ ≈ 0.4 at Δ ≈ 2π × 2 kHz (with Γ = 2π × 72 Hz). After a variable 
coupling time t, we observe an irreversible, exponential decay in agree-
ment with the expectation; however, the measured population does not 
decay to zero but instead saturates at a finite value. We qualitatively explain 
this discrepancy by taking into account that an excited emitter is not iso-
lated but part of a (mostly) ground-state array that enables reabsorption, 
in analogy to an optically thick medium. In the Weisskopf–Wigner for-
malism, the array is modelled by introducing site-dependent phases  
and projectors, resulting in4 ∣ ⟩⟨ ∣= ∑ + . .Δ −H ħg g e bˆ e ˆ h ck j k

i t kz
j j k,

( ) †
k j   

Following a master-equation-based treatment5, we expect excitations to 
be transferred between neighbours on a timescale of t ≈ 1/Γ = 2 ms, 
leading to a slowdown of the decay, in qualitative agreement with 
Fig. 2a (see also Methods section ‘Numerical simulation of array 
effects’). Moreover, the emitted atoms cannot escape from our system 
for long times, which induces the formation of a steady state as t 
approaches τz. Here, additional dephasing effects that are not consid-
ered in this model may arise from collisions between emitted atoms 
(scattering between modes in each tube). At early times, t < 1/Γ, with 
still weak reabsorption, the decay at a fixed time τ (see Fig. 2b) displays 
approximately the expected detuning dependence of the Weisskopf–
Wigner model, exp[−Γ(Δ)τ] ≈ 1 − Γ(Δ)τ (albeit with a downward 

Fig. 1 | Realization of matter-wave emitters. a, Experimental 
configuration. An occupied site of an optical lattice embedded in 
a single-mode matter waveguide acts as an elementary emitter of a 
single atom; adjacent empty lattice sites act as absorbers. The bottom 
illustration shows the momentum distribution in the waveguide after 
release and free expansion, where ħkr = ħ(2π/λz) (with a wavelength of 
λz = 790.1 nm) is the recoil momentum. b, Emission mechanism: (i) bare 
internal-state pair in 87Rb (hyperfine ground states |r〉 = |F = 1, mF = −1〉 
and |b〉 = |F = 2, mF = 0〉 split by 6.8 GHz); (ii) state pair in a frame co-
rotating with a near-resonant microwave field with variable detuning 
δ and coupling strength Ω; and (iii) state pair in the co-rotating frame 
after applying the state-selective lattice potential (detuning shifted to 
Δ = δ + ω0/2, where ω0 = h × 40 kHz). The microwave couples (with 
Ωk = Ωγk) the trapped |r〉 state to free |bk〉 states with momentum k and 
kinetic energy εk. c, The filled (empty) potential well can be viewed as the 
excited (ground) state |e〉 (|g〉) of a matter-wave emitter. The emission of 
atoms in this scenario is similar to the emission of photons in photonic-
bandgap (PBG) materials, with both featuring quadratic dispersions and 
energetically forbidden regions.
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Fig. 2 | Markovian regime. a, Time evolution of the lattice population for 
Ω = 2π × 0.74(5) kHz and Δ = 2π × 1.9(3) kHz (red symbols). Each point 
is the average of at least three measurements and error bars show the 
standard error of the mean (s.e.m.). The red line is a phenomenological 
exponential decay curve with a fitted rate of 2π × 94(3) Hz and an offset of 
0.503(4). The light-grey lines represent the Markovian approximation 
(dashed, Γ = 2π × 72(12) Hz) and the exact analytical solution for an 
isolated emitter6 (solid). b, Lattice population as a function of Δ for 
t = 0.4 ms and Ω = 2π × 1.5(1) kHz. The solid line is the Markovian 
expectation with the overall decay width, Γ, scaled by 0.61(1). c, Detected 
momentum distribution of |b〉 atoms versus Δ for parameters as in b. The 
dashed line is the single-particle dispersion; data for small positive and for 
negative detunings are outside the Markovian regime. d, Raw time-of-
flight data for extracting the energy shift at Δ = 2π × 6.0(3) kHz. Colour 
scale as in c. e, Measured shifts ˉ ˉδ Δ Δ= −kL  in the regime Ω/Δ < 1 for ̴Ω = .t 1 24 and averaged over Δ = 2π × {1, 2, 4, 6} kHz. The data are 
extracted from the second moment (maximum) of the momentum 
distribution, shown by blue squares (red circles). Error bars show the 
s.e.m. The blue solid and red dashed lines are quadratic fits and the grey 
dotted line represents δL(Ω).
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rescaling of the actual value of Γ at the finite pulse time τ = 0.4 ms used, 
with reabsorption effects already apparent).

We next characterize the momentum distribution of the emitted atoms. 
For this purpose we apply a 0.4-ms-long coupling pulse and then observe 
the location of the |b〉 atoms after 15 ms of free fall, using state-selective 
absorptive imaging (see Methods). On the basis of the Markovian approx-
imation, isotropic emission with wavepackets centred near the resonant 
momentum ˉ Δk( ) is expected. In Fig. 2c we show the observed momen-
tum distribution as a function of Δ; the emission clearly exhibits parabolic 
dispersion. Moreover, the spectral width, σk, of the separated wavepackets 
decreases with detuning, in qualitative agreement with the expectation 
(σk ∝ 1/Δ for large detunings6; a quantitative comparison is compromised 
by the finite time of flight). The ‘intensity’ of the emitted matter-wave 
pulse strongly depends on the detuning, as shown in Fig. 2b.

The standard Markovian treatment of the Weisskopf–Wigner model 
yields a Lamb shift of the ground and excited states as a unitary cou-
pling to the vacuum. An analogous analysis for our system4,6 yields a 
shift δL = Ω2/ω0 of the excited-state energy, to (Δ − δL). We measure 
the momentum distribution for variable Ω at several values of Δ and 
then calculate the mean kinetic energy of the wavepackets both from 
the second moment of the momentum distributions and from the loca-
tion of their fitted maxima (see Methods for details). To facilitate com-
parison with the model, the data are taken for a constant effective pulse 
area ̴Ωt, where ̴Ω Ω ω Ω= / /( )0

1 3 , and t ≤ 1 ms to mitigate propagation 
effects. The results for the (quasi-)Markovian regime (Ω/Δ)2  1 are 
shown in Fig. 2d, e as a function of Ω. The extracted shift has the sign 
and approximate quadratic dependence of δL but is a factor of roughly 
three larger. We caution that while this alone could point towards the 
existence of collective enhancement, there is no indication for super-
radiance4,28 from the decay data (which is consistent with the fact that 
there is no overall population inversion in the array).

Our system readily allows the study of spontaneous emission outside 
the Markovian regime, as shown in Fig. 2c. In particular, the diverging 
one-dimensional mode density near εk = 0 greatly enhances the effects 
of the edge of the continuum. For emission at low excitation energy, 

Δ/Ω  1, we expect dynamics reminiscent of a two-level system, with 
damping provided by low-energy modes. Results of measurements at 
Δ = 0 are shown in Fig. 3a. We observe oscillations similar to the pre-
dictions of our isolated-emitter model6 (which now features a finite 
offset, in contrast to positive detunings) but with higher frequency and 
less damping, suggesting that the dynamics is coherently enhanced by 
low-energy modes whose wavelengths can extend over several emitters 
(see also Methods section ‘Numerical simulation of array effects’).

For emission below the continuum edge (that is, for Δ < 0), we expect 
the formation of a stationary bound state4,6, as illustrated in Fig. 3c. For 
our one-dimensional system, this state consists of a partly excited emit-
ter dressed by an evanescent, approximately exponentially decaying 
matter wave, with a binding energy of ħωB ≈ ħΔ and a localization 
length6 of ∣ ∣ξ ω= / /m ħ1 2 B . To isolate the bound state, the coupling 
needs to be turned on slowly to prevent the additional population of 
freely propagating modes6 representing a non-adiabatic, transient shed-
ding of matter waves. However, first we proceed as before by switching 
on the coupling, at Δ = −2π × 1.7 kHz. The lattice population, shown 
in Fig. 3b, shows a transient oscillation (with much lower amplitude 
than at the edge) settling to an asymptotic value below unity (with an 
observable |b〉 population; see Fig. 2c). Remarkably, our isolated-emitter 
model6 now closely fits the data within the experimental uncertainties. 
Indeed, for the chosen parameters, ξ is less than half a lattice period, 
which should lead to a relative suppression of long-range couplings.

To access the properties of the bound state, we first determine the frac-
tion of |b〉 atoms by comparing the asymptotic lattice population for a 
sudden and for an exponential turn-on of the coupling. The results in 
Fig. 3d show that 7.1(2)% of the population are in the evanescent wave, 
with a total |b〉 population of 12.7(2)% (here and elsewhere the errors 
quoted denote one standard deviation). The observed fraction of |b〉 
atoms in the bound state (55%) is close to the expectation6 of 47% for 
the chosen parameters, with the excess possibly stemming from residual 
non-adiabaticity of the ramping (we noticed an inconsistency in ref. 6 for 
the total |b〉 fraction, but this does not affect the relative |b〉 fraction in 
the bound state). Importantly, the recorded momentum distribution of 

Fig. 3 | Non-Markovian dynamics and bound-state formation.  
a, Time evolution of the |r〉 population for Δ = −2π × 0.1(3) kHz and 
Ω = 2π × 3.0(3) kHz (with points and error bars as in Fig. 2a). The grey 
line is our analytical model. b, Same as a, but for Δ = −2π × 1.7(3) kHz. 
The fitting parameters of the analytical model are Δ = −2π × 2.08(3) kHz 
and Ω = 2π × 2.79(4) kHz. c, Illustration of a stationary bound state 
for negative excitation energies. d, Asymptotic fraction of |b〉 atoms, 
extracted from the time evolution after t = 2.6 ms, for Ω as in a and 
Δ = −2π × 2.2(3) kHz. The top (bottom) histogram refers to the case 
of a sudden (adiabatic) turn-on of the coupling, measured from 50 
experimental runs each. e, Illustration of separation of evanescent and 
propagating waves along the weakly confining tube axis. The atomic 
sample resides off-centre from the minimum of the axial tube potential 
(solid line), shifted from that of the initial trap (dashed line), which 
defines the sample position. While the sample and bound state are frozen 

in place (vertical dotted line), the nonadiabatically released fraction (blue 
arrow) is accelerated towards the potential minimum. f, Momentum 
distributions of |b〉 atoms for the two scenarios considered in d. Open 
(filled) circles represent the sudden (adiabatic) turn-on of the coupling, 
averaged over all 50 runs, and triangles show the difference of the two 
datasets. The solid line represents the square of the Fourier transform 
of the analytical evanescent wavefunction6, fitted to the adiabatic data 
(Δfit = 2π × 2.1(1) kHz). The centre of mass of the non-adiabatic dataset is 
shifted by ps = 0.32(1)ħkr relative to the adiabatic dataset, and that of their 
difference (with a half-width at half-maximum of 0.57(1)ħkr) is shifted by 
ps = 0.80(1)ħkr. The expectation for free atoms is ps = 0.83(7)ħkr. Lower 
inset, corresponding real-space evanescent wavefunction (blue, solid) 
and Wannier function of a lattice-trapped |r〉 atom (dashed, red). Upper 
inset, raw data for the momentum distributions of e, before subtraction of 
spurious higher-band contributions (see Methods).
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the bound evanescent fraction of |b〉 atoms (see Fig. 3f) can be directly 
compared to the prediction of our analytical model6 owing to the absence 
of propagation effects. Fitting the model to the data for the adiabatic 
ramp-up with Δ as the only fitting parameter reproduces its experimental 
value to within the experimental uncertainty, and the agreement between 
the model and the measured momentum distribution is indeed excellent. 
The localization length obtained from the exact model is ξ = 142(3) nm 
(we note that for the parameters chosen6, ωB ≈ 1.3Δ).

Finally, additional direct evidence for the non-adiabatically released 
part can be obtained by comparing the adiabatic momentum distribu-
tion to that recorded after the rectangular pulse. Because our sample is 
prepared off-centre from the potential minimum along the tube direction 
(see Fig. 3e, Methods), the distribution of the shed |b〉 atoms can separate 
in momentum space from the bound fraction. The pulse duration used in 
this experiment corresponds to about a quarter of the oscillation period 
(2.6 ms) along the tube axis, thus maximizing this differential effect. As 
seen in Fig. 3f, the (symmetric) difference of the two momentum distri-
butions is centred at the finite momentum expected for atoms released 
with zero velocity at the beginning of the pulse. This finding is consistent 
with the time evolution in Fig. 3b, which suggests that the release of the 
unbound fraction occurs within a short time (about 0.5 ms) after the 
coupling is turned on. We note that as a result of propagation in the tubes 
for a quarter of the oscillation period, the width of the momentum distri-
bution of the released atoms reflects that of their distribution in real space 
(vz = zωz). The extracted half-width at half-maximum of 5.47(9) μm is 
comparable to the Thomas–Fermi radius of the initial condensate.

Much of the present work has focused on basic properties arising from 
the tunability of our Wigner–Weisskopf system, including the formation 
of bound states below the edge of the mode continuum. On the single- 
emitter level, this provides a direct analogy to atomic decay near the 
bandgap of a photonic crystal. We note that in yet another context, the 
observed non-Markovian oscillatory dynamics also reproduces predic-
tions for electron photodetachment from negative ions29,30. The optical 
lattice geometry opens up various additional avenues of inquiry. For 
emission sufficiently above the continuum edge, these may include novel 
types of superradiance that depend on the degree of coherence of the lat-
tice population (superfluid or Mott insulating)4,5 and have no analogue 
in optical systems. Moreover, controlling the longitudinal waveguide 
level spacing should enable studies of the transition between Dicke- 
and Tavis–Cummings-type models in quantum optics4,9 (restricted to 
co-rotating terms), including their modification in the non-Markovian 
regime. Unlike photons, the emitted atoms can directly interact with 
each other, which should give rise to additional, nonlinear effects that 
modify the population dynamics. For negative energies, the bound state 
lends itself to the realization of lattice models4 with modified tunnelling 
and interactions. Superficially, the structure of the bound state resem-
bles that of a lattice polaron31,32 (for which a phononic Lamb shift has 
recently been measured33), with massive vacuum excitations replacing 
massless Bogoliubov sound excitations. Rather than reducing transport, 
the bound state here leads to an enhancement of mobility. The presence 
of tunnelling with a tunable range is of interest, for example, for studies 
of integrability and thermalization in one-dimensional geometries.

Online content
Any Methods, including any statements of data availability and Nature Research 
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Methods
Experimental procedures. In this section we outline experimental procedures 
implemented in our measurements.
Sample preparation. In the experiment we used 87Rb atoms in the hyperfine ground 
states |r〉 = |F = 1, mF = −1〉 and |b〉 = |2, 0〉 (the fact that |r〉 lies below |b〉 is incon-
sequential in the rotating frame). The atoms are confined to a two-dimensional 
array of roughly 103 isolated lattice tubes spaced at 532 nm, each with a radial con-
finement of ω⊥ = 2π × 26 kHz and a residual axial confinement of ωz = 2π × 97 Hz 
that quantizes the mode spectrum for released |b〉 atoms in the z direction; this 
confinement is inconsequential for times much shorter than τz = 2π/ωz ≈ 10 ms. A 
state-selective lattice with period λz/2 = 395 nm and harmonic-oscillator frequency 
ω0 = 2π × 40(1) kHz strongly confines the |r〉 atoms along the tube axis.

Starting with an optically trapped Bose–Einstein condensate34, we first create an 
atomic Mott insulator of |r〉 atoms by simultaneously ramping up all three optical 
lattices over a time of 90 ms to depths of 40Er,1,064nm,40Er,1,064nm and 30Er,790.1nm, 
where Er,λ = (h/λ)2/(2m) is the respective recoil energy, in the x, y and z directions, 
respectively. This procedure results in a deeply confined Mott-insulating sample, 
while also shifting the minimum of the tube potentials by about 10 μm with respect 
to the sample. The shift (which is comparable to the sample size and corresponds 
to the change of the gravitational sag during the ramp34 after the atoms are effec-
tively pinned by the z lattice) leaves the resonance condition for individual atoms 
unaffected because |r〉 and |b〉 experience the same tube potential.

After loading the atoms into the lattice, we transfer a fraction of approximately 
0.82 to an intermediate state |2, 1〉 using a two-photon radiofrequency pulse 
(microwave radiation of 6.8 GHz and radiofrequency radiation of about 3 MHz) 
of 0.95 ms duration. These atoms are eventually removed using resonant light on 
the D2 cycling transition (F = 2→F′ = 3). Using the |2, 1〉 state has the advantage 
that there is no first-order shift in the energy difference between |1, −1〉 and |2, 1〉 
due to either magnetic field or the state-selective optical potential. Also, collisional 
shifts35 of doubly (triply) occupied sites are roughly 50 Hz (100 Hz) for our lattice 
parameters, much less than the spectral width of the pulse. This yields a sample 
of 2.8(2) × 104 |r〉 atoms with an average site occupation of 〈ni〉 ≲ 0.5 in the tubes. 
Having thus created an initial state of matter-wave emitters, we then switch on a 
6.8-GHz microwave field of variable coupling strength Ω and detuning Δ.
Atom detection. We switch off the microwave coupling Ω suddenly, and we measure 
the population remaining in the lattice and access the momentum distribution of 
the released atoms with state-selective absorptive imaging, using a combination 
of band mapping and Stern–Gerlach separation during the time of flight (TOF).

The state detection begins with a 500-μs bandmap step during which all lat-
tice potentials are ramped down to zero (the bandmap step prevents a rapid 
transverse expansion out of the tube potentials and is therefore favourable for 
momentum-space detection when small atom numbers are used). Subsequently 
all remaining trapping potentials are turned off suddenly, and after an expansion 
time of about 1 ms a pulse sequence is applied for magnetic-field characterization 
(see below), immediately followed by a 5-ms-long magnetic field gradient pulse 
to separate states of different magnetic moments. Finally, 14.5 ms after the release 
from the optical potential, a 200-μs-long imaging pulse of resonant light on the 
F = 2 → F′ = 3 D2 cycling transition is used to detect the F = 2 atoms; this yields a 
total effective TOF of 14.6 ms for atoms in this state. The F = 1 atoms are repumped 
for 100 μs using resonant D2 light (F = 1 → F′ = 2) after an additional 2.7 ms, 
immediately followed by another 200-μs-long imaging pulse (D2, F = 2 → F′ = 3) 
to detect the repumped F = 1 atoms after a total TOF of 17.6 ms. Because all mag-
netic moments are unique within F = 1 and F = 2 separately, we fully resolve the 
population in each individual hyperfine state |F, mF〉. We note that technically the 
cloud centres of F = 1 and F = 2 along the imaging direction are still overlapped 
during the second imaging pulse, however the F = 2 atoms are pushed out of the 
field of view by the time the F = 1 detection occurs.
Image analysis. Our raw data are images acquired using a Princeton Instruments 
PIXIS:1024B charge-coupled device (CCD) camera with WinView32 software in 
.spe format. We use Mathematica to read the raw image data and create standard 
absorption images. Residual fringes are removed by subtracting typical fringes 
found using principal-component analysis of a large set (>100) of empty absorp-
tion images.
Momentum-space calibration. Our standard momentum calibration relies on 
Kapitza–Dirac diffraction36 from the z lattice. For a more precise determination 
of emission momenta, we take into account residual propagation in the tubes that 
slows the atomic motion. After ramping up the z lattice, the tubes are created by 
partial retro-reflection of the Gaussian beams of our optical trap (1/e2 radius of 
w = 135 μm)34, which leads to an increase of the optical confinement ωz/(2π) from 
72(1) Hz to 97(1) Hz (with the gravity direction along z). The tubes are again 
ramped down within 500 μs after the microwave pulse (together with the z lattice, 
for band-mapping purposes), followed by a switch-off of the optical trap. We 
numerically simulate the motion of atoms in the tubes by assuming that the release 
(with momentum ˉ±k) occurs midway through the pulse, at the centre of the 72-Hz 

trap, and by calculating the trajectories in the time-dependent optical potential 
until detection, after a TOF of 14.6 ms. We see that the calibration differs from the 
Kapitza–Dirac diffraction results by −0.5%, −1% and −6% for pulse durations of 
0.2 ms, 0.4 ms and 1 ms, respectively, with negligible differences for shorter pulses. 
These corrections are included in Fig. 2.
Characterization of magnetic fields and optical potentials. The quoted uncer-
tainty of 300 Hz in the detuning Δ has contributions from both differential Zeeman 
and alternating-current Stark shifts, which are characterized as follows.
Magnetic fields. All experiments are carried out at fields between 4.9998(1) G 
and 5.0002(1) G, where the error corresponds to an uncertainty in the bare-level 
splitting of 70 Hz between |r〉 and |b〉. The magnetic field for each iteration of the 
experiment is monitored using a series of Rabi pulses during the TOF37, in which 
atoms in |1, −1〉 are redistributed to the |2, −2〉 and |2, −1〉 states. This method 
allows field reconstruction to within 100 μG (for details see ref. 37). The inhomo-
geneity of the magnetic field across the sample is characterized using a Ramsey 
pulse sequence. This inhomogeneity does not exceed 70 μG, which corresponds 
to a root-mean-square (r.m.s.) variation of Δ of 15 Hz across the sample for the 
(|r〉, |b〉) state pair.
Differential optical potential. The state-selective optical potential is created using 
a σ−-polarized laser beam (waist, 230 μm) at λz = 790.10(2) nm. The polarization 
and wavelength are set (using a λ/4 waveplate and laser controls) such that the 
lattice potential seen by the |r〉 atoms is maximized, while the |b〉 atoms experience 
zero potential. The change in lattice potential with wavelength is 0.12Er/(0.01 nm), 
whereas the maximum theoretically possible polarization change (σ− to π) changes 
the potential by 0.01Er (we note that the polarization is stable in the experiment). 
We characterize the state selectivity using a sequence of ten Kapitza–Dirac pulses 
(10 μs) spaced at the Talbot resonance time38, τ = (4Er,790.1nm/h)−1 = 68 μs, to 
ensure a suppression of the optical potential for |b〉 atoms by a factor of more 
than 100 with respect to that for |r〉 atoms, consistent also with the remaining 
wavelength uncertainty of 0.02 nm.

A crucial part of the experiment is the reliable determination of the resonance 
condition, or the value of Δ. Because the creation of our matter-wave emitter 
(Fig. 1c) starts with a detuned Rabi oscillation of two hyperfine states, we first 
(post-)stabilize the magnetic field as discussed above and in ref. 37. The resonance 
condition (‘excited-state energy’) of the matter-wave emitters is determined by the 
detuning of the hyperfine spin and the zero point shifts to both states induced by 
the state-selective potential. Because we can currently control the wavelength only 
to an accuracy of 0.02 nm r.m.s., the overall uncertainty is limited to a maximum 
of ±340 Hz r.m.s., with the most extreme fluctuations limited to 1 kHz. To address 
and monitor this issue, we bracket each measurement (such as measuring the time 
evolution at a given detuning) by a resonance curve; an average of such resonance 
curves is shown in Extended Data Fig. 1 (see also figure 5 in ref. 37). The resonance 
curve is taken without any transverse lattices on, with a low atom number in the 
optical trap (around 30,000 atoms) and only at partial transfer (at most 30%) to 
minimize systematic mean-field and density shifts. The residual systematic shift 
of the resonance condition due to mean-field and density effects is estimated to 
be less than 100 Hz by using direct simulation of resonance curves with the one- 
dimensional time-dependent Gross–Pitaevskii equation. The scatter of the centre  
of the resonance curves during a typical measurement has an r.m.s. value of 
0.3 kHz, which is the quoted uncertainty of the detuning and also matches the 
expected wavelength reproducibility of 0.02 nm.

To characterize inhomogeneities of the state-selective optical potential, first we 
precisely calibrate the Rabi coupling strength (for a range of coupling strengths) in 
the absence of state-selective potentials. We then compare the maximum observed 
population transfer in a Rabi spectrum to the expected maximum population 
transfer into the lattice. Based on the comparison, we estimate an upper bound 
for the inhomogeneity of 300 Hz r.m.s. We note that the inhomogeneities of the 
trapping potential at 1,064 nm do not exceed 20 Hz r.m.s. across the sample. For 
comparison, the absolute magnitude of the spectroscopic shift of |1, −1〉 ↔ |2, 0〉 
in the centre of the optical trap does not exceed 400 Hz.
Background subtraction. The sequence used to thin out the atomic sample leaves 
roughly 103 atoms in the |b〉 state before the microwave pulse is applied. This results 
in a diffuse background in the momentum distributions, as illustrated in Extended 
Data Fig. 2. We remove this background by subtracting reference data taken for 
zero pulse time. The result is shown in Fig. 2c.

In Fig. 3f we also show the subtraction of background due to the very small 
fraction of higher-band population. The first excited band is expected at approx-
imately 2π × 36(1) kHz or ±3ħkr. For the subtraction, we first fit three Gaussian 
peaks to the adiabatic ramp and one soft-edge box and two Gaussians to the sudden 
turn-on data, requiring identical atom numbers in the soft-edge box and the small 
Gaussian. The fitted functions are subtracted from the data, which then yield the 
main plot in Fig. 3f. The number of atoms emitted from higher bands is of the 
order of 510(30) for the sudden turn-on and 260(30) for the adiabatic ramp, which 
is less than 1 atom in a higher band per tube. The total number of atoms emitted 
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from higher bands changes with the pulse area because spurious emission from 
the higher bands is in the Markovian regime.
Energy-shift data. The main motivation for the precise momentum calibration 
described above lies in the small size of the energy shift. Another challenge is the 
blurring of the distribution due to propagation effects for small coupling strengths 
(that is, long pulses). We use two measures for the determination of the energy 
of the emitted wavepackets: the squared separation of the wavepacket centres 
(extracted from the fit) and the second moment of the (centred) distribution. The 
accuracy of the peak-separation measure is limited by the fact that it ignores the 
physical broadening of the momentum distribution at larger coupling strengths 
and shorter times, whereas the second moment is sensitive to blurring of the wave-
packets during detection. The data obtained using both methods are shown in 
Extended Data Fig. 3. In the non-Markovian regime, Ω/Δ > 1, the peaks become 
indistinguishable (see the apex of the parabola in Fig. 2c) and a meaningful meas-
ure of the shift cannot be extracted with either method.
Numerical simulation of array effects. As stated in the main text, the Hamiltonian 
of the multi-site array4 predicts the (resonant) transfer of excitations between 
neighbouring emitters5, in some similarity to the mechanisms for radiation trap-
ping in an optically thick sample. Instead of attempting to solve this Hamiltonian, 
here we consider a simplistic model of an array of three emitters that is coupled to a 
quantized mode structure reflecting the weak longitudinal harmonic confinement. 
We chose our simplistic three-site model to have a centrally occupied site as the 
simplest spatially symmetric generalization of the isolated-emitter situation, which 
also corresponds to an ‘average segment’ in our system, with approximately one 
empty neighbour on each side of a populated site.

We start from the Rabi Hamiltonian (in the rotating-wave approximation) and 
expand it to couple one or several sites (|r〉) to many different, weakly confined 
levels (|b〉). This Hamiltonian is (for simplicity only shown for two sites, but readily 
expanded to n sites)
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2 2  is a site-dependent detuning (that is, a site-dependent 

offset due to the weak harmonic confinement ωz experienced by both  
lattice-trapped and free atoms) and γi,j represents overlaps between final- and 
initial-state wavefunctions (calculated numerically). We use modes up to a fixed 
frequency (ωmax = 2π × 5 kHz) and restrict ourselves to Δ + 2Ω < ωmax.

The results of the simulation for the Markovian parameters discussed in the 
main text are shown in Extended Data Fig. 4a, b. The simulated decay for an iso-
lated emitter reproduces the prediction of our analytical model6—small discrepan-
cies arise from the fact that the latter neglects terms of order (Δ/ω0)2 and (Ω/ω0)2 

and higher, whereas our numerical simulation retains all orders. For the three-site 
array, the presence of neighbouring wells leads to a slowdown of the decay. The 
origin of this behaviour is reabsorption of emitted population by initially empty 
neighbours, as seen in Extended Data Fig. 4b. For the array considered, the process 
also leads to the formation of a temporary plateau in the overall site population, 
which may be related to the offset observed in the experiment. However, we cau-
tion that the long-time decay occurs in a regime not accessible experimentally 
(we assumed a denser mode structure to extend the continuum approximation; 
see below), and also the dynamics may be different in an optical lattice extending 
over the entire mode volume.

In Extended Data Fig. 4c we plot the dynamics in the extreme non-Markovian 
regime at the edge, where the coupling strength is much larger than the excited- 
state energy. In this case, we see that the single emitter displays oscillatory dynamics 
that quickly damps out and settles to a non-zero value, again in agreement with 
the analytical theory. On the other hand, the three-emitter array shows oscillatory 
dynamics of much greater amplitude and longer duration. We interpret this as a 
coherent enhancement of the dynamics through tunnelling to nearest neighbours. 
The range of this tunnelling diverges at the band edge, causing the marked differ-
ence between single emitter and three emitters.

From our simulations we gain additional insight into the effects of the quan-
tized mode structure. As discussed in the main text, the mode structure should 
act like a true continuum for short enough times, where uncertainty should ‘wash 
out’ the levels. The simulations provide a quantitative test for this. The simplest 
comparison is for an isolated emitter in the Markovian limit. We see that for early 
times, the Markovian prediction6 quantitatively agrees with the numerical solution, 
with a marked deviation (‘revival’) observable only at t* > 0.25[ωz/(2π)]−1 (we 
restrict data taking to t < t* = 2.6 ms in the experiments, in all but one case.) This 
is independent of the set harmonic trapping frequency and the location of the site 
in the array (centre or off-centre). We note that similar results are also obtained 
if the continuum is discretized by assuming a periodic-box-type potential, where 
the revival time depends on the length of the box. We furthermore note that our 
simulation does not reproduce δL for long times.
Data availability. The data that support the findings of this study are available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Average spectrum of coupling stationary atoms 
into the z lattice. The spectrum was generated from a series of 17 spectra 
taken over a one-day period, whose fitted centres are shifted to zero. The 
coupling strength is Ω = 740(10) Hz and the pulse time is 400 μs, with 
the data points binned into 300-Hz-wide bins. The solid curve is a fit to 
the data with Ω as a free-fitting parameter and the dashed curve has no 
free parameters. The effective coupling strength was calculated using the 
wavefunction overlap between free and trapped species, γ0 = 0.72.
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Extended Data Fig. 2 | Raw momentum spectrum. The spectrum shows 
a detuning-independent, diffuse background of roughly 103 atoms. The 
spectrum was acquired as described in the main text, Fig. 2 and Methods; 
colour scale is identical to Fig. 2c.
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Extended Data Fig. 3 | Raw data used to obtain the energy shift.  
a, b, Second moment of k (a) and half-separation squared (b) both 
subtracted by Δ/(2π). The detuning Δ/(2π) is 1.0 kHz (black disks), 
2.0 kHz (red triangles), 4.0 kHz (green squares) and 6.0 kHz (blue circles). 
Points in brackets correspond to the non-Markovian regime, Ω/Δ > 1.
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Extended Data Fig. 4 | Simulated decay dynamics for a 1-site and a 
3-site model (with the central site initially populated). a, Dynamics 
of the two models, as depicted in the insets, for Δ = 2π × 1.9 kHz and 
Ω = 2π × 0.74 kHz, with ωz = 2π × 0.1 kHz. b, Long-time decay dynamics 
of the 1-site (black) and 3-site (red) models for Ω = 2π × 0.74 kHz and 
Δ = 2π × 1.9 kHz, with ωz = 2π × 5 Hz. The dashed red line shows the 
population of the central, initially populated, site; the dotted red line shows 
the population of the neighbouring sites. c, Dynamics of the two models 
for Δ = −2π × 0.1 kHz and Ω = 2π × 3 kHz, with ωz = 2π × 0.1 kHz.
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