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Abstract
Quantum computing is no longer a nascent field. Programmable quantum annealing (QA) devices
withmore than 1000 qubits are commercially available. Howdoes one know that a putativeQAdevice
is indeed quantum?How should one go about benchmarking its performance and compare it to
classical algorithms?How can its performance be improved by error correction? In this contribution
to the focus collection on ‘Whatwould you dowith 1000 qubits?’, we review theworkwe and others
have done in this area, since the first D-Wave quantum annealer with 108 qubits wasmade available to
us. Some of the lessonswe have learnedwill be useful when other quantum computing platforms
reach a similar scale, and practitioners will attempt to demonstrate quantum speedup.

1. Introduction

Aswe look forward to the rapid development of newquantumcomputingdeviceswithhundreds or a few thousand
qubits, particularly commercial devices andnon-gate-baseddevices such as quantumannealers,weare facedwith a
challenge.Howdoes one ensure suchdevices really dowhat they claim, and are not effectively classical?Howdoes
one evaluate the performance of such a device,whatmethods should oneuse to estimate performance on a given
metric, andwhatmetrics shouldoneuse?Howdowedomaintenance on thequantumstate and ensurewecan
prevent or correct breakdowns and errors? These questionshave to be settled beforewe candecidewhere to take our
device on a test drive, andwhat problemswe shoulduse our quantumcomputing devices to try to solve.

At this time, these newdevices and plans for quantum annealing (QA) devices and various other quantum
computing platforms are no longer the first of their kind. Several generations of programmable quantum
annealers fromD-Wave Systems have beenmade available to a small community of researchers, which has
worked hard to answer the aforementioned questions. This community began largely groping in the dark, and
has over the last six years answeredmany of themost basic questions, developing techniques to validate
quantumannealers,methods to benchmark and estimate performance, and developingmethods to suppress
errors given the constraints of existing quantum annealers.

We have been fortunate to bemembers of the aforementioned community, which has given us an
opportunity toworkwith the first several generations of quantum annealers, starting from the first
commercially available such device, the 128-qubit D-WaveOne (DW1) ‘Rainier’ processor, through twomore
generations of 512 and 1152 qubits, to the current 2048-qubit D-Wave 2000Qprocessor6. As such, rather than
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answering the question ‘whatwould you dowith 1000 qubits?’, in this workwewill answer the question ‘what
havewe donewith 1000 qubits?’. The discussionwill drawmainly from the researchwe have done on quantum
annealers, andwe apologize in advance to themany others who have contributed to this enterprise for not doing
their work justice.We expect that some of the lessons learnedwill inform studies of future classes of quantum
computing devices withmany qubits. Our presentation aims to remain at a fairly high level, without giving a
detailed technical account, for whichwe refer the reader to the original literature cited.

2.Quantumvalidation testing

Perhaps thefirst questiononemight askwhenoffered aquantumcomputational device iswhether ornot it is, in fact,
quantum. In the case of quantumcomputational devices basedon the circuitmodel and/or gates for quantum
computing, the task of validation canbe reduced to aClauser–Horne–Shimony–Holt test between twoparts of the
device that are treated as blackboxes [1]. Alternatively, onemayopt for quantumprocess tomography [2, 3]or
quantumgate set tomography [4, 5], whereinone appliesmany small computations andmeasures the results,
verifying that theymatch thepredictions of quantumtheory. These predictions are available because the quantum
computations inquestion typically involve fewqubits and are thus readily implementable [6, 7].

However, for other quantumcomputingparadigms, such asQA [8, 9] and thebroaderfield inspired by adiabatic
quantumcomputing (AQC) [10–13], quantumtomography is not currently available for validation.This is for a
variety of reasons. Thekeydifference is that gate-based computations aremodular: they canbebroken intodiscrete
time-local and space-local operations, operating effectively ononlyoneor twoqubits at a time,with the others left
essentially unaffected, so the only requirement to validate even a long chainof computations is to validate those one-
and two-qubit operations on individual qubits andpairs of qubits. ForAQC-like platforms, the quantum
computation is composedof a continuously time-varyingHamiltonianwithmany computational operators acting
on the systemat the same time.They arenon-modular in the sense that they cannot be easily brokendown into
discrete chunkswhich canbe validated separately. Future versions of suchplatformsmaybemoreflexible and allow
for approaches such as quantumtomography, butwill still be unable to validate arbitrarily large computations due to
the aforementionednonmodularity of the computation.Meanwhile, partial alternatives such as tunneling
spectroscopyhave alreadybeen explored [14].Of course, in the absence of error correction and fault toleranceneither
the gatemodel norAQCare guaranteed successful validation.

Nevertheless, certain lessons can be ported over to non-gate-based approaches. One should, as in the circuit
model, focus on small problems, with a small number of qubits, and onemay hope that by studying such
problems applied tomany such overlapping sets that one can at least partially validate the operation of the
device. Fromhere, two paths for validation become available, depending onwhether one can ‘open the black
box’ and performmeasurements during the anneal or usemeasurements beyondwhatmay be considered
‘native’ to the device, orwhether one is only able to use the device’s output at the end of complete runs for
testing.

2.1. Types of validation: proof of quantumness, quantum supremacy, speedup-inferred quantumness, and
classicalmodel rejection
As a case in point, for AQC-style algorithms a system is typically initialized in the ground state of a simple driver
Hamiltonian, inmost cases a transverse field ‘driverHamiltonian’ H i
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Pauli operators), and then theHamiltonian is slowlymodified into the ‘problemHamiltonian’H1 via the
transformation
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whereA(s) andB(s) aremonotonically decreasing and increasing functions of the dimensionless time s=t/tf,
respectively, where tä[0, tf] and tf denotes the annealing time.HereH1 encodes the problem via programmable
parameters {hi} (‘localfields’ or ‘biases’) and {Jij} (‘couplers’):
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For theD-Wave quantum annealers the hi and Jij terms are programmable with values bounded between [−2, 2]
and [−1, 1], respectively. The form in equation (1) is the general form for an Isingmodel quantumannealer, and
aswritten every qubit in thefinalHamiltonian is connected to every other qubit. In reality (for example the
D-Wave architecture), full connectivity is difficult to achieve, and as such theremay be additional restrictions on
the Jij, such that they can be nonzero if the nodes i and j are connected on the hardware graph of the device. An
example of the ‘Chimera’hardware connectivity graph of aD-Wave TwoX (DW2X) processor is shown in
figure 1, and its ‘annealing schedule’, theA(s) andB(s) curves, are shown infigure 2.
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Figure 1.An 1152 qubit Chimera graph describing theD-Wave TwoXprocessor at theUniversity of SouthernCalifornia’s
Information Sciences Institute. Inactive qubits aremarked in red, active qubits (1098) aremarked in green. Black lines denote active
couplings (where Jij is programmable to be in the range [−1, 1]) between qubits.

Figure 2.Annealing schedules for theD-Wave TwoXprocessor described infigure 1.
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In validating quantum annealers, one seeks to create an assignment to the hʼs and Jʼs such that one can take
somemeasurements whichwill conclusively demonstrate, for instance, quantum entanglement, inwhatmight
be called an experimental ‘proof of quantumness’.

A somewhatweaker and indirect type of validation is provided by ‘quantum supremacy’ experiments [15],
since they have the potential for complexity theoretic guarantees7.More specifically, quantum supremacy is a
scenariowhere (part of) the polynomial hierarchy of complexity theory collapses if the quantum result could be
replicated classically without slowdown [17–22].While weaker than a direct proof of quantumness, a
demonstration of quantum supremacywould be considered strong evidence for quantum computational power
of a device, whichmay be considered inherentlymore interesting than a direct demonstration of, e.g.,
entanglement.

‘Speedup-inferred quantumness’ is a related type of indirect validation based on a demonstration of quantum
speedup [23] over the best classical solvers known for a task, which is often considered the holy grail of quantum
information processing. Unlike quantum supremacy tests, speedup-inferred quantumness tests do not have
complexity theoretic guarantees (an example in the circuitmodel would be Shor’s algorithm [24]). It appears
that an unqualified quantum speedupwould necessarily have to invoke quantumproperties, and thismight
happen even if these properties remain poorly understood or characterized. Thus a certificate of quantumness
might be assigned even in the absence of a direct demonstration of quantumproperties such as entanglement. It
should be recognized that this carries a certain element of risk. For example, suppose a new classical optimization
is discovered that outperforms all other classical and quantumoptimization algorithms known to date (this is in
fact what happened recently in a tug-of-war between quantum and classical optimization for theMax E3LIN2
problem [25]). This algorithm could be deceptivelymarketed as a quantum algorithmproviding speedup-
inferred quantumness by a shrewd company claiming to own quantum computers, that provides black box
access only to run the new optimization algorithm. Thus any claim of speedup-inferred quantumness should
always be treatedwith a healthy degree of skepticism as related to its quantumunderpinnings, until actual
evidence of quantum effects driving the algorithm is presented.

If none of prior three types (proof of quantumness, quantum supremacy, speedup-inferred quantumness) of
validation are attainable, onemay alternatively seek to show that on sufficiently small scale problems the results
are only readily reproducible using a truly quantummodel of the device, and cannot be replicated qualitatively
using any existing classicalmodel, inwhatmight be called ‘classical model rejection’. This type of validation
experiment does not provide a certificate of quantumness, since one can always invent a new and better classical
model. Instead, one can only hope to exclude all ‘physically reasonable’ classicalmodels for the device.
Moreover, classicalmodel rejection can only be performed as long as it is feasible to carry out quantummodel
simulations, which limits system sizes to about 20 qubits formaster equation typemodels, using the quantum
trajectoriesmethod [26]. Extrapolations to larger sizes are, as always, risky in the absence of fault tolerance
guarantees.

One caveat regarding ‘proof of quantumness’ experiments is noteworthy.While demonstrations of
entanglement can be considered ‘proof of quantumness’, they often require additional physical resources and
measurement possibilities beyond those thatmay natively be embedded in a (commercial) quantum
computational device or that are strictly required to implement the core algorithm, and thusmay be impossible
on certain platforms. Additionally, in practice, certain assumptionsmay bemade in a ‘proof of quantumness’
experiment which, when relaxed, render it effectively a ‘classicalmodel rejection’ experiment; we shall shortly
see an example of this with theD-Wave quantumannealers.

2.2. Experimental implementations of quantumvalidation tests
The primary ‘proof of quantumness’ experiment for quantum annealers was performed in [27], using an
entanglement test on theD-Wave Two (DW2) generation of processors. Briefly, thework used quantum
tunneling spectroscopy [14] to estimate the populations of thefirst and second excited states of a combined
probe-systemHamiltonian. They alsomeasured the energy spectrum and found it to be consistent with the
Hamiltonian the devicewas designed to implement, which provided a justification for the assumption that the
measured populationswere those of the energy eigenstates of theHamiltonian. This allowed for a reconstruction
of the densitymatrix under the assumption that it is diagonal in the energy eigenbasis, enabling a computation of
the negativity [28] for all possible bipartitions of the system, the geometricmean ofwhichwas taken as ameasure
of the entanglement of the system. As it was found to be nonzero, the system is entangled. Further, by exploiting
the theory of entanglement witnesses [29], [27]was able to show that even if the diagonality assumption is
relaxed, the entanglement remains. This was used to conclude that theDW2 system tested displays
entanglement at least on the scale of a single 8-qubit unit cell.

7
The term ‘supremacy’has generated considerable controversy [16].While wewould prefer the adoption of an alternative such as

‘hegemony’ or ‘supremeness’, we recognize that ‘supremacy’ is likely here to stay due to its current widespread usage.
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It was noted in [30] that these tests depended on the assumption that the device waswell-described by
equation (1) for an appropriate (programmed) choice of localfields and couplers for which the ground state is
entangled, and that this assumption is not directly demonstrable by the experiments in [27].Without that
assumption, onemust revert to a ‘classicalmodel rejection’ experiment inwhich one compares results of direct
quantum simulations of the device and available classical alternatives to demonstrate that only the quantum
model is consistent with the experimental observations. Reference [30] provides a detailed description of the
experiments, but for our purposes the key takeaway is that only the quantumadiabaticmaster equation [31] can
reproduce the output distribution from experiments, validating the approach in [27].

Another branch of validation experiments of the classicalmodel rejection type are the so-called ‘quantum
signature’Hamiltonians and the consistency tests derived therefrom, introduced in [32], critiqued in [33], and
further explored in [34–36]. Unlike the aforementioned entanglement tests, these experiments do not require
access to the systemduring the annealing process, and are appropriate for cases inwhich the quantumdevice is a
‘black box’ inwhich one can only control the inputs andmeasure the outputs. An example of a quantum
signatureHamiltonian is shown infigure 3. TheseHamiltonians take the formof a ring of tightly bound qubits
each connected to a single outer qubit. The resultingHamiltonian has the property that there is a large
(2N/2-dimensional) degenerate subspace of ground state configurations corresponding to arbitrary assignments
to the outer qubits where all qubits in the inner ring are in the state 0 (forming a ‘cluster’ connected by single-
spin flips applied to the outer ring). There is one additional ground state corresponding toflipping all the inner
qubits to the state 1, dubbed the ‘isolated’ state, since for a signatureHamiltonianwith 2N qubits it is at leastN
spin flips away from all other ground states. Thermal algorithms such as classical simulated annealing (SA) [37]
will beweighted toward the isolated state, such that it will have the highest probability of occurrence of any
ground state configuration, whereas an adiabatic quantum evolutionwillfind the isolated state to be suppressed
relative to the cluster states. Extensive simulations and experiments on a 108-qubit DW1 ‘Rainier’ processor
matched qualitatively with the adiabaticmaster equation across all the parameters and statistics of the output
distributions tested, though noise due to cross-talkmade it very difficult tofind quantitative agreement; at the
same time all existing classicalmodels failed to qualitativelymatch theDW1 in at least one of the tests [35].

A different approach to classicalmodel rejectionwas taken in [38], which used random J 1ij =  instances of
the IsingHamiltonian in equation (2) to test the hypothesis thatQA correlates well with two classicalmodels: SA
and classical spin dynamics [33] (also known as the Landau–Lifshitz–Gilbertmodel). The hypothesis was tested
using the sameDW1processor. This work showed that these two classicalmodels failed to correlate with the
results for the distribution of ground state probabilities generated by theDW1device, while theDW1 correlated
verywell with simulated quantum annealing (SQA), implemented using quantumMonteCarlo [39]. This was
taken as evidence forQAon the scale ofmore than 100 qubits, thus generalizing the conclusion of the earlier
result [32] based on the 8-qubit ‘gadget’ shown infigure 3. Shortly thereafter a new semiclassical spin-vector
Monte Carlo (SVMC)model was introduced, also known as SSSV, the author initials of [40] 8. In thismodel
spins are treated asO(2) rotors (effectively as single qubits), evolved according to the annealing schedule given in
equation (1), withMonte Carlo angle updates. The SVMCmodel correlatedwell with both theDW1 and SQA

Figure 3.The eight-spin Ising quantum signatureHamiltonian introduced in [32]. The inner ‘core’ spins (green circles) have local
fields hi=+1while the outer spins (red circles) have hi=−1. All couplings are ferromagnetic: Jij=1 (black lines).

8
Both the spin dynamics and SVMCmodels can be derived in a strong coupling limit from the anisotropic Langevin equation, starting from

Keldyshfield theory [41].
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data, suggesting that although theDW1device’s performance is consistent withQA, it operated in a temperature
regimewhere, formost random Ising spin glass instances, a quantumannealermay have an effective
semiclassical description. This conclusionwas challenged in [42], which considered the excited state distribution
rather than just the ground state distribution over random Jij=±1 Ising instances, as well as the ground state
degeneracy. This work presented evidence that for these newmeasures neither SQAnor SVMC,which are
classically efficient algorithms, correlated well with theDW1 experiments. The close correlation between SQA
and the SVMCmodel was explained by showing that the SVMCmodel represents a semiclassical limit of the
spin-coherent states path integral, which forms the foundation for the derivation of the SQA algorithm.

The intense debate that arose around the original classicalmodel rejection tests presented in [32, 38], in
particular the critique presented in [33, 40], illustrates the risks associatedwith such tests—risks thatmaterialize
whenever a sufficiently clever new classicalmodel is found that agrees with (some of) the data—aswell as the
fruitfulness of the classicalmodel rejection approach, which can lead to a healthy updating and sharpening of
models and assumptions.

Black box classicalmodel rejection tests such as the quantum signatureHamiltonians provide the basis for
the testing of newputative quantumdevices for which available controls and potentialmeasurements are
limited, and ultimately even the best experiments that seek to prove entanglement will depend on a series of such
experiments to demonstrate that only quantummodels can reproduce the experimental data from the device.
Quantum supremacy tests are a type of limiting case of this, inwhich one can prove that should any classical
device be able to produce a particular output distribution in polynomial time then the computational
complexity hierarchywill at least partially collapse. Since this is not expected to occur, building a device which
can produce said distribution efficiently will then immediately rule out all classicalmodels for the device [17].

Another kind of black box classicalmodel rejection test is based on the phenomenon of quantum tunneling,
whereby a quantum state has sizable probability on either side of an energy barrier which the system could not
move through classically, or at least will only be able to do sowith reasonable probability at high temperature.
ThefirstQA experiments involving tunable tunnelingwere carried out using the disordered ferromagnet
LiHoxY1−xF4 in a transversemagnetic field [43, 44], and served as inspiration for the design of programmable
superconducting flux-qubit based quantumannealers. These experiments indicated thatQAhastens reduction
of the residual energy (i.e., the energy above the ground state) via tunneling, compared to simple thermal
hoppingmodels. Thefirst programmable quantumannealer experiment was reported in [45], inwhich it was
demonstrated that an 8-qubit QAdevice was able to reproduce the domainwall tunneling predictions of
quantum theory for a chain of superconducting flux qubits bymodifying the time during the annealing process
at which a localfield is abruptly applied to the qubits. This contradicted the temperature dependence predictions
of a classical thermal hoppingmodel, thus serving as a classicalmodel rejection experiment.

More recently, [46] reported on a specially designed tunneling probeHamiltonian forQA, illustrated in
figure 4. The probe uses two unit cells of theD-WaveChimera graph, binding each one together tightly so they
each act like a single effective spin, or cluster. Oppositemagnetic fields are applied to each unit cell, oneweak and
one strong, so that the spins in the ‘strong’ cluster align before the spins in the ‘weak’ cluster. Initially, there is
only a singleminimum.A secondminimumdevelops over the course of the anneal, and eventually becomes the
globalminimumof the final IsingHamiltonian. The onlyway to reach the globalminimum is to overcome an
energy barrier whose strength increases as the anneal progresses, a good example of tunneling. Using the non-
interacting blip approximation (NIBA) it was shown in [46] that the system effectively acts like a two-level

Figure 4.The 16-spin IsingHamiltonian composed of twoK4,4 unit cells introduced in [46]. All couplings are set to J=1, all qubits in
the left unit cell have a localfield 0<hL<0.5 applied to themwhile all spins in the left unit cell have hR = 1 applied to them. Two
localminima form, onewith the cells internally aligned but in opposite states from each other (a localminimum) and the otherwith all
states alignedwith hR (the globalminimum). By tightly binding each unit cell, they effectively act like single large spins.
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system even in the open-system settingwith a strongly coupled bath.NIBA-based predictionswithout free
parameters for tests at different values of hL and different temperatures demonstrated very good agreementwith
experiments involving aDW2device, andwere not reproducible using classicalmodels for the device such as
SVMC [40]. A variant of this experiment was reported on in [47], which introduced a new class of problem
instances which couples theweak-strong clusters of the tunneling probe as sub-blocks of theHamiltonian. This
work can be interpreted as an attempt to go from classicalmodel rejection to speedup-inferred quantumness, as
it claimed a large tunneling-induced constant-factor speedup over classical SA and SQA for aDW2Xdevice.
However, this claimwas critiqued in [48] on the basis of a comparison to classical algorithmswith better
performance.Moreover, as we discuss below, speedup-inferred quantumness requires a demonstration of an
optimal annealing time [23], whichwas absent in the results reported in [47].

Validating non-gate-based quantumdevices will continue to be a challenge as new such systems come
online, but applying combinations of the techniques discussed above, from the construction of quantum
signatureHamiltonians and tunneling probes to (in)direct proofs of entanglement via entanglement witnesses
and direct computation of entanglement, should allow one to boost confidence that the systemobeys the
predictions of quantum theory over small scales. The challenge remains to extend these techniques so that they
are able to demonstrate conclusively that a devicewith hundreds or thousands of qubits displays coherence and
long-range entanglement. Due to decoherence this presents a challenge for gate-based quantumdevices aswell
even at a smaller scale [49, 50], and speedup-inferred quantumness testsmay prove to be simpler to execute than
direct quantumness tests even in the gatemodel setting.

Once one has validated that the device works in approximately themanner onewould expect from the
instructionmanual, one can then turn to the question: ‘Towardwhat practical purposemay this device be put?’.
The choice of appropriate problems in this domain is a complex issue thatwe cannot address here. Indeed,
beforewe can answer that question, wemust first focus on an operational question: ‘Howdoes one go about
comparing performance in a specified problemdomain between a verified quantum computing device and
existing classical strategies?’.We discuss this next.

3. Benchmarking

Assumewe have at our disposal a device verified to be quantum, at least provisionally on the small scales covered
by classicalmodel rejection, andwewould like to compare its performance to competing classical solvers. This is
the taskwe refer to here as benchmarking, which belongsmore generally to the field of experimental
algorithmics [51]. Specifically, consider the problemof estimating the value of some function ofmerit (or
‘reward’)R from the output of a given solver (e.g., our quantumdevice or some classical algorithm) for a given
problem family P = { }. Each problem instance P is parametrized by some parameters θ. In the case of
quantumannealers, particularly studies of theD-Wave devices thus far, the goal has generally been tofind the
ground state of IsingHamiltonians as defined in equation (2). In that context, typically the reward is taken to be
the negative of the time to solution (TTS), defined as t p pTTS log 1 log 1f d= - -( ) ( ) for a probability p of
finding the ground state at least oncewith desired probability pd (typically 0.99), and annealing time tf

9. In the
language above,R=−TTS (onewould like tominimize the TTS), and the problem is parametrized by θ=
{hi, Jij}.Many similarmetrics have been proposed, such as time-to-epsilon and time-to-target (TTT) [52], which
amount tomild generalizations of TTS. Amore elaborate notion of cost, based on optimal stopping theory, has
also been considered and shown to recover the previousmetrics as special cases [53].We shall return to this
below.

3.1. Solvers for comparison
The choice of classical solvers against which to compare the quantumdevice involves a few considerations. It is
important to perform an apples-to-apples comparison, in that if the device is probabilistic, it would be
misleading tomeasure its performance against a deterministic algorithm [38, 54, 55]. For a quantumannealer, a
performance comparison to knownheuristic algorithms for sampling low-energy states from Isingmodels is
natural, such as SA [37, 56], parallel tempering [57–59], and theHamze–Freitas–Selby (HFS) algorithm (which
searches all states on nodes thatmake up induces trees or small-treewidth subgraphs of the Isingmodel’s
connectivity graph) [60, 61]. Onemight also compare to approximations ofQA itself, in particular SQA
[39, 62, 63], or the SVMCalgorithm [40]. All of these can be said to be ‘solvers’ for the Ising problemonQA. But,
to determine if the quantumdevice is truly useful in practice, itmust also be compared to the best algorithm for
solving the original (typically non-Ising problem) task. For example, when solving the graph isomorphism

9
The probability of not finding the ground state even once after k independent runs of duration tf each is p1 k-( ) , so the probability of

finding it at least once is p1 1 k- -( ) , whichwe set equal to pd. Solving for k and substituting into TTS=tf k gives the TTS formula. See,
e.g., [23] for amore detailed derivation.
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problem [64], job-shop scheduling [65], operational planning [66], or portfolio optimization [67], the original
problemmustfirst bemapped into an Ising problem [68] and then embedded using the existing hardware
connectivity graph [69–71]; the performance of the quantumdevicemust be compared to the best algorithm for
solving the original problem, and themapping plus embedding steps can severely reduce performance. Note also
that determining what the truly optimal classical algorithm is can be a daunting, or even impossible, challenge.
Inmany cases one settles for an educated guess: the standard and/or currently best known algorithm(s). Finally,
it is important to remember that any tests run on a quantumdevice that does not enjoy a fault tolerance
guarantee cannot be reliably extrapolated to arbitrarily large sizes. I.e., in the absence of such a guarantee, a
finite-size device provides evidence of what can be expected at larger sizes only provided that quantities such as
the device temperature, coupling to the environment, and calibration and accuracy errors, can be appropriately
scaled down.With this inmind, let us turn to a discussion ofmuch of the benchmarking work done so far and
some of the considerations that go into using large, noisy quantumdevices.

3.2. The state of benchmarking
Thefirst comprehensive study benchmarkingQAdevices was [38], using a 108-qubit DW1processor. This
article introducedmany of the concepts used in later studies in the field, including the above definition of the
TTS. It focused on the performance on the set of random Ising problemswith binary±1 localfields and
couplings, and introduced the use of SA and SQA as important comparison algorithms. It also noted the
importance of comparing against parallelized versions of classical algorithms, as quantum annealers such as the
D-Wave device consume linearlymore computational hardwarewith increasing problem size, and inmany
cases SA and SQA can be effectively parallelized inmuch the sameway.

Another significant contribution of [38]was the use of ‘gauge averaging’ in benchmarking, a technique that
was introduced in [32] (where it was called ‘spin inversions’) andwhich has become so universal that it is now
included natively in theD-Wave API for their processors, andwhich points toward amore general consideration
for noisy quantumdevices in the absence of quantum error correction. The need for gauge averaging arises from
the observation that inQA, onemay have per-qubit or per-edge randomand systematic biases from strayfields
or interactions. In such cases, performancemay be dramatically impacted by the choice ofmapping froma
logicalHamiltonian as defined in equation (2) to a physically implemented computation. In essence, a gauge
transformation corresponds to swappingwhich physical spin state corresponds to a computational 0 or 1. In an
ideal annealer, this transformation commutes with (i.e., is a symmetry of) the totalHamiltonian and so has no
dynamical effect. However in the presence of noise, this symmetry is broken and the choice of gauge doesmake a
difference, and indeedwas found to have a significant effect on the performance of theDW1quantum annealer,
to such a degree that the device did not even correlate with itself if one compares one gauge to another, or even
one gaugewith itself when run later (most likely the result of slow drift 1/fnoise resulting in the effect that each
time the annealer is programmed, a small random error term is added to theHamiltonian). However, when
results for the sameHamiltonianwere averaged acrossmany gauges, theDW1processor correlated quite well
with itself [38]. Since then, applyingmany gauge transformations to the sameHamiltonian and averaging the
results has become a standard practice in theQA community, and the idea behind it has been steadily generalized
since then to include sampling over every knownpotentially broken symmetry of theHamiltonian.

For example, if one is solving a fully connected Ising problem, theHamiltonian has a permutation
symmetry. Since every logical spin has an interactionwith every other, one can relabel which spin is which
without changing anything about the logical problem.However, when one goes to implement such a problem
on an actual quantumannealer with limited connectivity, such as theDW2, one has to perform aminor
embedding (ME) inwhich each logical spin ismapped to a chain of spins on the physical device [69, 70]. Those
physical spinsmay have localfield biases which vary from chain to chain, and thus the distribution over logical
states will depend, in part, on the assignment of the logical spin variables to the physical chains, as shown in [72].
This workwas thefirst case study of bothMEof fully connected problems as well as permutation embeddings for
such problems, and demonstrated the importance of optimizing the strength of the coupling inME applications,
a topicwhich is discussed inmore detail in section 4.

Reference [55] demonstrated evidence for the easy-hard-easy phase transition forMax 2-SATproblems
(wherein onewishes tofind themaximal number of simultaneously satisfiable two-variable Boolean clauses over
a set of variables from some ensemble of clauses)near a clause density of one, on the 108-qubit DW1processor.
It performed a rudimentary benchmarking comparison between theDW1 and an exactMax 2-SAT solver
(akmaxsat) (see also [54]), and noted that therewas no correlation between the two solvers over randomly
selected instances ofMax 2-SAT. This work also introduced the important idea of bootstrapping into theQA
community, variants of which (such as the Bayesian bootstrap [73]) formed the backbone of error analyses for
later studies, as a nonparametricmethod for approximating the distribution over the problem space and over
the aforementioned broken computational symmetries.
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Adecisive step forwardwas taken in [23],which introduced thenotionofdifferent quantumspeedupcategories.
Of particular interest in thebenchmarking context arepotential quantum speedup, definedas a speedup compared to a
specific classical algorithmor a set of classical algorithms (e.g., simulationof the time evolutionof aquantumsystem
implementedonaquantumcomputer as compared todirectly solving the Schrödinger equationona classical
computer), a limited quantum speedup, defined as a speedupagainst algorithms thatmaybe said tobe analogous to the
quantumsolver (e.g., SAor SQAcomparedwith aquantumannealer), andanunqualifiedquantumspeedup, defined
as a speedupagainst thebest available algorithms for solving theproblem (e.g., Shor’s algorithmfor factoring). A
crucial observationmade in [23]was that unless anoptimal annealing timecanbe explicitly demonstrated (i.e., an
observedminimumin theTTSas a functionof the annealing time), a scaling analysis performedover afinite rangeof
problemsizes cannotbe trusted to reveal any typeof quantumspeedup.The reason is that an annealing time tf that is
too large (suboptimal) canartificially inflate theTTSat small problemsizes, thus leading to artificially shallow scaling,
andpotentially to a false conclusion that (some typeof)quantumspeedup is present.Thesenotionswere thenapplied
to randomIsing instanceswith awide rangeof integer couplings (up to J 7ij =∣ ∣ ,which is renormalized to [−1, 1]
when submitted to theprocessor), and testedonaDW2devicewithup to503qubits. The analysis of the scalingof TTS
with systemsizemostlydemonstrated adisadvantage for theDW2over SA, but an advantage for theDW2over SAon
lowerhardness percentiles of theproblemdistribution (i.e., the easier problems).However, due to the aforementioned
issuewith suboptimal annealing times, thiswasnot takenas evidenceof any typeof quantumspeedup.Very recently
evidenceof a scaling advantageover SAwithoptimal annealing timeswas reported [74], aswediscuss below.

An interesting critiqueof the scaling results presented in [23]wasmade in [75], which argued that randomIsing
instances restricted to theChimera graph are ‘too easy’, essentially since their phase space exhibits only a zero-
temperature transition.Thiswould imply that classical thermal algorithms such as SA see a simple energy landscape
with a single globalminimumthroughout the entire anneal (except perhaps at the very end as the simulation
temperature is lowered tonear zero), insteadof theusual glassy landscapewithmany local traps associatedwithhard
optimizationproblems.Thisworkhighlighted the importanceof a careful designof benchmarkproblems, to ensure
that classical solverswouldnotfind them trivial.Of course, it shouldbe stressed that quantumspeedup is always
relative, and it canbeobserved evenwhenefficient (polynomial time) classical algorithms exist, as in, e.g., the solution
of linear systemsof equations [76]. In light of this onemay interpret themessage of [75] tomean that aquantum
speedupmight not bedetectableover afinite rangeof problemsizes if the problem is classically easy, since the
difference between thequantumandclassical scaling is too subtle to be statistically significant.

An attempt to address the critique that randomIsing instances are too easywasmade in [77],which introduced a
newclass of ‘planted solution’ instances (see also the follow-up study [78], thoughneither studydemonstrated a
nonzero critical temperature). TheproblemHamiltonianH1 (equation (2)) is constructedout of a sumof frustrated
small-loopHamiltonians, eachonedesigned so its ground state is a chosenbit-string. In sodoing, the total
Hamiltonian is guaranteed tohave as oneof its ground states the chosenbit-string, dubbed a ‘planted solution’.
Knowing a solution in advance is an important advantageof this problemclass over the classes testedbefore, for
which solutions couldonly be found either heuristically or bydirectly solving the Isingproblemat a costwhich is
generally exponentialwith the systemsize (in particular, scaling like 2 L4 for anL×Lunit cell problemon the
Chimera graph), which is prohibitive for systemsmuch larger than those tested inprevious studies. By knowing a
solution in advance, the ground state energy canbe computed instantly, and any further global optima canbe
recognized immediately, providing a soundbasis forTTScomparisons for problems thatmay turnout tobe too large
for brute force search.This studywas alsooneof thefirst (following [79]) to compare against theHFS algorithm
[60, 61],whichhas been considered ever since tobe the ‘algorithm tobeat’ thanks to its superior scaling anddirect
exploitationof the large treewidth induced subgraphspossible in theChimera graph. Itwas found in [77] that the
DW2hadflatter scaling than all algorithms that hadbeen testedup to that point (SA, SQA, SSV)over virtually the
entire rangeof frustrated loop-to-spindensity. In the comparison to theHFS algorithm itwas found that the latter
was able to achieve superior scaling compared to theDW2 for all but the easiest and largest loopdensities. These
results invited thepossibility of a limitedquantumspeedup, but due to the lackof anoptimal annealing time, this
could againnot bedemonstrated.Moreover, [77]provided aproof (under the assumption that theTTS increases
monotonicallywith the annealing time) thatwithout anoptimal annealing time, one couldonlydemonstrate a
slowdown, butnever conclusively demonstrate even a limitedquantumspeedup.

Beforewe turn to adiscussionof the evidence for a scaling advantage over SA,wefirst brieflydiscuss alternatives
to theTTSas aperformancemeasure.One such alternative is theTTT, i.e., the total time requiredby a solver to reach
the target energy at least oncewith adesiredprobability, assuming each run takes afixed time [52]. This reduces to the
TTS if the target is the ground state.Aunified approach that includes a variety of othermeasureswas presented in
[53], drawinguponoptimal stopping theory, specifically the so-called ‘house-selling’problem [80].Within this
frameworkone answers the questionof how long, given a particular cost for each sample drawn froma solver, one
should sample inorder tomaximizeone’s reward, analogously to thedecisionproblemaboutwhen to sell one’s
house given that bids accrueover timebut thatwaiting longer carries a highermonetary cost. This allows theTTSand
TTT, amongothermeasures, to be shown tobe specific choices of the cost and reward functions. Theoptimal
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stopping framework alsopaves theway for amoredetailed comparisonbetweenquantumandclassical approaches
and the trade-offs of each, as by altering the cost per sample one can see the impact of the distributionover states
(rather than just the ground state) for the various solvers.Optimal stopping is appropriate for applicationswhere
finding theminimumenergy is not strictly themost important consideration for the application, such asmany
machine learning contexts and even various business-origin optimizationproblems. In those cases, there is a trade-off
between the cost toperform the computation and thebenefit fromreceiving a result. Testswere performed
demonstrating the optimal stopping approachwith aDW2Xdevice (with1098qubits)on frustrated loopproblems
much like those in [77], demonstrating identical scaling (modulo concerns about the lackof anoptimal annealing
time) to theHFS algorithmatmultiple values of the cost to drawa sample, an improvement over theDW2.However,
these results could still not qualify as a limitedquantumspeedupdue to theproblemof suboptimal annealing times.

This problemwasfinally overcome in [74],which for thefirst timedemonstrates anoptimal annealing time, and
can thusmakepositive claims about limitedquantumspeedupasoriginally defined in [23]; however, since itwas
unclear towhat extent theoriginof the speedupdemonstrated in [74]wasquantum, the authorspreferred touse the
more careful terminologyof ‘scaling advantage.’Previous studies couldnotfindanoptimal annealing time since a class
of problem instanceshadnotbeen identified forwhich the shortest available annealing time (20μs in theDW2, 5μs in
theDW1andDW2X,1μs in theDW2000Q)was sufficiently short toobserveonoptimumgiven the largest problem
size that couldbe tested.Using theD-Wave2000Q (DW2KQ)device (with2027qubits) [74]demonstrated a simple
one-unit cell gadgetHamiltonianwhich,whenadded randomly to a constant fractionof theunit cells on topof similar
frustrated loopproblemsas in [81], resulted in theobservationof anoptimal annealing time for frustrated loops
definedon thehardware graph (alsowhenusing theDW2Xdevice), aswell as for frustrated loopsdefinedon the logical
graphofunit cells (eachunit cell thenbeingbound together tightly as apseudo-spin in thephysical problem,modulo
the gadgetHamiltonian). For the latter, logical-planted instances, theDW2KQexhibited a statistically significant
scaling advantageover single-spin-flip SA.These results amount to thefirst observationof a lscaling advantageof a
quantumannealerover a general purpose classical optimation algorithm, since the existenceof anoptimal annealing
timewas certified.However, this didnot amount to anunqualifiedquantumspeedup since theDW2KQ’s scalingwas
worse thanSVMC, theHFSalgorithm,unit cell cluster-flip SA, andSQA,whichwas found tohave thebest scaling
among the algorithms tested.Nevertheless, this result paves theway towards futuredemonstrationsof problemswith
optimal annealing times andhence certifiable scaling, anecessary requirement for any typeof scaling speedupclaim.
However, even thismaynotbe sufficient sinceotherquantities remain thatmust eventually beoptimized, suchas the
annealing schedule,which is known toplay a crucial role inprovable quantumspeedups (specifically theGrover search
problem [82, 83]), and can conversely beused topotentially overturn (limited)quantumspeedupclaims.

3.3. Lessons
What lessonsmay be gleaned from this story for future benchmarks ofQAdevices with limited or no error
correction and hundreds or thousands of qubits?

1. It is vitally important to carefully account for resource use, lest one be led astray with a fake speedup. In
particular, QA requires a demonstration of an optimal annealing time before any definitive conclusion can
be drawn about a quantum speedup.More generally, optimizing all known free parameters is almost
certainly necessary to demonstrate a quantum speedupwhichwill hold up to scrutiny.

2.One must distinguish between different types of quantum speedup. Comparisons between a quantum
computational device and a single other solver are inherently limited to a demonstration of a ‘potential
quantum speedup’. To go further, onemust be sure to compare performance against a suite of algorithms,
in particular those thatmimic the device to some degree (such as SA or SQA). A speedup against such solvers
would be considered a ‘limited quantum speedup’. If there is a consensus about the solvers that are the best
at the original task, then a speedup against such solvers would be considered an unqualified ‘quantum
speedup’. This would be a game-changing result.

3. Users of such quantum computational devices should perform something akin to gauge averaging in order to
effectively estimate performance, by averaging overmanydifferentmappings from the logical problem to
physical states, at least so long as thedevices are not fully error corrected.Given that there is no gooddistribution
for problemhardness as a functionof this ensemble ofmappings, nonparameteric techniques are appropriate10.

10
We suggest using a variant of the bootstrap, the Bayesian bootstrap, first introduced in [73], which can be shown to be the limit in the case

of negligible prior information or large amounts of data of aDirichlet process. Thus, it is arguably the only bootstrap procedure which is
well-founded onBayesian grounds. It involves reweighting the observed data,much like every bootstrap, but rather than sampling from a
Multinomial(N, [1/N, K, 1/N]) distribution as in the frequentist bootstrap, one instead samples from the relatedDirichlet(1,K,1)
distribution. The primary advantage of the Bayesian bootstrap is that, unlike the frequentist bootstrap, theweight assigned any element in
the dataset is always positive, i.e., there are no reweighted data vectors which leave out a data element, whereas the frequentist bootstrap has
probability 1/e of dropping any given data element in a reweighted sample.
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4. Choice of benchmark problem is key, and should be made with an eye toward the day when classical
machines are vastly outpaced by quantumdevices. For example, the transition from random Ising problems
to frustrated loop/planted solutions problemswas forced by the need to have reasonable benchmarks for
devices so large that classical systems cannot solve them in a human lifetime.

So farwe have only addressed the question of benchmarkingwithout any attempt at error correction. Since it
is impossible to achieve a scalable quantum speedupwithout somemeans of correcting for errors, while
benchmarking native problemsmay give some indication of the abilities ofQAby looking at relatively small
problem sizes, work on error correction lays the foundation for potential lasting quantumadvantages over
classical computing.

4. Error correction

The discussion of error correction in gate-based quantum computing is usually dominated by questions of fault
tolerance and the error thresholds on one and two-qubit gates necessary to satisfy the fault tolerance theorems
[89–91]. The state forQA andAQC is quite different, as there is currently no knownmechanism for achieving
fault tolerance in such devices.Without the benefit of fault tolerance theorems, the best techniqueswe have
available formanaging errors in AQCandQA are energy gap protection [92], dynamical decoupling [93], and
the Zeno effect [94], three intimately related techniques [95].Work on error correction in physically realized
quantumannealers has focused on energy gap protection, as techniques for dynamical decoupling are
unavailable in current generations of annealers due to the associated high bandwidth requirements. Both of
these techniques are reallymore error suppression than correction, as rather then correct errors they can lower
the probability that errors will occur andmitigate their consequences should they happen.

Thefirst demonstration of error suppression via energy energy gap protection in quantum annealers came
with the introduction of the technique of quantumannealing correction (QAC) [84], which as the name
suggests, also includes an active error correction component. In addition, [84] introduced amethod for energy
boosting by encoding the finalHamiltonian of aQA algorithm viamultiple copies of the logicalHamiltonian
operating on separate sets of physical qubits. This is in effect a simple classical repetition code. The copies are
bound together by a penalty qubit whose action is to increase the energy of states of the physical system inwhich
the copies are not in alignment with each other. The energy penalty for disagreement between the states
effectively suppresses excitation to error states. Figure 5 shows the structure of the encoding and the nature of the
encoded problem graph on aDW2device. The logical Hamiltonian is boosted to have an effective strength three
times that achievable in the hardware by directly programming theHamiltonian. A restriction of this approach is
that only the finalHamiltonian is encoded, not the driverHamiltonian i

xs-å , whichmeans that while thefinal
Hamiltonian’s gap is significantly larger than in the unencoded case, it is difficult to verify that theminimum
ground tofirst excited state gap of the quantumHamiltonian is also enhanced.However, amean-field analysis
shows thatQAC softens the gap closure dependence on system sizeN, in the sense that formodels exhibiting a
first order quantumphase transitionwith the gapΔ scaling asCN, the coefficient 0<C�1 grows
monotonically with theQACpenalty strength γ, and saturates atC=1 for sufficiently large γ [96, 97]. The same
work also showed that afterQAC, the free energy barrier between the globalminimumand the localminimum
the system is initially trapped in is reduced in bothwidth and height for a variety of transverse field Ising spin
models, includingmodels with disorder such as theHopfieldmodel.

The encoding restriction onQAC is not intrinsic to the technique, but rather is the result of the lack of any
higher order (more than single-body)σ x terms in the systemHamiltonian, which renders it impossible to form
an effective logicalσ x term.Decoding aQAC encodedHamiltonian is as simple as applying amajority vote over
the problemqubits. Themethodwas tested in [84] on antiferromagnetic chains of various lengths,
demonstrating a significant improvement in success probability offinding the ground state of the chains
compared not only to the unencoded case but also the case of a four copy repetition code (sinceQACuses four
times the hardware resources, one could simply run four copies of the problem at once and pick the lowest
energy solution from any copy). As implemented in [84], the technique is not scalable (in the sense that both the
energy boost and the gap against errors is constant), but it provided thefirst hope for systematically overcoming
errors in the experimental QA. Another innovationwas the use ofmany embeddings of the same logical
Hamiltonian into compatible subgraphs, an ideawhich has found its way into the benchmarking context.

Chains have a trivial (classical) ground state, so a natural next test ofQACwas to apply themethod to
random Ising problem instances [85]. This provided a demonstration thatQAC could improve performance
also onNP-hard problems defined on theQAC logical graph.Moreover, not only was the absolute performance
on random Ising problems improved over both the unencoded and the classical repetition cases, but the scaling
of the TTS for those problems improved underQAC,with the caveat that no optimal annealing timewas
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identified. In addition, QAC improved the robustness of the annealer to problemmisspecification and increased
the effective accuracy of the implemented problemHamiltonian, as was shown by systematically reducing the
energy scale of the finalHamiltonian. Since the hardware graph of theDW2hadmissing qubits, encoding Ising
problems required that some logical qubits wentwithout a penalty qubit. Additional robustness was thus
demonstrated by artificially increasing the number of penalty qubits lost: with up to 60%of the logical qubits
goingwithout penalty qubits, QAC continued toworkwith negligible performance loss.

The next step in testingQACwas to apply it tominor embedded problems [86], dubbedQAC-ME, thus
going beyond natively embeddable problems such as chains and random Ising instances; see figure 6. A key
innovation introduced in [86] is the introduction of non-uniformweights for both theQACpenalty terms as
well as the strength of the chain in theME,making themboth proportional to themean coupling strength in
their respective logicalHamiltonians. This was in part informed by previousME experiments such as [72], in
which the optimal strength of the chainwas found to be related to the emergence of the spin glass phase of the
Hamiltonian. Since there is only a single strengthσ x term applied to every qubit while the strength of theσ z

terms depends on the choice of hi and Jij, one can easilyfind that with a uniformpenalty strength some qubits
will ‘freeze’ (i.e., no longer be effectively flipped by the driverHamiltonian) before others, which can negatively
impact solution quality. By locallyfitting penalties to the strength of the logical problemHamiltonian for each
qubit, this process can bemitigated. Addressing decoding, [86] also proposed to use energyminimization, which
involves directlyminimizing the state of broken logical qubits (logical qubits whose physical qubits are not in
alignment) given their neighboring qubits, and demonstrated that this can be done efficiently so long as the per-
qubit probability of error is below the percolation threshold of the problem graph. And, going beyond the
originalQAC code of [84], a new, scalableQAC ‘square code’whose logical graph forms a two-level-grid was
proposed in [86] (see figure 6). The square code has the attractive feature that it can be concatenated. To
benchmarkQAC-ME, the same kind of frustrated loop problemswith planted solutions that were first
introduced in [77]were used. The results demonstrated a significant improvement in performance for non-
uniformpenalties over uniformpenalty strengths, and that energyminimizationwas strongly preferable for

Figure 5.TheQACunit cell and encoded graph introduced in [84, 85]. (a) Schematic of one of the 64 unit cells of theDW2processor.
Unit cells are arranged in an 8×8 array forming a ‘Chimera’ graph between qubits. Each circle represents a physical qubit, and each
line a programmable Ising coupling i

z
j
zs s . Lines on the right (left) couple to the corresponding qubits in the neighboring unit cell to

the right (above). (b)Two ‘logical qubits’ (i, red and j, blue) embeddedwithin a single unit cell. Qubits labeled 1–3 are the ‘problem
qubits’, the opposing qubit of the same color labeled P is the ‘penalty qubit’. Problem qubits couple via the black lines with tunable
strengthα both inter- and intra-unit cell. Light blue lines ofmagnitudeβ are ferromagnetic couplings between the problemqubits and
their penalty qubit. (c)Encoded processor graph obtained from theChimera graph by replacing each logical qubit by a circle. This is a
non-planar graphwith couplings of strength 3α. Green circles represent complete logical qubits. Orange circles represent logical
qubits lacking their penalty qubit. Red lines are groups of couplers that cannot all be simultaneously activated.
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decodingQAC-ME compared to standardmajority vote decoding. The square codewas comparedwith the
originalQAC code on chains in [98].

Both the originalQAC scheme andQAC-ME induce a graph of lower degree than that of the initial
Hamiltonian. To overcome this and deal from the start with arbitrary IsingmodelHamiltonians, a ‘nestedQAC’
(NQAC)methodwas introduced in [88]. NQAC starts from a fully connectedKN graph for the underlying
problem and thenmaps thisN qubit problem intoC coupled copies of itself in a largerKC×N graph.When run
on a hardware graph of lower degree, this largerKC×N graph is thenminor-embedded, with the coupled copies
doing thework of suppressing errors and helping to limit the formation of domainwalls in theME chains. In this
way, the number of physical qubits required to implement levelCNQAC is approximatelyC2N2/4. An

Figure 6. Illustration ofmapping from a logical problem to aQAC-ME embedding, introduced in [86]. (a)The two-level-grid (2LG)
graph, forwhich the Ising spin glass problemwith couplings in {−1, 0, 1} is NP-hard [87]. Disconnected vertices indicate spins with
couplings set to zero, as well as unused logical qubits in the logical DW2Chimera graph. (b)Minor embedding of the 2LG graph into
the physical DW2Chimera graph.White circles correspond to unused or unusable qubits. (c)QAC-ME embedding of the 2LG
problemusing the ‘square’ code. In (b) and (c) penalties are represented by red (thick) couplings between groups of two (ME) and four
(QAC-ME) physical qubits. Black (thin) links implement logical couplings.

Figure 7. Illustration of the nestedQAC scheme introduced in [88]. In the left column, aC-level nested graph is constructed by
embedding aKN into aKC×N, withN= 4 andC=1 (top) andC=4 (bottom). Red, thick couplers are energy penalties defined on
the nested graph between the (i, c)nested copies of each logical qubit i. The right column shows the nested graphs afterminor
embedding (ME) on theDW2XChimera graph. Brown, thick couplers correspond to the ferromagnetic chains introduced in the
process.
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illustration of the embedding of theKNHamiltonian into the largerKC×NHamiltonian as well as a sample of the
minor embedded graph are given infigure 7.

Thekeyfindingof [88] is thatNQACeffectively rescales the temperature of the systemdownby a factor ofμC for
Cnesting levels, with the theoretical expectation for a fully thermalized state being thatμC∝C2, based on amean-
field analysis. In practice, the scaling is not quite that fast, insteadμC≈C1.4 once the energypenalty tying theC
copies of the problemHamiltonian together and the chain strength are optimized. This result is important since it
means that one can trade qubits for an effective temperature reduction, that is controllable via thenesting levelC.
This suggests, at least in principle, that the effective temperature canbe kept below the gap. For theDW2device, for
C�3NQACwasno longer able to improve the success probabilitymore than classical repetition of theC=1 case,
though this is probablybecause the base problem (a randomantiferromagnetic IsingK8with Jijä{0.1, 0.2,K, 1})
was too easy. TheNQACmethodwas shown to continue to scale favorably on larger problems embeddedon the
DW2KQprocessor [99]. Tests on future generations ofmore advancedprocessorswill revealwhether techniques
likeNQAChold at least part of the key to scalable quantumerror suppression and correctiononQAplatforms, even
if it and similar pure error suppression techniqueswill never be able to achieve true fault tolerance.

The story of error suppression and correction in experimentalQAalgorithms is one of a sequenceof
developments, building off both the results and lessons of native benchmarkingwork and the initial insight of
energy gapprotection as a fruitful and feasiblepath on current systems for error suppression, and generalizing to
more andmore useful encoded graphs, reachingNQACwith its fully general encoded IsingHamiltonian and
potential for arbitrarily large and strong error suppression. Future paths for investigationof experimentalQA
correction center on expandedbenchmarking ofNQAC for larger systems and for application-domainproblems, as
well as continued theoretical development of error suppression and correction techniques. For example, using
subsystemcodes it is possible to construct error suppression schemes appropriate forAQC that use only two-body
interactions for certainproblems such as the transversefield Isingmodel on a ring, so that by addingσ x

i σ
x
j terms to

the driverHamiltonianone could significantly improveover the current state of the art ofQAC [100, 101].

5. Conclusion

As thefield of quantum computing, andQA in particular, expands rapidly and the number of available
platforms rises,methods to validate the fidelity of the platform to its stated physicalmodel, verifying
entanglement and tunneling, strong benchmarkingmethods, and error correction/suppression techniqueswill
be vital in discerningwhich platforms truly can offer advantages over classical computation. Several years have
been spent developingmethods tomeet each of these challenges, particularly targeting existing quantum
annealers, butmany of thesemethods can be readily adapted to other systems that implement programmable
IsingmodelHamiltonians [102]. Insights from each of these areas are informing development in the others. For
example, insight into and experience with small gadgets fromquantumvalidation informed recent work
demonstrating scaling advantage over SA onD-Wave quantum annealers using a small gadget to generate an
optimal annealing time on existingmachines, while insights frombenchmarking regularly inform
developments in error suppression and correction.Work on benchmarking has provided guidelines and
methods of analysis which can be used by anyone seeking to characterize the performance of a putative quantum
computing device, while error suppressionwork has laid the foundation formore extensive experiments and
solvingmore difficult problems on future, largerQAdevices. Thus, one answer to the question of what onemay
want to use a 1000-qubit quantum computer for, is in our view the type of bootstrappingwe have reviewed in
this article, where a productive interplay among quantum validation testing, benchmarking, and error
correction has led to a sequence of advances thatwill inform even larger quantum computation experiments,
until one day a test drivewith a brand new quantum computer will take us to the ultimate destination of
undisputed quantum supremacy and unqualifed quantum speedup.
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