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Abstract
With quantum computing technologies nearing the era of commercialization and quantum
supremacy,machine learning (ML) appears as one of the promising ‘killer’ applications. Despite
significant effort, there has been a disconnect betweenmost quantumMLproposals, the needs ofML
practitioners, and the capabilities of near-termquantumdevices to demonstrate quantum
enhancement in the near future. In this contribution to the focus collection ‘Whatwould you dowith
1000 qubits?’, we provide concrete examples of intractableML tasks that could be enhancedwith near-
termdevices.We argue that to reach this target, the focus should be on areas whereML researchers are
struggling, such as generativemodels in unsupervised and semi-supervised learning, instead of the
popular andmore tractable supervised learning techniques.We also highlight the case of classical
datasets with potential quantum-like statistical correlations where quantummodels could bemore
suitable.We focus on hybrid quantum–classical approaches and illustrate some of the key challenges
we foresee for near-term implementations. Finally, we introduce the quantum-assistedHelmholtz
machine (QAHM), an attempt to use near-termquantumdevices to tackle high-dimensional datasets
of continuous variables. Instead of using quantumcomputers to assist deep learning, as previous
approaches do, theQAHMuses deep learning to extract a low-dimensional binary representation of
data, suitable for relatively small quantumprocessors which can assist the training of an unsupervised
generativemodel. Althoughwe illustrate this concept on a quantumannealer, other quantum
platforms could benefit as well from this hybrid quantum–classical framework.

1. Introduction

With quantum computing technologies nearing the era of commercialization and of quantum supremacy [1], it
is important to think of potential applications thatmight benefit from these devices.Machine learning (ML)
stands out as a powerful statistical framework to attack problemswhere exact algorithms are hard to develop.
Examples of such problems include image and speech recognition [2, 3], autonomous systems [4], medical
applications [5], biology [6], artificial intelligence [7], andmany others. The development of quantum
algorithms that can assist or entirely replace the classicalML routine is an ongoing effort that has attracted a lot
of interest in the scientific quantum information community [8–40].We restrict the scope of our perspective to
this specific angle and refer to it hereafter as quantum-assistedmachine learning (QAML).
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Research in thisfield has been focusing on tasks such as classification [14], regression [11, 15, 18], Gaussian
models [16], vector quantization [13], principal component analysis [17], and other strategies that are routinely
used byMLpractitioners nowadays.We do not think these approaches would be of practical use in near-term
quantum computers. The same reasons thatmake these techniques so popular, e.g., their scalability and
algorithmic efficiency in tackling huge datasets,make them less appealing to become top candidates as killer
applications inQAMLwith devices in the range of 100–1000 qubits. In otherwords, regardless of the claims
about polynomial and even exponential algorithmic speed-up, reaching interesting industrial-scale applications
would requiremillions or even billions of qubits. Such an advantage is thenmoot when dealingwith real-world
datasets andwith the quantumdevices to become available in the next years in the few thousands-of-qubits
regime. Aswe elaborate in this paper, only a game changer such as the new developments in hybrid classical-
quantumalgorithmsmight be able tomake a dent in speeding upML tasks.

In our perspective here, we propose and emphasize three approaches tomaximize the possibility offinding
killer applications on near-term quantum computers:

(i) Focus on problems that are currently hard and intractable for the ML community, for example, generative
models in unsupervised and semi-supervised learning as described in section 2.

(ii) Focus on datasets with potentially intrinsic quantum-like correlations, making quantum computers
indispensable; thesewill provide themost compact and efficientmodel representation, with the potential of
a significant quantumadvantage even at the level of 50–100 qubit devices. In section 2.2we suggest the case
of the cognitive sciences, as a research domain potentially yielding such datasets.

(iii) Focus on hybrid algorithms where a quantum routine is executed in the intractable step of the classical ML
algorithmic pipeline, as described in section 3 and section 4.

Each one of these tasks has its own challenges and significant work needs to be done towards having
experimental implementations on available quantumhardware (see, for example, [20, 21]). Based on our past
experience in implementingQAML algorithms on existing quantumhardware, we provide here some insights
into themain challenges and opportunities in this steadily growing research field. Alongwith illustrations from
our earlier work and demonstrations on quantumannealers, we attempt to provide general insights and
challenges applicable to other quantum computational paradigms such as the gatemodel.

In section 2we present examples of domains inML that we believe offer viable opportunities for near-term
quantum computers. In section 3we present and illustrate the challenges ahead of such implementations and,
whenever possible, with demonstrations in real hardware. In section 4we introduce a new andflexible approach,
the quantum-assistedHelmholtzmachine (QAHM) [38], which has the potential to solvemany of the challenges
towards a near-term implementation ofQAML for real-world industrial-scale datasets. In section 5we
summarize ourwork.

2.Opportunities inQAML

2.1.Quantumdevices for sampling applications
Themajority of data being collected daily is unlabeled. Examples of unlabeled data are photos and videos
uploaded to the Internet,medical imaging, tweets, audio recordings, financial time series, and sensor data in
general. Labeling is the process of data augmentationwith task-specific informative tags. But this task is often
expensive as it requires humans experts. It is therefore important to designmodels and algorithms capable of
extracting information and structures fromunlabeled data; this is the focus of unsupervisedML. Butwhy is this
important at all? The discovery of patterns is one of the central aspects of science; scientists do not always know
a prioriwhich patterns they should look for and they need unsupervised tools to extract salient spatio-temporal
features fromunlabeled data. In general, unsupervised techniques can learn useful representations of high-
dimensional data, that have desirable properties such as simplicity and sparsity [41].When used in conjunction
with supervised techniques such as regressors and classifiers, unsupervised tools can substantially reduce the
amount of labeled data required to achieve a desired generalization performance [42]. Connections to
reinforcement learning andmore specific applications are pointed out in [43] and references therein.

An unsupervised approach that learns the joint probability of all the variables involved in a problem is often
called a generativemodel. The name comes from the possibility of inferring anymarginal and conditional
distribution, which in turn provide away to generate new data resembling the training set. By following the
taxonomy introduced in [43], we distinguish generativemodels as either explicit or implicit density estimators.
Explicit density estimators are a large family ofmodels which include Boltzmannmachines, belief networks, and
autoencoders. Depending on the characteristics of themodel, they can be learned by variational approximations
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[44–48],Monte Carlo sampling [49–52], or a combination of both [53]. Implicit density estimators achieve the
generative task indirectly, for example, by casting the problem into a classification task [54] orfinding theNash
equilibriumof a game [55].

Interestingly, generativemodels withmany layers of unobserved stochastic variables (also called hidden
variables) have the ability to learnmulti-modal distributions over high-dimensional data [56]. Each additional
layer provides an increasingly abstract representation of the data and improves the generalization capability of
themodel [50]. Thesemodels are usually represented as graphs of stochastic nodes where the edgesmay be
directed, undirected, or both. Unfortunately, exact inference is intractable in all but themost trivial topologies
[57]. In practice, learning the parameters of themodel is evenmore demanding as it requires one to carry out the
intractable inference step for each observed data point and for each learning iteration. The computational
bottleneck comes from computing expectation values of several quantities under the complex distribution
implemented by themodel. Classically, this is approached byMarkov chainMonte Carlo (MCMC) techniques
that, unfortunately, are known to suffer from the slow-mixing problem [58]. It is indeed difficult for theMarkov
chain to jump fromonemode of the distribution to another when these are separated by low-density regions of
relevant size.

The capability of quantum computers to efficiently prepare and sample certain probability distributions has
attracted the interest of theML community [10, 59]. In this work, we focus on the use of quantumdevices to
sample classical [60] or quantum [19, 61]Gibbs distributions as an alternative toMCMCmethods. This
approach to sampling holds promise formore efficient inference and training in classical and quantum
generativemodels, e.g., classical and quantumBoltzmannmachines [25]. Once again though, the small number
of qubits and the limitations of currently available hardwaremay impair the sampling process,making it useless
for realML applications. In this perspective, we argue that even noisy distributions could be used for generative
modeling of real-life datasets. This requires working in settings where the operations implemented in hardware
are only partially known.We call this scenario a gray-box.We also argue that hybrid classical-quantum
architectures are suitable for near-term applications where the classical part is used to bypass some of the
limitations of the quantumhardware.We call this approach quantum-assisted.

As highlighted byML experts [62], it is expected that unsupervised learningwill become farmore important
than purely supervised learning in the long term.More specifically,most earlier work in generativemodels in
deep learning relied on the computationally costly step ofMCMC,making it hard to scale to large datasets.We
believe this represents an opportunity for quantum computers, and has been themotivation of our previous
work [20, 21] and of the newdevelopments presented in section 4.

We discussed how inference and learning in graphicalmodels can benefit bymore efficient sampling
techniques. As illustrated infigure 1, sampling is at the core of other leading-edge domains as well, such as
probabilistic programming (see [63] for an example of application). If quantum computers can be shown to
significantly outperform classical sampling techniques, we expect to see a strong impact across science and
engineering.

2.2.Datasets with native quantum-like correlations
Recently, Google demonstrated that quantum computers with as few as 50 qubits can attain quantum
supremacy, although in a taskwith no obvious applications [64]. A highly relevant question then is: which type
of real-life applications could benefit fromquantum supremacywith near-term small devices?One of themain

Figure 1. Sampling applications inML as an opportunity for quantum computers: quantumdevices have the potential to sample
efficiently from complex probability distributions. This task is a computationally intractable step inmanyML frameworks, and could
have a significant impact on science and engineering.
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motivations underlying the research efforts described here is that quantum computers could speed upML
algorithms.However, they could improve other aspects ofML and artificial intelligence (AI) as well. Recent work
shows that quantummechanics can providemore parsimoniousmodels of stochastic processes than classical
models [65–67], as quantified by an entropicmeasure of complexity. This suggests that quantummodels hold
the potential to substantially reduce the amount of other type of computational resources, e.g.,memory [66, 67],
required tomodel a given dataset.

This invites us to pose the following challenge: identify real-life datasets, unrelated to quantumphysics,
where quantummodels are substantially simpler than classicalmodels, as quantified by standardmodel
comparison techniques such as the Akaike information criterion [68]. In a sense, this is a formof quantum
supremacy.While datasets generated in experiments with quantum systemswould be an obvious fit, the
challenge is tofind such datasets elsewhere. Cognitive sciencesmay offer some potential candidates, as wewill
describe below.

To avoid potentialmisunderstandings, let us consider first the example of statisticalmechanics, whichwas
developed in the 19th century to describe physical systemswithmany particles. Although statisticalmechanics
was long thought to be specific to physics only, we know today that certain aspects of it can be derived fromvery
general information-theoretical principles. For instance, the structure of the Boltzmann distribution can be
derived from themaximum entropy principle of information theory [69]. The tools of statisticalmechanics have
become valuable to study phenomena as complex as human behavior [70, 71], develop record-performance
algorithms [72, 73], amongmany other interdisciplinary applications. Indeed, statisticalmechanics has played,
and continue to play, a relevant role in the development ofML, the Boltzmannmachine being an important
example.

In a similar vein, decades of research in quantum foundations and quantum information have allowed the
identification of certain features, like interference, entanglement, contextuality, among others, that are encoded
naturally by quantum systems [74, 75].Moreover, there is increasing evidence suggesting that quantummodels
could be a valuablemathematical tool to study certain puzzling phenomena in the cognitive sciences (e.g., see
[76–78] and references therein).

Consider, for instance, the following experiment [79]: a participant is asked to play a gamewhere she can
either win $200 or lose $100with equal probability, and afterwards she is given the choice of whether or not to
play the same gamble again. The experimentalist decides whether or not to tell the participant the result of the
first gamble, i.e., whether shewon or lost. Results showed that although participants typically preferred to play
the second gamblewhen they knew the outcome of the first gamble, regardless of whether theywon or lost, they
typically preferred not to play if they did not have such information.More specifically, the participants choose to
play the second gamble (G)with probabilities P G W 0.69=( ∣ ) or P G L 0.59=( ∣ ) , respectively, if they knew that
theywon (W) or lost (L) thefirst gamble, andwith probability P(G)=0.39 if they did not have such
information. These results violate the law of total probability P G P G W P W P G L P L= +( ) ( ∣ ) ( ) ( ∣ ) ( ),
regardless of the values of themarginal probabilities P(W) andP(L). By interpreting this as an interference
phenomenon, the authors havemanaged tofit the experimental results using a quantummodel substantially
more parsimonious than alternative classicalmodels, as quantified by standard Bayesianmodel comparison
techniques.

Another general and unexpected prediction is concernedwith the effects of the order of questions [80].
Asking a ‘yes–no’ question to a human subject can create a context that affects the answer to a second ‘yes–no’
question. So the probability of, say, answering ‘yes’ to both questions depends onwhich order the questions are
asked. For instance, in a 1997 poll inUSA, 501 respondents werefirst asked the question: ‘do you generally think
Bill Clinton is honest and trustworthy?’Afterwards, theywere asked the same question about AlGore. Other 501
respondents were asked the same two questions, but in reverse order. The number of respondents answering
‘yes’ to both questions significantly increasedwhenAlGorewas judged first. A quantummodel for this
phenomenon is based on the assumption that the respondentʼs initial belief regarding the idea of ‘honest and
trustworthy’ can be encoded using a quantum state ρ. The two possible answers, ‘yes’ (Y) or ‘no’ (N), to the
question about Clinton orGore are represented by basis Y N,C Cñ ñ{∣ ∣ }or Y N,G Gñ ñ{∣ ∣ }, respectively, with
respect towhichmeasurements are performed. If the projectors associated toClinton andGore do not
commute, we have order effects. A general parameter-free equality can be derived from these quantummodels
for which experimental support has been found in about 70 surveys of about 1000 people each, and 2
experiments with 100 people [80]. Quantumcomputersmay allow for a complementary experimental
exploration of these ideas at larger scales, now that experiments with hundreds of people are becomingmore
common [80–82].

A report [83] from theWhiteHouse in 2016 reads ‘it is unlikely thatmachines will exhibit broadly-applicable
intelligence comparable to or exceeding that of humans in the next 20 years.’ Some of themost relevant reasons
are technical. Recent work [75] suggests why quantummodelsmay be useful in the cognitive sciences and, if so,
itmay offer new approaches to tackle some of the technical hurdles in AI. The 20-year span predicted abovemay
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be in syncwith the advent ofmore powerful andmore portable quantum computing technologies. The potential
returnsmay be high.

Althoughwe emphasized the case of cognitive sciences, it would be interesting to explore what other relevant
and commercial datasets exhibit quantum-like correlations, andwhere quantum computers can have an
advantage even at the level of 50–100 qubits. In general, the identification of characteristics that are intrinsically
quantum, and therefore hard to simulate classically, could be a game changer in the landscape of applications for
near-termquantum technologies. Rather than trying to catch upwithmature classical technologies in a
competition for supremacy, thismay offer the opportunity for quantum technologies to create their ownunique
niche of commercial applications, thereby becoming indispensable.

3. Challenges inQAML

Near-term implementation ofQAML algorithms that can compete with state-of-the-art classicalML algorithms
most likely will not come from the quantumversion of popularML algorithms (see, e.g., [11, 13–18]). As
mentioned in [22], it would be difficult for these algorithms to preserve the speed-up claimed since they inherit
the limitations of theHarrow-Hassidim-Lloyd (HHL) algorithm [84]. Here, we raise the bar even higher as our
attention goes to the implementation of algorithmswith potential quantumadvantage in near-termquantum
devices.

As pointed out in section 2, problem selection is key. For example, consider the recent work in quantum
recommendation systems [27]. The authors developed a customdata structure alongwith a quantumalgorithm
formatrix sampling that has polylogarithmic complexity in thematrix dimensions. The result is a quantum
recommendation system, and a proposal to circumventsmost of the relevant limitations in theHHL algorithm.
Because the input size is extremely large (e.g., number of users times number of products), the algorithm
promises to significantly speed-up the task compared to currently employedML approaches that require
polynomial time. For the very same reasons, however,millions of qubits would be needed to handle datasets
where state-of-the-art classicalML starts to struggle.We do not expect such devices to appear in the next decade.
Instead, our attention goes to hybrid quantum–classical algorithmswhere conventional computers are used in
the tractable subroutines of the algorithms and quantum computers assist only in the intractable steps. Figure 2
illustrates an example of this concept for the case ofML tasks.

There are several challenges whichwill generally impact anyQAML algorithm, such as the limited qubit
connectivity, the finite dynamic range of the parameters dictated by the intrinsic energy scale of the interactions
in the device, and intrinsic noise in the device leading to decoherence in the qubits and uncertainty in the
programmable parameters.We now emphasize some of these practical challenges, with particular attention to
execution and implementation of hybridQAML algorithms in near-termdevices.

Figure 2.General scheme for hybrid quantum–classical algorithms as one of themost promising research directions to demonstrate
quantum enhancement inML tasks. A dataset drives thefine tuning ofmodelʼs parameters. In the case of generativemodels one can
use stochastic gradient descent to update the parametersΘ from time t to t+1. The updates often require estimation of an intractable
function  , which could be approximated by samples from a probability distribution P s tQ( ∣ ). This computationally hard sampling
step could be assisted by a quantum computer. In some cases,making predictions out of the trainedmodel is also an intractable task.
The predictions  could be approximated by samples with the assistance of a quantum computer as well. Examples of such hybrid
approaches are illustrated further infigures 3 and 4.
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3.1. Issue of classical and quantummodel compatibility
Essential to a hybrid approach is the need to have aflowof information between the classical preprocessing and
the quantum experiments. The possibility of sharing information back and forth between the different
architecturesmight pose a significant challenge, arising from the need tomatch samples from the classical and
the quantummodel. That is the case, for example, when assisting the training of restricted Boltzmannmachines
(RBMs) or deep belief networks (DBNs)with quantumdevices [20, 23]. There, updates of the parameters are
performed by a stochastic gradient descent algorithm that requires two key components. Due to the bipartite
structure of RBMs, thefirst component, also known as the ‘positive phase,’ can be estimated very efficiently with
conventional sampling techniques, while the second component, also known as the ‘negative phase,’ is, in
general, intractable and can be assistedwith quantum sampling. Since the two terms are subtracted in the same
equation and originate from the samemodel, it is important to have control and tomatch all of the parameters
defining both classical and quantumprobability distributions.

A challenge here is related to the temperature of theGibbs distribution of themodel we are sampling from.
For simulations in conventional computers, it is irrelevant to explicitly specify the temperature. Since it is a
multiplicative factor, we could set it to 1 and ignore it altogether. In the case of an experimental physical device,
such as a quantumannealer, we cannot neglect the temperature because (i) it is not under our control, and (ii) it
is determined bymany factors. These include not only the operational temperature of the device, but also the
details of the quantumdynamics. The lack of knowledge of this parameter implies that the communication
between classical and quantum components of our hybrid algorithm is broken. In previouswork [20], we
showed the significant difference in performance that can arise from tackling this challenge. As shown in
figure 3(a), a proper estimation of the temperature also allows us to use restart techniques. For instance, the
learning process can initially be carried out on a classical computer because themodel parametersmay be below
the noise level and precision of the quantumdevice. Then, when desired, the quantum computer can be called to
continue the process.

The challenge can also be addressed at hardware level by designing devices that can prepare a class of
quantumGibbs states at will. However, this strategymight open up other difficulties, some of these are detailed
below.

Figure 3.Examples ofQAML implementations of different probabilistic graphicalmodels, illustrating some of the challenges in near-
termdevices. (a)Restricted Boltzmannmachines (RBM) are key components in deep learning approaches such as deep belief
networks. Training of these architectures could be significantly improved if onewere able to sample from the joint probability
distribution of visible and hidden variables, a computationally intractable step usually performedwith approximateMarkov chain
Monte Carlo approaches such as contrastive divergence (CD) [85]. Although a quantum annealer can be used to generate such
samples, the results need to be combinedwith those obtained from the classicalMLpipeline component within the hybrid approach.
This classical-quantummodel compatibility challenge (section 3.1) is illustrated in the experimental results on the right. av is the
average log-likelihood and represents the performancemetric; the higher its value, the better themodel is expected to represent the
training dataset. As demonstrated in [20], estimating the instance-dependent effective temperature, Teff , is key in thisQAML
approach. In all three lines, thefirst 250 iterations are donewith the cheapest andwidely used version of CD (denoted asCD-1). The
linewith open circles represents the case where all 500 iterations in the training are performedwithCD-1, and is used as a baseline
comparison for ourQAML approach. Using our quantum-assisted learning (QuALe) algorithmwhere Teff is estimated at each
learning iteration (crosses), we can restart from the point where the classical CD-1 left off and improve the performance of themodel
with respect to the baseline. Assuming instead that Teff is the physical temperature of the device, T 0.033DW2X = (triangles), such a
restart technique fails. (b)Visible-only generativemodels are often used either because of their tractability [43] or because of the
convexity of the associated optimization problem, as in fully-visible Boltzmannmachines (FVBM). In the latter, convexity does not
mean tractability; exact learningwould still require computation of the partition functionwhich is intractable for non-trivial
topologies. Even though there exist fast [86] and consistent [87] approximations to the required gradients, we here consider quantum
annealing as an alternative tool to sample fromnon-trivial topologies. In [21], we implemented and trained a hybridQAMLmodel by
introducing a gray-boxmodel (see section 3.2) expected to be robust to noise in the programmable parameters and to deviations from
the desired Boltzmann distribution, for example, due to non-equilibrium effects in the quantumdynamics. On the right, we show the
capabilities of the generativemodel; two test datasets (leftmost column) are corruptedwith different types of noise (red pixels, central
column) and then restored on the quantum annealer (rightmost column).
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3.2. Robustness to noise in programmable parameters of the quantumdevice
Preparing quantumGibbs states with a quantumannealer orwith a universal gate-model quantum computer is
not a straightforward task, given the intrinsic noise in the programmable parameters. In the case of quantum
annealers, freezing on quantumdistributions or dynamical effects can lead to non-equilibriumdistributions
away fromGibbs [60, 88]. This is one of the challenges towards scaling the approaches in [20, 23]where the
training of RBMs andDBNs requires reliable samples from a classical Boltzmann distribution. Furthermore, any
quantum computing architecture, with intrinsic noise in the programmable parameters, can always lead to
deviations from the desired target state. A proposed solution [60, 88]was to use samples obtained from a
quantumdevice to seed classical Gibbs samplers (e.g.,MCMC).While this is a promising approach, one of its
drawbacks is that it forces themodel to have a specific form, even if the quantumdevice has a genuinely different
structure. If the quantumdistribution prepared by the device is far from the one assumed,most of the burden
would lie on the classical post-processing. It is not clear howmuch of themethodʼs efficiency is given by the
quality of the samples from the quantumdevices and howmuch is achieved by the post-processing steps.

Interestingly, gray-boxmodels such as the fully-visible Boltzmannmachine (FVBM) studied in [21, 25, 60]
and illustrated infigure 3(b)may be a near-term solution to these issues. In a gray-boxmodel, althoughwe
assume that samples come from aGibbs-like distribution, wework directly at the level of the first and second
moment statistics, without complete knowledge of the actual parameters that were implemented. Therefore, the
emphasis is on the quality of the samples obtained from the quantumdevice, and their closeness to the data. This
has the potential to increase the resilience against perturbations in the programmable parameters. In fact, as long
as the estimated gradients for stochastic gradient descent have a positive projection on the direction of the true
gradients, themodelmoves towards the optimum. In cases where this is not so, itmight still be possible to design
algorithms thatmixmodel-based andmodel-free information in a suitable way. For instance, a proxy could
checkwhether the estimated gradients actually project on the correct direction, if not, then the system canmove
in the opposite direction.

Gray-boxmodels with hidden variables could exploit all of the available resources from the quantumdevice,
while copingwith its intrinsic noise and parametermisspecification. As an example, we used a gray-box
approach to implement a quantum-assistedHelmholtzmachinewhere the hidden variables are sampled from a
D-Wave device; the framework is discussed in section 4 and described in detail in [38]. A caveat of the gray-box
approach is that the finalmodel is inevitably tailored for the quantumdevice used during the training. That is,
any timewewant to performML tasks of interest, such as reconstruction or the generation of new images as
shown infigure 3, wewill need to use the same quantumdevice.

3.3. The curse of limited connectivity
The basic principle behind this challenge is that physical interactions are local in nature. Although engineering
advances can push the degree of qubit connectivity in quantumannealers or gate-model quantum computers,
required qubit-to-qubit interactions not available in the device will cost an overhead in the computational
resources. In the case of quantumannealers, a standard solution is to produce an embedding of the logical
problemof interest into the physical layout, therefore increasing the number of required qubits. In the case of a
gate-model quantum computer, the overhead comes in the number of swaps required tomake distant qubits
talk to each other [89]. In any architecture, this compilation requirement needs to be considered in the
algorithmic design.

In the case of quantumannealers, achieving the topological connectivity of the desiredmodel is only half of
the challenge. Another significant challenge is the problemof parameter setting associatedwith the additional
interactions present in the embeddedmodel. In otherwords, howdoes one set the newparameters such that the
embeddedmodel accurately represents the intendedmodel? There are no knownoptimal solutions, although
heuristic strategies have been proposed [90–92]. However, in the type ofML applications we are considering,
there is away out. Themain goal in the training phase of anML algorithm is tofind the optimal parameters that
minimize a certain performancemetric, suggesting thatML itself is a parameter setting procedure. This is
precisely the demonstration in [21], wherewe showhow to trainmodels with arbitrary pairwise connectivity. In
this case, the difficult task is not the embedding, which can be readily obtained by knownheuristics, but rather
the training of thewhole device, implicitly solving the parameter setting problem.

To summarize, emphasis has been given to the embedding problem and to themapping of the logicalmodel
of interest into physical hardware. An equally, or evenmore important challenge, is to determine how to set the
parameters, including those associated to the embedding, such that the device samples from the desired
distribution. This combined problem iswhatwe call the curse of limited connectivity. In the case of gate-model
quantum computer, [93] presents an illustrative experimental study, highlighting this challenge. It presents a
comparison and analysis of the trade-off between connectivity and the quality of computation due to the
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aforementioned overhead in computational resources. A similar trade-off would need to be taken into
consideration in implementations ofQAML algorithms in near-term gate-model quantum computers.

3.4. Representation of complexMLdatasets into near-termdevices
Quantum information does not have to be encoded into binary observables (qubits), it could also be encoded
into continuous observables [94]. There has beenwork in quantumML that follows the latter direction [95, 96].
However,most available quantum computers doworkwith qubits, nicely resembling theworld of classical
computation. Datasets commonly found in industrial applications have a large number of variables that are not
binary. For instance, imagesmay havemillions of pixels, where each pixel is a 3D vector and each entry of the
vector is a number specifying the intensity of color.We refer to these kinds of datasets as complexMLdatasets. A
naive binarization of the data will quickly consume the qubits of any devicewith 100–1000 qubits.ManyQAML
algorithms [11, 14, 18] rely on amplitude encoding instead, a techniquewhere continuous data is stored in the
amplitudes of a quantum state. This provides an exponentially efficient representation uponwhich one could
perform linear algebra operations. Unfortunately, it is not clear howone could prepare arbitrary states of this
kind on near-term quantumdevices. Even reading out all of the amplitudes of an output vectormight kill or
significantly hamper any speed-up [22].

In this perspective, we argue that near-termQAML algorithms should rather aim at encoding continuous
variables stochastically into abstract binary representations, a strategywe refer to as semantic binarization. In this
approach, we use quantum states that can be prepared by near-termdevices for sampling fromunique quantum
probability distributions thatmay capture correlations hard tomodel with conventional classicalMLmodels. In
the context of quantumannealers, such designmay allow sampling fromnon-trivial graph topologies that are
usually avoided in favor of restricted ones, for example, bipartite graphs are favored in classical neural networks
for convenience.

Oneway to obtain such an abstract representation is to use hybrid approaches where visible variables v are
logically implemented by classical hardware, and hidden variables u are physically implemented by quantum
hardware.However, this idea comeswith further challenges. First, the issue ofmodel compatibility described
abovewould apply. Second, sampling hidden variables u from the posterior distribution P u v( ∣ )may be highly
problematic because the preparation of arbitrary quantum states is an open challenge. Finally, wemight have to
sample a binarization for each data point and thatwould be impractical for near-term quantum computers. For
instance, the standardMLdataset of handwritten digits by theModifiedNational Institute of Standards and
Technology (MNIST) is composed of 60 000 training points, hencewewould need to program the quantum
device at least 60 000 times.

Aswewill see in the next section, deep learningmay provide solutions to these challenges.We propose a new
hybrid quantum–classical paradigmwhere the objective is to tacklemost of the issues discussed here and, at the
same time, to deal with complexMLdatasets.

4. The quantum-assistedHelmholtzmachine

The quantum-assistedHelmholtzmachine (QAHM) is a framework for hybrid quantum–classicalMLwith the
potential of copingwith real-world datasets.We already pointed out some of the challenges in developing near-
termQAML capable of competingwith conventionalMLpipelines,most importantly, the encoding of
continuous variables, the limited number of variables, the need to prepare andmeasure quantum states for each
data point.Herewe showhow some early ideas from the deep learning community can help avoid some of these
difficulties. Details about the formalism and preliminary implementation ofQAHMcan be found in [38].

Consider a dataset and the task ofmodeling its empirical distributionwith a generativemodel
P P Pv v u uQCu= å( ) ( ∣ ) ( ) (see section 2.1 for a brief introduction). Here v are the visible variables that represent
the data and u are unobservable or hidden variables that serve to capture non-trivial correlations. It is common
to use binary valued stochastic hidden variables as they can express the presence or absence of features in the
data. The set of hidden variables can be partitioned into a sequence of layers that encode increasingly abstract
features. In other words, P v( ) is a deep neural network, called the generator network.

Here we suggest using a quantumdevice tomodel themost abstract representation of the data, that is, the
deepest layers of the generator network. The samples obtained from a quantumdevice are described by the
diagonal elements of a parameterized densitymatrix, P u u uQC r= á ñ( ) ∣ ˆ∣ . As an example, the density could be
parameterized by a quantumGibbs distribution e H r = b-ˆ , whereH is theHamiltonian implemented in
quantumhardware and  is the corresponding partition function. The conditional distribution P v u( ∣ ) is then a
classical neural network that transforms samples from the quantumdevice into samples with the same structure
of those in the dataset. Hence, visible variables v could be continuous variables, discrete variables, or other
objects, effectively tackling the challenge of representing complex data (see section 3.4). Because the quantum
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device works on a lower dimensional binary representation of the data, thismodel is also able to handle datasets
whose dimensionality ismuch larger than the number of qubits available in hardware.

Typically, learning algorithms for generativemodels attempt tomaximize the average likelihood of the data.
As pointed out in section 2.1, this is not feasible inmodels withmultiple layers of discrete hidden variables aswe
would need to sample from the intractable posterior distribution P u v( ∣ ). AHelmholtzmachine [97, 98] consists
of a generator network alongwith a recognition network Q u v( ∣ ) that learns to approximate P u v( ∣ ). This is a key
approach behindmany variational learning and importance sampling algorithms employed nowadays [44–48,
50–53]. In principle, the recognition network can also be implemented as a deep neural networkwhose hidden
layers aremodeled by a quantumdevice. However, this design requires quantum state preparation and
measurement of the hidden variables for each data point in the training set and for each learning iteration, a
daunting process in near-term implementations. To avoid doing this, wewill implement the recognition
network as a classical deep neural network. Restricting the recognition network to be classical is not a feature of
theQAHMframework, instead it is an option to speed up learning of large datasets assisted by serial quantum
devices (e.g., quantumannealers). To force the recognition network Q u v( ∣ ) to be close to the true posterior
P u v( ∣ ) a notion of distance between them isminimized at each learning iteration. Using theKullback-Leibler
divergence, for instance, leads to the so-calledwake-sleep algorithm [51, 97, 99].

The general architecture of a type ofQAHM is illustrated infigure 4. The recognition network (left) infers
hidden variables via a bottom-up pass starting from the rawdata. Themost abstract representation is obtained
either from a classical layer (near-term) or froma quantumdevice (future implementations). The generator
network generates samples of the visible variables via a top-down pass starting from samples obtained from a
quantumdevice. Thefinalmodel is an implicit densitymodel when a gray-box approach is used to characterize
the quantumhardware (see section 3.2), but we can turn it into an explicit densitymodel if further processing is
employed (e.g., quantumannealing to seedGibbs samplers). Tasks such as reconstruction, generation, and
classification can also be implemented in theQAHM framework.

In [38], we tested these ideas using aD-Wave 2000Qquantumannealer for the generation of artificial
images. For this taskwe used a sub-sampled 16×16 pixels version of the standard handwritten digit dataset

Figure 4.Generation of handwritten digits with a type of quantum-assistedHelmholtzmachine (QAHM). (Left)TheQAHM is the
frameworkwe propose tomodel complexMLdatasets in near-termdevices. By complex, we refer to datasets where the number of
variables ismuch larger than the number of qubits available in the quantumdevice, andwhere datamay be continuous rather than
discrete. The framework employs a quantum computer tomodel the deepest hidden layers, containing themost abstract
representation of the data. This low-dimensional compact representation iswherewe believe the quantumdevice can capture non-
trivial correlations andwhere quantumdistributionsmight have a significant effect. The number of hidden variables in the deepest
layers ismuch smaller than the number of visible variables,making it ideal for near-term implementation on early quantum
technologies either on quantum annealers, or universal gate-model quantum computers. θ indicates the parameters of the quantum
computer to be learned and control the samples obtained from it. Althoughwe illustrate in panel(a) and (b) the realization on a
quantum annealer from [38], extensions to gate-model quantum computers are in progress. (a)Artificial data generated by aQAHM
implemented on theD-Wave 2000Q, trained on a sub-sampled version of theMNISTdataset with 16×16 continuous valued pixels
and 10 binary variables indicating the class in 0, , 9¼{ }. Both recognition and generator networks have 266 visible variables and two
layers of 120 and 60 hidden variables, respectively. The samples are generated from thefinalmodel by first sampling the deepest layer
with theD-Wave 2000Q, and then transforming those samples through the classical part of the generator network. These experiments
use 1644 qubits of theD-Wave 2000Qquantum annealer. Some of the samples resemble blurry variations of digits written by humans,
this problem affects other approaches as well. (b) Samples from theMNIST dataset that are closest in Euclidean distance to those
generated by ourmodel. Themodel does not simplymemorize the training set, but rather reproduce its statistics. In futurework, the
QAHMwill be fine-tuned to provide sharper results.
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MNIST. Each gray-scale pixel is characterized by an integer value in 0, , 255 ;¼{ } we rescale this value in the
range [−1,+1] and interpret it as a continuous variable. There are also 10 binary variables indicating
membership to one of the classes. The 266 visible variables needed to encode this data could, in principle, be
embedded directly on theD-Wave 2000Qusing a FVBMand amuch poorer representation of the data via a
naive binarization. Yetwewould have to choose a relatively sparsemodel topology as we cannot embed an all-to-
all connectivity in theD-Wave 2000Q for the 266 variables. The sparse connectivity and the absence of hidden
variables can severely limit the ability tomodel the dataset. Our approach tackles both challenges and also
enables the handling of larger datasets thanwould be possible in state-of-the-art quantumannealers.

We used a classical recognition network and a quantum-assisted generator network, bothwith 266 visible
variables and two hidden layers of 120 and 60 variables, respectively. The deepest layer of 60 variables was
mapped to 1644 qubits inD-Wave 2000Qusing the approach in [21].We run thewake-sleep algorithm for 1000
iterations and generated samples with the quantum-assisted generator network. The images generated are
shown infigure 4(a). Although these preliminary results cannot compete with state-of-the-artML, the artificial
data often resemble digits written by humans. Figure 4(b) shows the images in the training set that are closest in
Euclidean distance to the generated samples.We can see that the artificial images generated by the network are
notmerely copies of the training set, instead, they present variations and novelty in some cases, reflecting the
generalization capability of themodel.While the artificial datamay also look blurry, this problem affects other
approaches aswell. Only the recent development ofGANs [55] led tomuch sharper artificial images.

5. Summary

Machine learning has been presented as one of the applications with commercial value for near-term
technologies. However, there seems to be a disconnect between the quantumalgorithms proposed inmuch of
the literature and the needs of theML community.Whilemost of the quantumalgorithms forML show that
quantum computers have the potential of being very efficient at doing linear algebra (e.g., [11, 13–18, 84]), as
discussed in [22], these proposals do not address the issues related to any near-term implementation.More
importantly, to date there are no concrete benchmarks indicating that suchwork can be close to outperforming
their conventional classicalML counterparts. In this perspective we stress this disconnect and provide our views
on key aspects to consider towards building a robust readiness roadmap ofQAML in near-termdevices.

If a demonstration of quantumadvantage on industrial applications is afirstmilestone to be pursued, we
emphasize the need tomove away from the popular and tractableML implementations.We should rather look
for applications that are highly desirable, but not-so-popular because of their intractability. It is in this domain
wherewe believe quantum computers can have a significant impact inML. In that sense, quantum speed-up in
itself is not enough; if the chosenML applications are tractable to a great accuracywith classicalMLmethods (as
it is the case of [27]), then the number of qubits required to tackle industrial-scale applicationsmay be far larger
than those available in near-termdevices.

As an example of intractable applications, in section 2we presented the case of sampling from complex
probability distributions with quantumdevices. There is potential here for boosting the training of generative
models in unsupervised or semi-supervised learning. Another approachwe suggested is to explore applications
where quantumdistributions naturallyfit themodel describing the data correlations. That seems to be the case
for some datasets from the field of cognitive sciences (see, e.g., [75, 79, 80, 100], also [76–78] and references
therein). Other hardMLproblems have beenmentioned elsewhere [37].We thinkworking in any of these
currently intractable applications will yield a higher payoff towards demonstrating that quantummodels
implemented in near-termdevicesmight surpassmodels trainedwith classical resources.

Here we focused on some of themost pressing challenges we foresee in near-term implementations. For
instance, the limited qubit connectivity will result in an overhead of qubits in the adiabaticmodel, and an
overhead of gate operations in the gate-model. It is also important to take into consideration themodel
complexity that each physical hardwaremight present, which could have significant consequences on theML
task. For instance, applications to cognitive sciencesmight require a universal quantum computer capable of
preparing andfine-tuning tailored quantumdistributions, while applications to generativemodelingmight only
need sampling from a quantumGibbs distribution. For the latter, there already exist proposals with both
quantumannealers and gate-model quantum computer architectures.

Copingwith the challenges presented in section 3 is certainly an ongoing research activity. One key strategy
proposed here towards the near-termdemonstration of quantum advantage is the development of hybrid
quantum–classical algorithms capable of exploiting the best of bothworlds. In this perspective, we also put
forward a new framework for such hybridQAML algorithms, referred here as the quantum-assistedHelmholtz
machine [38]. This new approach aims to solve some of themost pressing issues towards handling industrial-
scale datasets with a large number of continuous variables. It ismotivated by the idea that a quantum computer
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should be used only to tackle themore abstract representation of the data, after trimming the information that
can be handled classically. Herewe use a deep neural network to transform the large continuous data into a new
abstract discrete dataset with reduced dimensionality. It is to this abstract representation thatwe apply the
quantum computer. This approach can be used to solve practicalML tasks, including reconstruction,
classification, and generation of images.

Certainly,morework is needed to address the question of identifying the first killerML application that can
be implemented in near-term quantum computers with the order of a few thousand qubits. Finding intractable
problems and developing newhybridQAML algorithms that tackle the challenges of workingwith real-world
devices is whatwe find the ideal scenario.We hope the communitymakes a leap in this direction now thatmore
powerful and larger quantumannealers and gate-model quantum computers are becoming available to the
scientific community.
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