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Abstract

With quantum computing technologies nearing the era of commercialization and quantum
supremacy, machine learning (ML) appears as one of the promising ‘killer’ applications. Despite
significant effort, there has been a disconnect between most quantum ML proposals, the needs of ML
practitioners, and the capabilities of near-term quantum devices to demonstrate quantum
enhancement in the near future. In this contribution to the focus collection ‘What would you do with
1000 qubits?’, we provide concrete examples of intractable ML tasks that could be enhanced with near-
term devices. We argue that to reach this target, the focus should be on areas where ML researchers are
struggling, such as generative models in unsupervised and semi-supervised learning, instead of the
popular and more tractable supervised learning techniques. We also highlight the case of classical
datasets with potential quantum-like statistical correlations where quantum models could be more
suitable. We focus on hybrid quantum—classical approaches and illustrate some of the key challenges
we foresee for near-term implementations. Finally, we introduce the quantum-assisted Helmholtz
machine (QAHM), an attempt to use near-term quantum devices to tackle high-dimensional datasets
of continuous variables. Instead of using quantum computers to assist deep learning, as previous
approaches do, the QAHM uses deep learning to extract alow-dimensional binary representation of
data, suitable for relatively small quantum processors which can assist the training of an unsupervised
generative model. Although we illustrate this concept on a quantum annealer, other quantum
platforms could benefit as well from this hybrid quantum—classical framework.

1. Introduction

With quantum computing technologies nearing the era of commercialization and of quantum supremacy [1], it
is important to think of potential applications that might benefit from these devices. Machine learning (ML)
stands out as a powerful statistical framework to attack problems where exact algorithms are hard to develop.
Examples of such problems include image and speech recognition [2, 3], autonomous systems [4], medical
applications [5], biology [6], artificial intelligence [7], and many others. The development of quantum
algorithms that can assist or entirely replace the classical ML routine is an ongoing effort that has attracted alot
of interest in the scientific quantum information community [8—40]. We restrict the scope of our perspective to
this specific angle and refer to it hereafter as quantum-assisted machine learning (QAML).

©2018 IOP Publishing Ltd
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Research in this field has been focusing on tasks such as classification [ 14], regression [11, 15, 18], Gaussian
models [16], vector quantization [13], principal component analysis [17], and other strategies that are routinely
used by ML practitioners nowadays. We do not think these approaches would be of practical use in near-term
quantum computers. The same reasons that make these techniques so popular, e.g., their scalability and
algorithmic efficiency in tackling huge datasets, make them less appealing to become top candidates as killer
applications in QAML with devices in the range of 100—1000 qubits. In other words, regardless of the claims
about polynomial and even exponential algorithmic speed-up, reaching interesting industrial-scale applications
would require millions or even billions of qubits. Such an advantage is then moot when dealing with real-world
datasets and with the quantum devices to become available in the next years in the few thousands-of-qubits
regime. As we elaborate in this paper, only a game changer such as the new developments in hybrid classical-
quantum algorithms might be able to make a dent in speeding up ML tasks.

In our perspective here, we propose and emphasize three approaches to maximize the possibility of finding
killer applications on near-term quantum computers:

(i) Focus on problems that are currently hard and intractable for the ML community, for example, generative
models in unsupervised and semi-supervised learning as described in section 2.

(ii) Focus on datasets with potentially intrinsic quantum-like correlations, making quantum computers
indispensable; these will provide the most compact and efficient model representation, with the potential of
asignificant quantum advantage even at the level of 50—100 qubit devices. In section 2.2 we suggest the case
of the cognitive sciences, as a research domain potentially yielding such datasets.

(iii) Focus on hybrid algorithms where a quantum routine is executed in the intractable step of the classical ML
algorithmic pipeline, as described in section 3 and section 4.

Each one of these tasks has its own challenges and significant work needs to be done towards having
experimental implementations on available quantum hardware (see, for example, [20, 21]). Based on our past
experience in implementing QAML algorithms on existing quantum hardware, we provide here some insights
into the main challenges and opportunities in this steadily growing research field. Along with illustrations from
our earlier work and demonstrations on quantum annealers, we attempt to provide general insights and
challenges applicable to other quantum computational paradigms such as the gate model.

In section 2 we present examples of domains in ML that we believe offer viable opportunities for near-term
quantum computers. In section 3 we present and illustrate the challenges ahead of such implementations and,
whenever possible, with demonstrations in real hardware. In section 4 we introduce a new and flexible approach,
the quantum-assisted Helmholtz machine (QAHM) [38], which has the potential to solve many of the challenges
towards a near-term implementation of QAML for real-world industrial-scale datasets. In section 5 we
summarize our work.

2. Opportunities in QAML

2.1. Quantum devices for sampling applications

The majority of data being collected daily is unlabeled. Examples of unlabeled data are photos and videos
uploaded to the Internet, medical imaging, tweets, audio recordings, financial time series, and sensor data in
general. Labeling is the process of data augmentation with task-specific informative tags. But this task is often
expensive as it requires humans experts. It is therefore important to design models and algorithms capable of
extracting information and structures from unlabeled data; this is the focus of unsupervised ML. But why is this
important at all? The discovery of patterns is one of the central aspects of science; scientists do not always know
a priori which patterns they should look for and they need unsupervised tools to extract salient spatio-temporal
features from unlabeled data. In general, unsupervised techniques can learn useful representations of high-
dimensional data, that have desirable properties such as simplicity and sparsity [41]. When used in conjunction
with supervised techniques such as regressors and classifiers, unsupervised tools can substantially reduce the
amount of labeled data required to achieve a desired generalization performance [42]. Connections to
reinforcement learning and more specific applications are pointed out in [43] and references therein.

An unsupervised approach that learns the joint probability of all the variables involved in a problem is often
called a generative model. The name comes from the possibility of inferring any marginal and conditional
distribution, which in turn provide a way to generate new data resembling the training set. By following the
taxonomy introduced in [43], we distinguish generative models as either explicit or implicit density estimators.
Explicit density estimators are a large family of models which include Boltzmann machines, belief networks, and
autoencoders. Depending on the characteristics of the model, they can be learned by variational approximations
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Figure 1. Sampling applications in ML as an opportunity for quantum computers: quantum devices have the potential to sample
efficiently from complex probability distributions. This task is a computationally intractable step in many ML frameworks, and could
have a significant impact on science and engineering.

[44-48], Monte Carlo sampling [49-52], or a combination of both [53]. Implicit density estimators achieve the
generative task indirectly, for example, by casting the problem into a classification task [54] or finding the Nash
equilibrium of a game [55].

Interestingly, generative models with many layers of unobserved stochastic variables (also called hidden
variables) have the ability to learn multi-modal distributions over high-dimensional data [56]. Each additional
layer provides an increasingly abstract representation of the data and improves the generalization capability of
the model [50]. These models are usually represented as graphs of stochastic nodes where the edges may be
directed, undirected, or both. Unfortunately, exact inference is intractable in all but the most trivial topologies
[57]. In practice, learning the parameters of the model is even more demanding as it requires one to carry out the
intractable inference step for each observed data point and for each learning iteration. The computational
bottleneck comes from computing expectation values of several quantities under the complex distribution
implemented by the model. Classically, this is approached by Markov chain Monte Carlo (MCMC) techniques
that, unfortunately, are known to suffer from the slow-mixing problem [58]. It is indeed difficult for the Markov
chain to jump from one mode of the distribution to another when these are separated by low-density regions of
relevant size.

The capability of quantum computers to efficiently prepare and sample certain probability distributions has
attracted the interest of the ML community [ 10, 59]. In this work, we focus on the use of quantum devices to
sample classical [60] or quantum [19, 61] Gibbs distributions as an alternative to MCMC methods. This
approach to sampling holds promise for more efficient inference and training in classical and quantum
generative models, e.g., classical and quantum Boltzmann machines [25]. Once again though, the small number
of qubits and the limitations of currently available hardware may impair the sampling process, making it useless
for real ML applications. In this perspective, we argue that even noisy distributions could be used for generative
modeling of real-life datasets. This requires working in settings where the operations implemented in hardware
are only partially known. We call this scenario a gray-box. We also argue that hybrid classical-quantum
architectures are suitable for near-term applications where the classical part is used to bypass some of the
limitations of the quantum hardware. We call this approach quantum-assisted.

As highlighted by ML experts [62], it is expected that unsupervised learning will become far more important
than purely supervised learning in the long term. More specifically, most earlier work in generative models in
deep learning relied on the computationally costly step of MCMC, making it hard to scale to large datasets. We
believe this represents an opportunity for quantum computers, and has been the motivation of our previous
work [20, 21] and of the new developments presented in section 4.

We discussed how inference and learning in graphical models can benefit by more efficient sampling
techniques. As illustrated in figure 1, sampling is at the core of other leading-edge domains as well, such as
probabilistic programming (see [63] for an example of application). If quantum computers can be shown to
significantly outperform classical sampling techniques, we expect to see a strong impact across science and
engineering.

2.2. Datasets with native quantum-like correlations

Recently, Google demonstrated that quantum computers with as few as 50 qubits can attain quantum
supremacy, although in a task with no obvious applications [64]. A highly relevant question then is: which type
of real-life applications could benefit from quantum supremacy with near-term small devices? One of the main
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motivations underlying the research efforts described here is that quantum computers could speed up ML
algorithms. However, they could improve other aspects of ML and artificial intelligence (AI) as well. Recent work
shows that quantum mechanics can provide more parsimonious models of stochastic processes than classical
models [65-67], as quantified by an entropic measure of complexity. This suggests that quantum models hold
the potential to substantially reduce the amount of other type of computational resources, e.g., memory [66, 67],
required to model a given dataset.

This invites us to pose the following challenge: identify real-life datasets, unrelated to quantum physics,
where quantum models are substantially simpler than classical models, as quantified by standard model
comparison techniques such as the Akaike information criterion [68]. In a sense, this is a form of quantum
supremacy. While datasets generated in experiments with quantum systems would be an obvious fit, the
challenge is to find such datasets elsewhere. Cognitive sciences may offer some potential candidates, as we will
describe below.

To avoid potential misunderstandings, let us consider first the example of statistical mechanics, which was
developed in the 19th century to describe physical systems with many particles. Although statistical mechanics
was long thought to be specific to physics only, we know today that certain aspects of it can be derived from very
general information-theoretical principles. For instance, the structure of the Boltzmann distribution can be
derived from the maximum entropy principle of information theory [69]. The tools of statistical mechanics have
become valuable to study phenomena as complex as human behavior [70, 71], develop record-performance
algorithms [72, 73], among many other interdisciplinary applications. Indeed, statistical mechanics has played,
and continue to play, a relevant role in the development of ML, the Boltzmann machine being an important
example.

In a similar vein, decades of research in quantum foundations and quantum information have allowed the
identification of certain features, like interference, entanglement, contextuality, among others, that are encoded
naturally by quantum systems [74, 75]. Moreover, there is increasing evidence suggesting that quantum models
could be a valuable mathematical tool to study certain puzzling phenomena in the cognitive sciences (e.g., see
[76—78] and references therein).

Consider, for instance, the following experiment [79]: a participant is asked to play a game where she can
either win $200 or lose $100 with equal probability, and afterwards she is given the choice of whether or not to
play the same gamble again. The experimentalist decides whether or not to tell the participant the result of the
first gamble, i.e., whether she won or lost. Results showed that although participants typically preferred to play
the second gamble when they knew the outcome of the first gamble, regardless of whether they won or lost, they
typically preferred not to play if they did not have such information. More specifically, the participants choose to
play the second gamble (G) with probabilities P (G|W) = 0.69 or P(G|L) = 0.59, respectively, if they knew that
they won (W) or lost (L) the first gamble, and with probability P(G) = 0.39 if they did not have such
information. These results violate the law of total probability P(G) = P(G|W)P(W) + P(G|L)P(L),
regardless of the values of the marginal probabilities P(W) and P(L). By interpreting this as an interference
phenomenon, the authors have managed to fit the experimental results using a quantum model substantially
more parsimonious than alternative classical models, as quantified by standard Bayesian model comparison
techniques.

Another general and unexpected prediction is concerned with the effects of the order of questions [80].
Askinga ‘yes—no’ question to a human subject can create a context that affects the answer to a second ‘yes—no’
question. So the probability of, say, answering ‘yes’ to both questions depends on which order the questions are
asked. For instance, in a 1997 poll in USA, 501 respondents were first asked the question: ‘do you generally think
Bill Clinton is honest and trustworthy?” Afterwards, they were asked the same question about Al Gore. Other 501
respondents were asked the same two questions, but in reverse order. The number of respondents answering
‘yes’ to both questions significantly increased when Al Gore was judged first. A quantum model for this
phenomenon is based on the assumption that the respondent’s initial belief regarding the idea of ‘honest and
trustworthy’ can be encoded using a quantum state p. The two possible answers, ‘yes’ (Y) or ‘no’” (N), to the
question about Clinton or Gore are represented by basis {|Y)c, |N)c}or {|Y)g, |N)g}, respectively, with
respect to which measurements are performed. If the projectors associated to Clinton and Gore do not
commute, we have order effects. A general parameter-free equality can be derived from these quantum models
for which experimental support has been found in about 70 surveys of about 1000 people each, and 2
experiments with 100 people [80]. Quantum computers may allow for a complementary experimental
exploration of these ideas at larger scales, now that experiments with hundreds of people are becoming more
common [80-82].

Areport [83] from the White House in 2016 reads ‘it is unlikely that machines will exhibit broadly-applicable
intelligence comparable to or exceeding that of humans in the next 20 years.” Some of the most relevant reasons
are technical. Recent work [75] suggests why quantum models may be useful in the cognitive sciences and, if so,
it may offer new approaches to tackle some of the technical hurdles in AI. The 20-year span predicted above may
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Figure 2. General scheme for hybrid quantum—classical algorithms as one of the most promising research directions to demonstrate
quantum enhancement in ML tasks. A dataset drives the fine tuning of model’s parameters. In the case of generative models one can
use stochastic gradient descent to update the parameters © from time rto ¢ + 1. The updates often require estimation of an intractable
function G, which could be approximated by samples from a probability distribution P (s|®"). This computationally hard sampling
step could be assisted by a quantum computer. In some cases, making predictions out of the trained model is also an intractable task.
The predictions F could be approximated by samples with the assistance of a quantum computer as well. Examples of such hybrid
approaches are illustrated further in figures 3 and 4.

be in sync with the advent of more powerful and more portable quantum computing technologies. The potential
returns may be high.

Although we emphasized the case of cognitive sciences, it would be interesting to explore what other relevant
and commercial datasets exhibit quantum-like correlations, and where quantum computers can have an
advantage even at the level of 50—100 qubits. In general, the identification of characteristics that are intrinsically
quantum, and therefore hard to simulate classically, could be a game changer in the landscape of applications for
near-term quantum technologies. Rather than trying to catch up with mature classical technologies in a
competition for supremacy, this may offer the opportunity for quantum technologies to create their own unique
niche of commercial applications, thereby becoming indispensable.

3. Challenges in QAML

Near-term implementation of QAML algorithms that can compete with state-of-the-art classical ML algorithms
most likely will not come from the quantum version of popular ML algorithms (see, e.g., [11, 13—18]). As
mentioned in [22], it would be difficult for these algorithms to preserve the speed-up claimed since they inherit
the limitations of the Harrow-Hassidim-Lloyd (HHL) algorithm [84]. Here, we raise the bar even higher as our
attention goes to the implementation of algorithms with potential quantum advantage in near-term quantum
devices.

As pointed out in section 2, problem selection is key. For example, consider the recent work in quantum
recommendation systems [27]. The authors developed a custom data structure along with a quantum algorithm
for matrix sampling that has polylogarithmic complexity in the matrix dimensions. The result is a quantum
recommendation system, and a proposal to circumvents most of the relevant limitations in the HHL algorithm.
Because the input size is extremely large (e.g., number of users times number of products), the algorithm
promises to significantly speed-up the task compared to currently employed ML approaches that require
polynomial time. For the very same reasons, however, millions of qubits would be needed to handle datasets
where state-of-the-art classical ML starts to struggle. We do not expect such devices to appear in the next decade.
Instead, our attention goes to hybrid quantum-—classical algorithms where conventional computers are used in
the tractable subroutines of the algorithms and quantum computers assist only in the intractable steps. Figure 2
illustrates an example of this concept for the case of ML tasks.

There are several challenges which will generally impact any QAML algorithm, such as the limited qubit
connectivity, the finite dynamic range of the parameters dictated by the intrinsic energy scale of the interactions
in the device, and intrinsic noise in the device leading to decoherence in the qubits and uncertainty in the
programmable parameters. We now emphasize some of these practical challenges, with particular attention to
execution and implementation of hybrid QAML algorithms in near-term devices.
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(a) RBM-based hybrid model (b) FVBM-based hybrid model
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Figure 3. Examples of QAML implementations of different probabilistic graphical models, illustrating some of the challenges in near-
term devices. (a) Restricted Boltzmann machines (RBM) are key components in deep learning approaches such as deep belief
networks. Training of these architectures could be significantly improved if one were able to sample from the joint probability
distribution of visible and hidden variables, a computationally intractable step usually performed with approximate Markov chain
Monte Carlo approaches such as contrastive divergence (CD) [85]. Although a quantum annealer can be used to generate such
samples, the results need to be combined with those obtained from the classical ML pipeline component within the hybrid approach.
This classical-quantum model compatibility challenge (section 3.1) is illustrated in the experimental results on the right. £,, is the
average log-likelihood and represents the performance metric; the higher its value, the better the model is expected to represent the
training dataset. As demonstrated in [20], estimating the instance-dependent effective temperature, Tef, is key in this QAML
approach. In all three lines, the first 250 iterations are done with the cheapest and widely used version of CD (denoted as CD-1). The
line with open circles represents the case where all 500 iterations in the training are performed with CD-1, and is used as a baseline
comparison for our QAML approach. Using our quantum-assisted learning (QuALe) algorithm where T is estimated at each
learning iteration (crosses), we can restart from the point where the classical CD-1 left off and improve the performance of the model
with respect to the baseline. Assuming instead that T¢g is the physical temperature of the device, Towaox = 0.033 (triangles), sucha
restart technique fails. (b) Visible-only generative models are often used either because of their tractability [43] or because of the
convexity of the associated optimization problem, as in fully-visible Boltzmann machines (FVBM). In the latter, convexity does not
mean tractability; exact learning would still require computation of the partition function which is intractable for non-trivial
topologies. Even though there exist fast [86] and consistent [87] approximations to the required gradients, we here consider quantum
annealing as an alternative tool to sample from non-trivial topologies. In [21], we implemented and trained a hybrid QAML model by
introducing a gray-box model (see section 3.2) expected to be robust to noise in the programmable parameters and to deviations from
the desired Boltzmann distribution, for example, due to non-equilibrium effects in the quantum dynamics. On the right, we show the
capabilities of the generative model; two test datasets (leftmost column) are corrupted with different types of noise (red pixels, central
column) and then restored on the quantum annealer (rightmost column).

3.1.Issue of classical and quantum model compatibility

Essential to a hybrid approach is the need to have a flow of information between the classical preprocessing and
the quantum experiments. The possibility of sharing information back and forth between the different
architectures might pose a significant challenge, arising from the need to match samples from the classical and
the quantum model. That is the case, for example, when assisting the training of restricted Boltzmann machines
(RBMs) or deep belief networks (DBNs) with quantum devices [20, 23]. There, updates of the parameters are
performed by a stochastic gradient descent algorithm that requires two key components. Due to the bipartite
structure of RBMs, the first component, also known as the ‘positive phase,” can be estimated very efficiently with
conventional sampling techniques, while the second component, also known as the ‘negative phase,’ is, in
general, intractable and can be assisted with quantum sampling. Since the two terms are subtracted in the same
equation and originate from the same model, it is important to have control and to match all of the parameters
defining both classical and quantum probability distributions.

A challenge here is related to the temperature of the Gibbs distribution of the model we are sampling from.
For simulations in conventional computers, it is irrelevant to explicitly specify the temperature. Since itisa
multiplicative factor, we could set it to 1 and ignore it altogether. In the case of an experimental physical device,
such as a quantum annealer, we cannot neglect the temperature because (i) it is not under our control, and (ii) it
is determined by many factors. These include not only the operational temperature of the device, but also the
details of the quantum dynamics. The lack of knowledge of this parameter implies that the communication
between classical and quantum components of our hybrid algorithm is broken. In previous work [20], we
showed the significant difference in performance that can arise from tackling this challenge. As shown in
figure 3(a), a proper estimation of the temperature also allows us to use restart techniques. For instance, the
learning process can initially be carried out on a classical computer because the model parameters may be below
the noise level and precision of the quantum device. Then, when desired, the quantum computer can be called to
continue the process.

The challenge can also be addressed at hardware level by designing devices that can prepare a class of
quantum Gibbs states at will. However, this strategy might open up other difficulties, some of these are detailed
below.
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3.2. Robustness to noise in programmable parameters of the quantum device

Preparing quantum Gibbs states with a quantum annealer or with a universal gate-model quantum computer is
not a straightforward task, given the intrinsic noise in the programmable parameters. In the case of quantum
annealers, freezing on quantum distributions or dynamical effects can lead to non-equilibrium distributions
away from Gibbs [60, 88]. This is one of the challenges towards scaling the approaches in [20, 23] where the
training of RBMs and DBNs requires reliable samples from a classical Boltzmann distribution. Furthermore, any
quantum computing architecture, with intrinsic noise in the programmable parameters, can always lead to
deviations from the desired target state. A proposed solution [60, 88] was to use samples obtained from a
quantum device to seed classical Gibbs samplers (e.g., MCMC). While this is a promising approach, one of its
drawbacks is that it forces the model to have a specific form, even if the quantum device has a genuinely different
structure. If the quantum distribution prepared by the device is far from the one assumed, most of the burden
would lie on the classical post-processing. It is not clear how much of the method’s efficiency is given by the
quality of the samples from the quantum devices and how much is achieved by the post-processing steps.

Interestingly, gray-box models such as the fully-visible Boltzmann machine (FVBM) studied in [21, 25, 60]
and illustrated in figure 3 (b) may be a near-term solution to these issues. In a gray-box model, although we
assume that samples come from a Gibbs-like distribution, we work directly at the level of the first and second
moment statistics, without complete knowledge of the actual parameters that were implemented. Therefore, the
emphasis is on the quality of the samples obtained from the quantum device, and their closeness to the data. This
has the potential to increase the resilience against perturbations in the programmable parameters. In fact, as long
as the estimated gradients for stochastic gradient descent have a positive projection on the direction of the true
gradients, the model moves towards the optimum. In cases where this is not so, it might still be possible to design
algorithms that mix model-based and model-free information in a suitable way. For instance, a proxy could
check whether the estimated gradients actually project on the correct direction, if not, then the system can move
in the opposite direction.

Gray-box models with hidden variables could exploit all of the available resources from the quantum device,
while coping with its intrinsic noise and parameter misspecification. As an example, we used a gray-box
approach to implement a quantum-assisted Helmholtz machine where the hidden variables are sampled from a
D-Wave device; the framework is discussed in section 4 and described in detail in [38]. A caveat of the gray-box
approach is that the final model is inevitably tailored for the quantum device used during the training. That is,
any time we want to perform ML tasks of interest, such as reconstruction or the generation of new images as
shown in figure 3, we will need to use the same quantum device.

3.3. The curse of limited connectivity

The basic principle behind this challenge is that physical interactions are local in nature. Although engineering
advances can push the degree of qubit connectivity in quantum annealers or gate-model quantum computers,
required qubit-to-qubit interactions not available in the device will cost an overhead in the computational
resources. In the case of quantum annealers, a standard solution is to produce an embedding of the logical
problem of interest into the physical layout, therefore increasing the number of required qubits. In the case of a
gate-model quantum computer, the overhead comes in the number of swaps required to make distant qubits
talk to each other [89]. In any architecture, this compilation requirement needs to be considered in the
algorithmic design.

In the case of quantum annealers, achieving the topological connectivity of the desired model is only half of
the challenge. Another significant challenge is the problem of parameter setting associated with the additional
interactions present in the embedded model. In other words, how does one set the new parameters such that the
embedded model accurately represents the intended model? There are no known optimal solutions, although
heuristic strategies have been proposed [90-92]. However, in the type of ML applications we are considering,
there is a way out. The main goal in the training phase of an ML algorithm is to find the optimal parameters that
minimize a certain performance metric, suggesting that ML itself is a parameter setting procedure. This is
precisely the demonstration in [21], where we show how to train models with arbitrary pairwise connectivity. In
this case, the difficult task is not the embedding, which can be readily obtained by known heuristics, but rather
the training of the whole device, implicitly solving the parameter setting problem.

To summarize, emphasis has been given to the embedding problem and to the mapping of the logical model
of interest into physical hardware. An equally, or even more important challenge, is to determine how to set the
parameters, including those associated to the embedding, such that the device samples from the desired
distribution. This combined problem is what we call the curse of limited connectivity. In the case of gate-model
quantum computer, [93] presents an illustrative experimental study, highlighting this challenge. It presents a
comparison and analysis of the trade-off between connectivity and the quality of computation due to the
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aforementioned overhead in computational resources. A similar trade-off would need to be taken into
consideration in implementations of QAML algorithms in near-term gate-model quantum computers.

3.4. Representation of complex ML datasets into near-term devices

Quantum information does not have to be encoded into binary observables (qubits), it could also be encoded
into continuous observables [94]. There has been work in quantum ML that follows the latter direction [95, 96].
However, most available quantum computers do work with qubits, nicely resembling the world of classical
computation. Datasets commonly found in industrial applications have a large number of variables that are not
binary. For instance, images may have millions of pixels, where each pixel is a 3D vector and each entry of the
vector is a number specifying the intensity of color. We refer to these kinds of datasets as complex ML datasets. A
naive binarization of the data will quickly consume the qubits of any device with 100-1000 qubits. Many QAML
algorithms[11, 14, 18] rely on amplitude encoding instead, a technique where continuous data is stored in the
amplitudes of a quantum state. This provides an exponentially efficient representation upon which one could
perform linear algebra operations. Unfortunately, it is not clear how one could prepare arbitrary states of this
kind on near-term quantum devices. Even reading out all of the amplitudes of an output vector mightkill or
significantly hamper any speed-up [22].

In this perspective, we argue that near-term QAML algorithms should rather aim at encoding continuous
variables stochastically into abstract binary representations, a strategy we refer to as semantic binarization. In this
approach, we use quantum states that can be prepared by near-term devices for sampling from unique quantum
probability distributions that may capture correlations hard to model with conventional classical ML models. In
the context of quantum annealers, such design may allow sampling from non-trivial graph topologies that are
usually avoided in favor of restricted ones, for example, bipartite graphs are favored in classical neural networks
for convenience.

One way to obtain such an abstract representation is to use hybrid approaches where visible variables v are
logically implemented by classical hardware, and hidden variables u are physically implemented by quantum
hardware. However, this idea comes with further challenges. First, the issue of model compatibility described
above would apply. Second, sampling hidden variables u from the posterior distribution P (u|v) may be highly
problematic because the preparation of arbitrary quantum states is an open challenge. Finally, we might have to
sample a binarization for each data point and that would be impractical for near-term quantum computers. For
instance, the standard ML dataset of handwritten digits by the Modified National Institute of Standards and
Technology (MNIST) is composed of 60 000 training points, hence we would need to program the quantum
device atleast 60 000 times.

As we will see in the next section, deep learning may provide solutions to these challenges. We propose a new
hybrid quantum-—classical paradigm where the objective is to tackle most of the issues discussed here and, at the
same time, to deal with complex ML datasets.

4. The quantum-assisted Helmholtz machine

The quantum-assisted Helmholtz machine (QAHM) is a framework for hybrid quantum—classical ML with the
potential of coping with real-world datasets. We already pointed out some of the challenges in developing near-
term QAML capable of competing with conventional ML pipelines, most importantly, the encoding of
continuous variables, the limited number of variables, the need to prepare and measure quantum states for each
data point. Here we show how some early ideas from the deep learning community can help avoid some of these
difficulties. Details about the formalism and preliminary implementation of QAHM can be found in [38].

Consider a dataset and the task of modeling its empirical distribution with a generative model
P(v) = Y, P(v|u) Py (u) (see section 2.1 for a briefintroduction). Here v are the visible variables that represent
the dataand u are unobservable or hidden variables that serve to capture non-trivial correlations. It is common
to use binary valued stochastic hidden variables as they can express the presence or absence of features in the
data. The set of hidden variables can be partitioned into a sequence of layers that encode increasingly abstract
features. In other words, P (v) is a deep neural network, called the generator network.

Here we suggest using a quantum device to model the most abstract representation of the data, that is, the
deepest layers of the generator network. The samples obtained from a quantum device are described by the
diagonal elements of a parameterized density matrix, Poc(w) = (u|p|u). As an example, the density could be
parameterized by a quantum Gibbs distribution p = e~/ Z, where H is the Hamiltonian implemented in
quantum hardware and Z is the corresponding partition function. The conditional distribution P (v|u) is then a
classical neural network that transforms samples from the quantum device into samples with the same structure
of those in the dataset. Hence, visible variables v could be continuous variables, discrete variables, or other
objects, effectively tackling the challenge of representing complex data (see section 3.4). Because the quantum
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Figure 4. Generation of handwritten digits with a type of quantum-assisted Helmholtz machine (QAHM). (Left) The QAHM is the
framework we propose to model complex ML datasets in near-term devices. By complex, we refer to datasets where the number of
variables is much larger than the number of qubits available in the quantum device, and where data may be continuous rather than
discrete. The framework employs a quantum computer to model the deepest hidden layers, containing the most abstract
representation of the data. This low-dimensional compact representation is where we believe the quantum device can capture non-
trivial correlations and where quantum distributions might have a significant effect. The number of hidden variables in the deepest
layers is much smaller than the number of visible variables, making it ideal for near-term implementation on early quantum
technologies either on quantum annealers, or universal gate-model quantum computers. f indicates the parameters of the quantum
computer to be learned and control the samples obtained from it. Although we illustrate in panel (a) and (b) the realizationona
quantum annealer from [38], extensions to gate-model quantum computers are in progress. (a) Artificial data generated by a QAHM
implemented on the D-Wave 2000Q, trained on a sub-sampled version of the MNIST dataset with 16 x 16 continuous valued pixels
and 10 binary variables indicating the class in {0, ..., 9}. Both recognition and generator networks have 266 visible variables and two
layers of 120 and 60 hidden variables, respectively. The samples are generated from the final model by first sampling the deepest layer
with the D-Wave 2000Q, and then transforming those samples through the classical part of the generator network. These experiments
use 1644 qubits of the D-Wave 2000Q quantum annealer. Some of the samples resemble blurry variations of digits written by humans,
this problem affects other approaches as well. (b) Samples from the MNIST dataset that are closest in Euclidean distance to those
generated by our model. The model does not simply memorize the training set, but rather reproduce its statistics. In future work, the
QAHM will be fine-tuned to provide sharper results.

device works on a lower dimensional binary representation of the data, this model is also able to handle datasets
whose dimensionality is much larger than the number of qubits available in hardware.

Typically, learning algorithms for generative models attempt to maximize the average likelihood of the data.
As pointed out in section 2.1, this is not feasible in models with multiple layers of discrete hidden variables as we
would need to sample from the intractable posterior distribution P (u|v). A Helmholtz machine [97, 98] consists
of a generator network along with a recognition network Q (u|v) thatlearns to approximate P (u|v). Thisis akey
approach behind many variational learning and importance sampling algorithms employed nowadays [44—48,
50-53]. In principle, the recognition network can also be implemented as a deep neural network whose hidden
layers are modeled by a quantum device. However, this design requires quantum state preparation and
measurement of the hidden variables for each data point in the training set and for each learning iteration, a
daunting process in near-term implementations. To avoid doing this, we will implement the recognition
network as a classical deep neural network. Restricting the recognition network to be classical is not a feature of
the QAHM framework, instead it is an option to speed up learning of large datasets assisted by serial quantum
devices (e.g., quantum annealers). To force the recognition network Q (u|v) to be close to the true posterior
P (u|v) anotion of distance between them is minimized at each learning iteration. Using the Kullback-Leibler
divergence, for instance, leads to the so-called wake-sleep algorithm [51, 97, 99].

The general architecture of a type of QAHM is illustrated in figure 4. The recognition network (left) infers
hidden variables via a bottom-up pass starting from the raw data. The most abstract representation is obtained
either from a classical layer (near-term) or from a quantum device (future implementations). The generator
network generates samples of the visible variables via a top-down pass starting from samples obtained from a
quantum device. The final model is an implicit density model when a gray-box approach is used to characterize
the quantum hardware (see section 3.2), but we can turn it into an explicit density model if further processing is
employed (e.g., quantum annealing to seed Gibbs samplers). Tasks such as reconstruction, generation, and
classification can also be implemented in the QAHM framework.

In [38], we tested these ideas using a D-Wave 2000Q quantum annealer for the generation of artificial
images. For this task we used a sub-sampled 16 x 16 pixels version of the standard handwritten digit dataset
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MNIST. Each gray-scale pixel is characterized by an integer value in {0, ..., 255}; we rescale this value in the
range [—1, +1] and interpret it as a continuous variable. There are also 10 binary variables indicating
membership to one of the classes. The 266 visible variables needed to encode this data could, in principle, be
embedded directly on the D-Wave 2000Q using a FVBM and a much poorer representation of the data viaa
naive binarization. Yet we would have to choose a relatively sparse model topology as we cannot embed an all-to-
all connectivity in the D-Wave 2000Q for the 266 variables. The sparse connectivity and the absence of hidden
variables can severely limit the ability to model the dataset. Our approach tackles both challenges and also
enables the handling of larger datasets than would be possible in state-of-the-art quantum annealers.

We used a classical recognition network and a quantum-assisted generator network, both with 266 visible
variables and two hidden layers of 120 and 60 variables, respectively. The deepest layer of 60 variables was
mapped to 1644 qubits in D-Wave 2000Q using the approach in [21]. We run the wake-sleep algorithm for 1000
iterations and generated samples with the quantum-assisted generator network. The images generated are
shown in figure 4(a). Although these preliminary results cannot compete with state-of-the-art ML, the artificial
data often resemble digits written by humans. Figure 4(b) shows the images in the training set that are closest in
Euclidean distance to the generated samples. We can see that the artificial images generated by the network are
not merely copies of the training set, instead, they present variations and novelty in some cases, reflecting the
generalization capability of the model. While the artificial data may also look blurry, this problem affects other
approaches as well. Only the recent development of GANs [55] led to much sharper artificial images.

5. Summary

Machine learning has been presented as one of the applications with commercial value for near-term
technologies. However, there seems to be a disconnect between the quantum algorithms proposed in much of
the literature and the needs of the ML community. While most of the quantum algorithms for ML show that
quantum computers have the potential of being very efficient at doing linear algebra (e.g., [11, 13-18, 84]), as
discussed in [22], these proposals do not address the issues related to any near-term implementation. More
importantly, to date there are no concrete benchmarks indicating that such work can be close to outperforming
their conventional classical ML counterparts. In this perspective we stress this disconnect and provide our views
on key aspects to consider towards building a robust readiness roadmap of QAML in near-term devices.

If a demonstration of quantum advantage on industrial applications is a first milestone to be pursued, we
emphasize the need to move away from the popular and tractable ML implementations. We should rather look
for applications that are highly desirable, but not-so-popular because of their intractability. It is in this domain
where we believe quantum computers can have a significant impact in ML. In that sense, quantum speed-up in
itselfis not enough; if the chosen ML applications are tractable to a great accuracy with classical ML methods (as
itis the case of [27]), then the number of qubits required to tackle industrial-scale applications may be far larger
than those available in near-term devices.

As an example of intractable applications, in section 2 we presented the case of sampling from complex
probability distributions with quantum devices. There is potential here for boosting the training of generative
models in unsupervised or semi-supervised learning. Another approach we suggested is to explore applications
where quantum distributions naturally fit the model describing the data correlations. That seems to be the case
for some datasets from the field of cognitive sciences (see, e.g., [75, 79, 80, 100], also [ 76—78] and references
therein). Other hard ML problems have been mentioned elsewhere [37]. We think working in any of these
currently intractable applications will yield a higher payoff towards demonstrating that quantum models
implemented in near-term devices might surpass models trained with classical resources.

Here we focused on some of the most pressing challenges we foresee in near-term implementations. For
instance, the limited qubit connectivity will result in an overhead of qubits in the adiabatic model, and an
overhead of gate operations in the gate-model. It is also important to take into consideration the model
complexity that each physical hardware might present, which could have significant consequences on the ML
task. For instance, applications to cognitive sciences might require a universal quantum computer capable of
preparing and fine-tuning tailored quantum distributions, while applications to generative modeling might only
need sampling from a quantum Gibbs distribution. For the latter, there already exist proposals with both
quantum annealers and gate-model quantum computer architectures.

Coping with the challenges presented in section 3 is certainly an ongoing research activity. One key strategy
proposed here towards the near-term demonstration of quantum advantage is the development of hybrid
quantum-—classical algorithms capable of exploiting the best of both worlds. In this perspective, we also put
forward a new framework for such hybrid QAML algorithms, referred here as the quantum-assisted Helmholtz
machine [38]. This new approach aims to solve some of the most pressing issues towards handling industrial-
scale datasets with a large number of continuous variables. It is motivated by the idea that a quantum computer
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should be used only to tackle the more abstract representation of the data, after trimming the information that
can be handled classically. Here we use a deep neural network to transform the large continuous data into a new
abstract discrete dataset with reduced dimensionality. It is to this abstract representation that we apply the
quantum computer. This approach can be used to solve practical ML tasks, including reconstruction,
classification, and generation of images.

Certainly, more work is needed to address the question of identifying the first killer ML application that can
be implemented in near-term quantum computers with the order of a few thousand qubits. Finding intractable
problems and developing new hybrid QAML algorithms that tackle the challenges of working with real-world
devices is what we find the ideal scenario. We hope the community makes a leap in this direction now that more
powerful and larger quantum annealers and gate-model quantum computers are becoming available to the
scientific community.
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