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One of the best role models for 
‘thinking outside the box’ has 
to be A. Square, the hero of 

Edwin A. Abbott’s novella Flatland. 
Despite being confined to two dimensions, 
the hapless Square nevertheless imagines 
and then experiences worlds truly beyond 
his own, venturing into both lower and 
higher dimensions. Flatland is a timeless 
story embedded in the mathematics of 
geometry and, at the same time, it is a 
clever, edgy satire on life in the Victorian 
era. But often forgotten is the fact that 
Flatland is, at its core, a romance — the 
book’s full title is Flatland: A Romance of 
Many Dimensions — between a tireless 
explorer and forbidden knowledge. In 
recent years physicists and engineers have 
plunged head over heels into their own 
interdimensional love affair. The target of 
their affections is a new class of materials 
known as topological insulators. To 
understand this relatively recent rapture, 
we need to introduce Square to two new 
concepts that he did not know about at the 
time — topology and quantum mechanics.

Flatland has a rigid social hierarchy in 
which social class depends on the number 
of sides a person has. Square is in the 
middle class, above the triangular serfs but 
below the pentagons and hexagons — with 
the high-priest circles being at the top of 
the social hierarchy. Ironically, if topology 
had trumped basic geometry in Flatland, 
then everyone would have belonged to 
the same social class because topology is 
concerned with classifying properties — 
so-called topological invariants — that do 
not change when objects are subjected to 
continuous deformations. In other words, 
triangles, squares, pentagons, hexagons and 
circles all share the same topology.

In one episode, Square visits one-
dimensional (1D) Lineland and 0D 
Pointland. As a higher-dimensional 
being, he has the power to see into these 
worlds in ways that the inhabitants 
could not fathom. He sees among other 
things that the residents of these lower-
dimensional landscapes are hobbled by a 

lack of mobility: Lineland’s citizens know 
only their neighbours on the left and 
right, and Pointland’s single inhabitant, 
the King, is so full of himself that he 
cannot even comprehend the existence 
of another being. Things would have 
been different if quantum mechanics had 
applied in Flatland: for example, two or 
more quantum objects can simultaneously 
occupy the same space with little or no 
interactions (such as electrons in a 0D 
quantum dot), and quantum mechanics 
allows more information to be stored by a 
system or embedded in a region of space 
than is possible with classical mechanics.

Developments in areas such as materials 
growth, device fabrication and imaging 
mean that we can now explore similar 
‘outside-the-box’ ideas from topology and 
quantum mechanics in the real world. In 
the past, these pursuits often concentrated 
on physics in one particular dimension 
(for example, the 1D physics of quantum 
wires or the 2D physics of graphene). 
In particular, as physicists explored the 
quantum Hall effect in 2D electron gases 

(2DEGs) in greater detail, it became clear 
that 1D edge states had an important role 
in the effect, prompting more theoretical 
and experimental work on the interactions 
between different dimensions. However, 
although the 2D surface states of bulk 3D 
crystals have been investigated for decades, 
the 3D ‘host’ material was usually ignored. 
In contrast, the physics of topological 
insulators is fundamentally linked to 
structures in d dimensions, their boundaries 
in d−1 dimensions, and the information 
overlap between these two worlds (Fig. 1). 
This work could lead to breakthroughs in 
areas as diverse as spintronics, quantum 
information and even particle physics — 
theorists have predicted that an exotic type 
of particle that is its own antiparticle (a 
Majorana particle) might be observed in 
topological insulators. One can see why the 
physics community is smitten.

Despite all this potential, the physics 
that underpins topological insulators will 
be familiar to anyone who has studied 
crystals. The periodic potential experienced 
by the charge carriers in a solid material 
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Electric charges on the boundaries of certain insulators are programmed by topology to keep moving forward when 
they encounter an obstacle, rather than scattering backwards and increasing the resistance of the system. This is 
just one reason why topological insulators are one of the hottest topics in physics right now.
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Figure 1 | Different dimensions. A topological insulator is an insulating material that allows electric 
charge to flow along its boundary in spin-polarized channels that are topologically protected from 
impurity scattering. The physics of topological insulators involves interactions between hosts of 
dimension d and boundaries of dimension d−1. Topological states have been observed on the edges 
of 2D systems and the surfaces of the 3D materials. The four-dimensional shape on the right is 
called a tesseract.
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leads to a band structure that describes 
the relationship between the energy and 
momentum of the electrons (or holes). 
This band structure typically consists of 
a conduction band composed of bonding 
orbitals (which have symmetric wave 
functions), and a valence band composed of 
antibonding orbitals (antisymmetric wave 
functions). In an insulator the Fermi energy 
lies in the bandgap between the minimum 
of the conduction band and the maximum 
of the valence band. The situation changes 
at the surface of a 3D host (or the edge of 
a 2D host) and new electron states appear 
at these boundaries. Depending on doping 
and crystal structure, the Fermi level may 
intersect either the conduction or valence 
band at the boundary, which will lead to 
conducting behaviour. However, if the Fermi 
level does not intersect either band, the 
boundary will remain insulating (Fig. 2a).

The situation becomes very interesting 
if spin–orbit coupling (Fig. 3) is added to 

the picture. In a semiconductor, spin–orbit 
coupling typically leads to various effects, 
such as warping of the valence band and 
the splitting of spin degeneracies. (The 
spin-up and spin-down electrons in a 
conventional semiconductor tend to have 
the same energy.) However, if the spin–
orbit coupling is sufficiently large, it can 
actually lead to antisymmetric states having 
higher energies than symmetric states 
in certain regions of momentum space 
(whereas antisymmetric states normally 
have lower energies). This inversion leads 
to topological ‘twists’ in the band structure 
(Fig. 2b,c).

The changes caused by spin–orbit 
coupling can be even more dramatic at 
the boundary, with the conduction and 
valence bands actually crossing over. If the 
host is 3D and the valence and conduction 
bands cross over twice (or an even number 
of times), the 2D surface states form a 
pair of Dirac cones (Fig. 2c) — this is 

similar in some ways to what is found in 
graphene. However, if the host is 3D and 
the valence and conduction bands cross 
over once (or an odd number of times), 
the 2D surface states are completely 
different: indeed, theorists have shown that 
these even and odd boundary states are 
topologically distinct.

A distinguishing characteristic of the 
odd states (which are known as strong 
topological insulators) is that backscattering 
is forbidden: this means that electrons can, 
in principle, propagate with little or no 
resistance along the edge or surface of the 
system — even if the host is an insulator. 
This is a property that could prove to be 
very useful for applications. To see why 
backscattering is forbidden, consider Fig. 2b: 
if an electron is backscattered so that its 
momentum (k) is changed from +k to –k, 
then its spin must also be flipped from up to 
down, or vice versa. However, something is 
needed to flip the spin, such as a magnetic 
impurity or a magnetic field. If nothing 
is available to flip the spin, the electrons 
cannot be backscattered, so they can travel 
along the boundary unimpeded. If we look 
at Fig. 2c, we can see that it is possible to 
backscatter an electron without flipping 
its spin in a system where there is an even 
number of twists.

The first topological insulators were 
2D hosts with a spin structure on a 
1D edge (known as the quantum spin 
Hall effect). They were first elaborated 
theoretically1–3, then predicted in a 
specific HgTe heterostructure system4, and 
experimentally verified in a carefully tuned 
nanostructure5. The speed of the theoretical 
and experimental cycle was remarkable and 
a testament to the skill of the investigators 
involved, as well as to the mature state 
of nanofabrication technologies such as 
molecular beam epitaxy. Then, the 3D 
version of topological insulators was 
proposed6, predicted in a BiSb alloy7, and 
experimentally detected by angle-resolved 
photoemission spectroscopy (ARPES)8. 
Again it was a stunning sequence of 
developments that launched a new field.

As the 3D topological insulators have 
surface states with chiral patterns of spins 
in momentum space (Fig. 3), surface-
sensitive techniques such as ARPES and 
scanning tunnelling microscopy (STM) 
have been unleashed in full force on 
these materials. The Fermi ‘surface’ of 
the 2D boundary state is a circle and can 
be represented by a closed strip (Fig. 2, 
bottom panels). As the spin–orbit coupling 
increases, and the band structure changes 
shape, twists are introduced into the strip 
that represents the Fermi surface. Again 
the properties of the system depend on 
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Figure 2 | Topological insulators and band structures. a, The conduction and valence bands of a 
typical 3D solid (middle section). The shaded regions are the bands in the bulk of the solid, and the 
thick black lines are the bands at the surface. (Similar behaviour is observed in a 2D system with a 
1D boundary.) In general, the conduction band is symmetric (red), the valence band is antisymmetric 
(blue), and spin-up and spin-down electrons (black arrows) have the same energy. En, E0 and Ep are 
the Fermi energies of a negatively doped, neutral and positively doped solid, respectively. If the Fermi 
energy lies in the energy gap between the conduction and valence bands, the solid is an insulator; if it 
intersects either band, the material will conduct electric charge. The top image shows the conduction 
and valence bands as strings, and the closed strip in the bottom section represents the Fermi surface. 
b, Spin–orbit coupling lifts the degeneracy of the electron spins and leads to other changes: in the 
bulk, for example, the conduction band becomes antisymmetric (–) and the valence band becomes 
symmetric (+) for positive momenta. At the boundary the bands (the red and blue lines) actually 
cross over each other, and the Fermi energy is forced to intersect both bands, which results in the 
conduction of electric charge along the boundary. The flow of charge is not impeded by obstacles in 
this example because, as explained in the text, it is not possible for electrons to be backscattered. 
The electron current in a particular direction is spin-polarized and robust against perturbations such 
as disorder and interactions. c, Increasing the spin–orbit coupling further leads to more changes. 
Electrons can be backscattered in this system.
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whether this strip contains an even or 
odd number of twists. When there are 
zero (Fig. 2a) or two (Fig. 2c) twists, the 
band has two sides and two edges, and an 
electron moving around the Fermi surface 
returns to its starting point after one cycle. 
When there is one twist, on the other hand, 
a Möbius strip is created with only one side 
and one edge (Fig. 2b). An electron moving 
around this Fermi surface does not return 
to its starting point after one cycle: instead 
it must complete a second cycle to return to 
its original quantum state. This property is 
a key element of topological surface states 
and results from the electron acquiring a 
Berry phase9 (Fig. 3).

As movement around the Fermi surface 
in momentum space corresponds to 
scattering in real space, STM can access 
topological physics through careful 
scrutiny of quantum interference patterns. 
These patterns contain an extremely 
rich and dense set of information that 
transcends the pure Flatland in which 
the electrons move, as evidenced by the 
holographic projection of 3D images from 
2D surface states designed by hand10. 
Indeed, one can view topological surface 
states as the natural holographic projection 
of the electronic structure that exists in 3D 
onto a 2D surface11. An electron moving 
in this special topology has a knotted 
trajectory12 that can be unravelled by, in 

effect, reverse engineering the interference 
patterns. Remarkably, STM experiments 
in a variety of topological surface states 
have now glimpsed the tell-tale signs of 
chiral surface states, Dirac fermions and 
suppression of backscattering13–16.

A recent development is the isolation 
of a single Dirac cone (Fig. 3) in different 
materials including Bi2Se3 (refs 17,18), 
Bi2Te3 (refs 14,15,19) and pure Sb 
(refs 16,20) (the latter seems to be the 
simplest ‘parent’ material exhibiting non-
trivial topological order21). The marriage of 
topological insulators and nanotechnology 
has also led to STM imaging22 of Bi2Se3 
nanowires and nanoribbons synthesized by 
chemical means, and the demonstration of 
electronic devices in Bi2Se3 nanoribbons23. 
Furthermore, the bonding of a thin film 
of a normal (s-wave) superconductor to 
a topological surface state is predicted 
to result in physics similar to p-wave 
superconductors (including the elusive 
Majorana modes)24,25. This happens because 
electrons with opposite momentum and 
spin pair together in a superconductor 
(to form Cooper pairs), but such pairs 
would normally destructively interfere 
in a topological insulator (Fig. 3). 
Recent progress in this direction is the 
demonstration of a bulk superconducting 
variant of a topological insulator26 achieved 
by doping Bi2Se3 with Cu. With new STM 

studies probing the effects of single atomic 
impurities, similar to previous work on 
high-temperature superconductors27, 
it is clear that the dimensional reach of 
topological insulators now stretches all 
the way from Pointland to Spaceland. And 
although we cannot fabricate a tesseract 
(the four-dimensional analogue of a 
cube; see Fig. 1), A. Square’s unrelenting 
curiosity might make him wonder if there 
are 3D bulk states that inherit topological 
properties from a higher-dimensional 
host. Similar ideas28 were recently 
exploited in the realization of nanoscale 
‘quantum drums’29.

Sadly, Square ended up in prison for 
his exploits and for having thoughts like 
this. However, if the field of topological 
insulators keeps following its meteoric 
trajectory, this class of exciting materials 
may well match the longevity of Flatland 
itself. Abbott’s novella has been made into 
a film several times. Here’s hoping that 
Topological Insulator: The Movie is not 
far off. ❐
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Figure 3 | Inside a topological insulator. a, An electron at position r executing a closed orbit (as a 
result of being scattered by impurities) in an electric field E experiences an effective magnetic field 
Beff that couples to its spin. k is momentum. b, This spin–orbit coupling (SOC) splits the degeneracy 
of spin-up and spin-down electrons and results in a Dirac cone in momentum space, with the spins  
(s) rotating with one chirality above the Dirac point ED, and the opposite chirality below ED. c, In its 
rest frame the electron sees a rotating magnetic field that changes both the spin direction θ and the 
Berry phase of the wavefunction ψ. For each closed orbit completed in real space, θ changes by 2π, 
but the Berry phase only changes by π, which means that ψ changes sign to become –ψ. The electron 
must therefore complete two complete orbits in real space for ψ to return to its original value. This 
behaviour corresponds to the Möbius topology of Fig. 2b and underlies the peculiar physics of 
topological surface states, including the cancellation of backscattering (which results from destructive 
interference as a result of the Berry phase shift).

nnano_N&V_JUL10.indd   479 25/6/10   11:36:31

© 20  Macmillan Publishers Limited. All rights reserved10

mailto:manoharan@stanford.edu
http://arxiv.org/abs/arXiv:0909.0921



