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Abstract. In many scientific and practical tasks, the classical concepts for pa-
rameter identification are satisfactory and generally applied with success, al-
though many specialized problems necessitate the use of methods created with 
specifically defined assumptions and conditions. This paper investigates the 
method of parameter identification for the case where losses resulting from es-
timation errors can be described in polynomial form with additional asymmetry 
representing different results of under- and overestimation. Most importantly, 
the method presented here considers the conditionality of this parameter, which 
in practice means its significant dependence on other quantities whose values 
can be obtained metrologically. To solve a problem in this form the Bayes ap-
proach was used, allowing a minimum expected value of losses to be achieved. 
The methodology was based on the nonparametric technique of statistical kernel 
estimators, which freed the worked out procedure from forms of probability dis-
tributions characterizing both the parameter under investigation and conditioning 
quantities. As a result, a ready to direct use algorithm has been presented here.  

Keywords: parameter identification, Bayes approach, asymmetrical losses of 
estimation errors, conditional factors, nonparametric estimation, statistical ker-
nel estimators, numerical algorithm. 

1 Introduction  

Parametric identification, i.e. assigning a concrete value to a parameter present in a 
model – despite its very traditional nature – has still great significance in modern 
scientific and applicational problems, which continuously increases together with the 
dominance of model-based methods and the growing, often specific, demands made 
on models used in practice. Fortunately, the development of modern advanced me-
thods of parameter identification is facilitated by the dynamic expansion of contempo-
rary computer technology, supported on the theoretical side by the procedures of in-
formation technology dedicated to them.  
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The subject of this paper is an algorithm for parametric identification based on four 
premises:  

1. minimization of expected value of losses arising from estimation errors, un-
avoidable in practice;  

2. asymmetry of those losses, i.e. allowing for situations where losses occurring 
through underestimation are substantially different from losses resulting from 
overestimation;  

3.  arbitrariness of probability distributions appearing in the problem; and finally, 
worth particularly highlighting  

4. conditionality of an identified parameter, that is its significant dependence on a 
factor (or factors), with values that can be in practice obtained metrologically.  

The realization of the first will be through application of the Bayes approach [1].  
The second by assuming the loss function resulting from estimation errors, in the 

asymmetrical form  
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with the given degree }0{\N∈k , where the coefficients la  and ra  are positive, 

while y  and ŷ  denote the values of the parameter under consideration and its esti-

mator, respectively. The fact that the coefficients la  and ra  may differ causes an 

asymmetry of the above function and enables the inclusion of different losses implied 
by over- and underestimation of the examined parameter. Limiting the form of func-
tion (1) to a polynomial seems not to decrease the generality of considerations in prac-
tical applications, offering an effective compromise between precision and complexity 
of results obtained. Moreover the possibility of change of the polynomial degree k  
allows a differing scale of protection against large estimation errors.  

The third aspect is realized by applying nonparametric methodology of statistical 
kernel estimators [3, 13, 14] for defining probability characteristics.  

Lastly – and worth highlighting once more – this paper is aimed at the conditional 
approach, i.e. where the value of the estimated parameter is strongly dependent on a 
conditional factor, for example in engineering practice it is often temperature. If the 
value of such a factor is metrologically available, then its inclusion can make the used 
model significantly more precise.  

The preliminary version of this paper was presented as the publication [7]. More 
details is available in the paper [8], which will appear soon.  

2 Preliminaries: Statistical Kernel Estimators  

Let the n-dimensional random variable X  be given, with a distribution characterized 

by the density f . Its kernel estimator ),0[:ˆ ∞→nf R , calculated using experimen-

tally obtained values for the m-element random sample  

 1x , mxx  , ... ,2   , (2) 
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in its basic form is defined as  
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where }0{\N∈m , the coefficient 0>h  is called a smoothing parameter, while the 

measurable function ),0[: ∞→nK R  of unit integral 1d)(
 

= n xxK
R

, symmetrical 

with respect to zero and having a weak global maximum in this place, takes the name 
of a kernel. The choice of form of the kernel K  and the calculation of the smoothing 
parameter h  is made most often with the criterion of the mean integrated square error.  

Thus, the choice of the kernel form has – from a statistical point of view – no practic-
al meaning and thanks to this, it becomes possible to take into account primarily proper-
ties of the estimator obtained or calculational aspects, advantageous from the point of 
view of the applicational problem under investigation; for broader discussion see the 
books [3 – Section 3.1.3; 14 – Sections 2.7 and 4.5]. In practice, for the one-dimensional 
case (i.e. when 1=n ), the function K  is assumed most often to be the density of a 
common probability distribution. In the multidimensional case, two natural generaliza-
tions of the above concept are used: radial and product kernels. However, the former is 
somewhat more effective, although from an applicational point of view, the difference is 
immaterial and the product kernel – significantly more convenient in analysis – is often 
favored in practical problems. The n-dimensional product kernel K can be expressed as  
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where iK  for ni , ... ,2,1=  denotes the previously-mentioned one-dimensional 

kernels, while the expression nh  appearing in the basic formula (3) should be re-
placed by nhhh ⋅⋅⋅  ... 21 , the product of the smoothing parameters for particular coor-

dinates.  
The fixing of the smoothing parameter h  has significant meaning for quality of 

estimation. Fortunately – from the applicational point of view – many suitable proce-
dures for calculating the value of the parameter h  on the basis of random sample (2) 
have been worked out. For broader discussion of the above tasks see the monographs 
[3, 13, 14]. In particular, for the one-dimensional case, the simple and effective plug-
in method [3 – Section 3.1.5; 14 – Section 3.6.1] is especially recommended. Of 
course this method can also be applied in the n-dimensional case when product kernel 
(4) is used, sequentially n  times for each coordinate.  

Practical applications may also use additional procedures generally improving the 
quality of estimator (3). For the method presented in this paper, the modification of the 
smoothing parameter [3 – Section 3.1.6; 13 – Section 5.3.1] is strongly recommended.  

The above concept will now be generalized for the conditional case. Here, besides 
the basic (sometimes termed the describing) Yn -dimensional random variable Y , let 
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also be given the Wn -dimensional random variable W , called hereinafter the condi-

tioning random variable. Their composition 







=

W

Y
X  is a random variable of di-

mension WY nn + . Assume that distributions of the variables X  and, in conse-

quence, W  have densities, denoted below as ),0[: ∞→+ WY nn
Xf R  and 

),0[: ∞→Wn
Wf R , respectively. Let also be given the so-called conditioning value, 

that is the fixed value of conditioning random variable Wnw R∈* , such that  

 0)( * >wfW   . (5) 

Then the function ),0[:*|
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f R  given by  
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constitutes a conditional density of probability distribution of the random variable Y  

for the conditioning value *w . The conditional density *| wWY
f =  can so be treated as 

a “classic” density, whose form has been made more accurate in practical applications 

with *w  – a concrete value taken by the conditioning variable W  in a given situa-
tion.  

Let therefore the random sample  
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obtained from the variable 







=

W

Y
X , be given. The particular elements of this sam-

ple are interpreted as the values iy  taken in measurements from the random variable 

Y , when the conditioning variable W  assumes the respective values iw . Using the 

methodology presented in the first part of the section below, on the basis of sample (7) 

one can calculate Xf̂ , i.e. the kernel estimator of density of the random variable X  

probability distribution, while the sample  

 1w , mww  , ... ,2  (8) 

gives Wf̂  – the kernel density estimator for the conditioning variable W . The kernel 

estimator of conditional density of the random variable Y  probability distribution for 

the conditioning value *w , is defined then – a natural consequence of formula (6) – 

as the function ),0[:ˆ
*|

∞→=
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wWY
f R  given by  
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If for the estimator Wf̂  one uses a kernel with positive values, then the inequality 

0)(ˆ * >wfW  implied by condition (5) is fulfilled for any Wnw R∈* .  

In the case when for the estimators Xf̂  and Wf̂  the product kernel (4) is used, 

applying in pairs the same positive kernels to the estimator Xf̂  for coordinates which 

correspond to the vector W  and to the estimator Wf̂ , then the expression for the 

kernel estimator of conditional density becomes particularly helpful for practical ap-
plications. Formula (9) can then be specified to the form  
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where 1h , 
WY nnhh +, ... ,2  represent – respectively – smoothing parameters mapped to 

particular coordinates of the random variable X , while the coordinates of the vectors 
*w , ix  and iw  are denoted as  
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Define the so-called conditioning parameters id  for mi  , ... ,2 ,1=  by the formula  
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Thanks to the assumption of positive values for the kernels 1+YnK , 
WYY nnn ++ KK  , ... ,2

, these parameters are also positive. So the kernel estimator of conditional density (10) 
can be presented in the form  
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(13) 

The value of the parameter id  characterizes the “distance” of the given conditioning 

value *w  from iw  – that of the conditioning variable for which the i-th element of 
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the random sample was obtained. Then estimator (13) can be interpreted as the linear 
combination of kernels mapped to particular elements of a random sample obtained 
for the variable Y , when the coefficients of this combination characterize how repre-

sentative these elements are for the given value *w .  
Returning to the subject of this article, described in the Introduction, in the case of 

estimation of a single parameter, the random variable Y  is one-dimensional ( 1=Yn

). This will be investigated further in the presented paper. However when one esti-
mates a number of conditionally correlated parameters, then Yn  becomes equal to 

their number – this case will be commented upon at the end of Section 4.  
More details concerning kernel estimators can be found in the books [3, 13, 14]. 

Exemplary applications are presented in the publications [4-6, 9, 10, 12].  

3 Main Results  

3.1 Linear Case  

Let the parameter under investigation, whose value is to be estimated, denoted by R∈y

, be treated as the value of the random variable Y . Let also the Wn -dimensional condi-

tional random variable W  be given. The availability is assumed of the metrologically 
achieved measurements of the parameter y , i.e. 1y , myy , ... ,2 , obtained for the values 

1w , mww  , ... ,2  of the conditional variable, respectively. Finally, let Wnw R∈*  denote 

any fixed conditioning value. The goal is to calculate the estimator of this parameter, 
denoted by *ˆ

w
y , optimal in the sense of minimum expected value of losses arising from 

errors of estimation, for conditioning value *w . The case considered in this subsection is 
such that loss function (1) can be specified to the following asymmetrical linear form:  
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while the coefficients la  and ra  are positive and not necessarily equal to each other.  

In order to solve such a task, the Bayes decision rule will be used [1]. The mini-
mum expected value of losses arising from estimation errors occurs when the value is 
a solution of the following equation with the argument *ˆ

w
y :  
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where *| wWY
f =  denotes the density of distribution of the random variable Y  

representing the uncertainty of the parameter in question, for conditioning value *w . 
Since 1)(0 <+< rll aaa , a solution for the above equation exists, and if the func-

tion *| wWY
f =  has connected support, this solution is unique. Moreover, thanks to 
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equality 
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, it is not necessary to identify the parameters la  and 

ra  separately, rather only their ratio.  

The identification of the density *| wWY
f =  will be carried out using statistical kernel 

estimators, presented in Section 2, with the – convenient here – form (13). Then as 1K  

(note that 1=Yn ) one should choose a continuous kernel of positive values, and also so 

that the function RR →:I  such that  ∞−
=

x
yyx d)()( 1KI  can be expressed by a 

relatively simple analytical formula. In consequence, this results in a similar property 
regarding the function RR →:iU  for any fixed mi  , ... 2, ,1=  defined as  
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Criterion (15) can be expressed then equivalently in the form of  
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If the left side of the above equation is denoted by )ˆ( *w
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In this situation, the solution of criterion (15) can be effectively calculated on the 

basis of Newton’s algorithm [2] as the limit of the sequence ∞
=0,

}ˆ{ * jjw
y  defined by  
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with the functions L  and L′  being given by dependencies (17)-(18), whereas a stop 
criterion takes on the form  

 Yjwjw
σyy ˆ 01.0 |ˆˆ|

1,, ** ≤− −   , (21) 

while Yσ̂  denotes the estimator of the standard deviation of the random variable Y .  
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3.2 Quadratic Case  

The conditionings of the problem investigated in this subsection are similar to the 
previous one, although asymmetric linear form of the loss function (14) is substituted 
by the asymmetric quadratic:  
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while the coefficients la  and ra  are positive and not necessarily equal to each other. 

The minimum expected value of losses arising from estimation errors can in this case be 
calculated for the value *ˆ

w
y  being a solution of the equation  
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This solution exists and is unique. As in the linear case, dividing the above equation 
by ra , note that it is necessary to identify only the ratio of the parameters la  and 

ra .  

Using kernel estimators in form (13) to identify the density *| wWY
f = , one can de-

sign an effective numerical algorithm to this end. Let, therefore, a continuous kernel 

1K  of positive values, fulfilling the condition  
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be given. Besides the functions iU  introduced by the dependence (16), let for any 

fixed mi  , ... 2, ,1=  the functions RR →:iV  be defined as  
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The kernel 1K  should be chosen so that – apart from the requirements formulated 

above – the function RR →:J  such that  ∞−
=

x
yyyx d)()( 1KJ  be expressed 

by a convenient analytical formula.  
Criterion (23) can then be described equivalently as  
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If the left side of the above formula is denoted by )ˆ( *w
yL , then one can express the 

value of its derivative as  
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In this situation, the solution of criterion (23) can be calculated numerically on the 
basis of Newton’s algorithm (19)-(21) with the functions L  and L′  defined by de-
pendencies (26)-(27).  

4 Final Remarks and Conclusions  

The parameter identification for problems where losses arising from overestimation 
and underestimation are different and can be described by an asymmetrical and poly-
nomial function and – what is worth particularly highlighting – in the presence condi-
tioning quantities, was investigated in this paper. The linear and quadratic cases were 
described with details in Section 3. The similar results can be obtained for polynomials 
of higher degrees – they are presented in the paper [8], which will appear soon; in this 
publication the concrete formulas for the recommended kernels are also provided.  

The functioning and features of the algorithm presented here were positively con-
firmed with detailed numerical and experimental verification, also for a multidimen-
sional conditioning variable and multimodal, asymmetrical and complex distributions 
of the variables Y  and W , as well as those including additional aspects, e.g. 
bounded supports, lack of data from the neighborhood of a given conditioning varia-

ble *x , as well as the occurrence of discrete, binary and categorized coordinates of 
the conditioning variable W . For a broad description of the numerical verification 
results see the paper [8].  

The concept presented in this publication was also verified experimentally by ap-
plying it to a task of identification of dynamic systems submitted to robust control, 
and also in medical applications, in establishing optimal dosages of anesthetic consi-
dering patients' body mass and general condition, as well as strategic sales in selecting 
policy for a mobile phone operator when negotiating with a business client characte-
rized by many vastly different factors. Generally it is worth stressing that in every 
case investigated, precision of the characteristics describing the parameter under in-
vestigation by providing the proper value for conditioning factors improved the result 
in proportion to the degree of differentiation of object features with respect to those 
factors. This occurred in the case of circumstantial changes in values for these factors, 
as well as structural object nonstationarity.  

Finally, it is worth adding that the concept developed here can be generalized to a 
multidimensional case, i.e. where the vector of conditionally correlated parameters is 
identified. However, in this case, both the analytical criteria for optimal parameter 
values as well as their later numerical implementation, become too complicated for 
practical application given today's. Similarly it is possible to assume loss function (1) 
in an asymmetrical form of different degree of polynomial for negative and positive 
estimation errors. However such a case seems to have only theoretical significance, 
with no applicational connotations.  
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