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Abstract. This paper is dedicated to the problem of the estimation of a vector of 
parameters, as losses resulting from their under- and overestimation are asym-
metric and mutually correlated. The issue is considered from an additional con-
ditional aspect, where particular coordinates of conditioning variables may be 
continuous, binary, discrete or categorized (ordered and unordered). The final 
result is an algorithm for calculating the value of an estimator, optimal in sense 
of expectation of losses using a multidimensional asymmetric quadratic func-
tion, for practically any distributions of describing and conditioning variables.  
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1 Introduction 

The proper identification (estimation) of parameters values, used in a model describ-
ing the reality under consideration, is always of fundamental significance in modern 
problems of science and practice. The need to consider implications of estimations 
errors different for under- and overestimations, leads directly to the concept of asym-
metrical form of a loss function [Berger, 1980]. The significance of this problem has 
been investigated for simple cases of a single parameter [Zellner, 1985; McCullough, 
2000]. It is also worth noting the results concerning the estimation of a single parame-
ter with asymmetrical loss function, described in the paper [Kulczycki and Charyta-
nowicz, 2013] in the conditional version, i.e. where the quantity under research is 
significantly dependent on conditional factors. If the actual value of factors of this 
type is available metrologically, their inclusion can make the model used considerably 
more precise. In this paper that research is generalized for the multidimensional case, 
where one identifies a few independent parameters, treated as a vector, and the losses 
resulting from the over- and  underestimation may be asymmetrical and correlated. 
The concept presented here is based on the Bayes approach, which allows  
minimization of expected value of losses arising from estimation errors. For defining 
probability characteristics, the nonparametric methodology of statistical kernel  

0009882
Sticky Note
Dear Author,

Please provide the city/country name information for the affiliation.

Thank you.



288 P. Kulczycki and M. Charytanowicz 

 

estimators was used, which freed the investigated procedure from forms of distribu-
tions characterizing both the identified parameters and conditioning quantities.  

2 Statistical Kernel Estimators 

Let the n-dimensional random variable X  be given, with a distribution characterized 

by the density f . Its kernel estimator ),0[:ˆ ∞→nf R , calculated using experimen-

tally obtained values for the m-element random sample  

mxxx  , ... ,, 21 ,                                (1) 

in its basic form is defined as  
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where }0{\N∈m , the coefficient 0>h  is called a smoothing parameter, while the 

measurable function ),0[: ∞→nK R  of unit integral 1d)(
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R
, symmetrical 

with respect to zero and having a weak global maximum in this place, takes the name 
of a kernel. The method presented here uses the one-dimensional Cauchy kernel, in 
the n-dimensional case generalized to the product kernel. For fixing the smoothing 
parameter value, the plug-in method is recommended, with the modification of this 
parameter. Details are found in the books [Kulczycki, 2005; Silverman, 1986; Wand 
and Jones, 1994].  

The above concept will now be generalized for the conditional case. Here, besides 
the basic (termed the describing) Yn -dimensional random variable Y , let also be 

given the Wn -dimensional random variable W , called hereinafter the conditioning 

random variable. Their composition 
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X  is a random variable of the dimension 

WY nn + . Assume that distributions of the variables X  and, in consequence, W  

have densities, denoted below as ),0[: ∞→+ WY nn
Xf R  and ),0[: ∞→Wn

Wf R , re-

spectively. Let also be given the so-called conditioning value, that is the fixed value 

of conditioning random variable Wnw R∈*  such that 0)( * >wfW , and also the ran-
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obtained from the variable X . The particular elements of this sample are interpreted as 
the values iy  taken in measurements from the random variable Y , when the condition-

ing variable W  assumes the respective values iw . The kernel estimator of conditional 
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density of the random variable Y  distribution for the conditioning value *w , i.e. 
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f R , can be given by the following form helpful in practice:  
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where 1h , 
WY nnhh +, ... ,2  represent smoothing parameters for particular coordinates of 

the random variable X , while the coordinates of the vectors *w , iy  and iw  are de-

noted as  
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whereas the so-called conditioning parameters id  for mi  , ... ,2 ,1=  can be defined by  
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The value of the parameter id  characterizes the “distance” of the given conditioning 

value *w  from iw  – that of the conditioning variable for which the i-th element of 

the random sample was obtained. Then estimator (4) can be interpreted as the linear 
combination of kernels mapped to particular elements of a random sample obtained 
for the variable Y , when the coefficients of this combination characterize how repre-

sentative these elements are for the given value *w .  

3 An Algorithm  

Consider the parameters, whose values are to be estimated, denoted in the form of the 

vector Yny R∈ . It will be treated as the value of the Yn -dimensional random variable 

Y . Let also the Wn -dimensional conditional random variable W  be given. The availa-

bility is assumed of the metrologically achieved measurements of the parameters' vector 

,y  i.e. ,1y  ,, ... ,2
Yn

myy R∈ obtained for the values ,1w  Wn
mww R∈ , ... ,2  of the 

conditional variable, respectively. Finally, let Wnw R∈*  denote any fixed conditioning 
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value. The goal is to calculate the estimator of this parameter's vector, optimal in the 
sense of minimum expected value of losses arising from errors of estimation, for condi-

tioning value *w . In order to solve such a task, the Bayes decision rule will be used. 
Because of clarity of presentation, a two-dimensional case ( 2=Yn ) will be considered 

here. The idea itself may be transposed for larger dimensions, although at a natural – in 
such a situation – cost of increasing complexity.  

Let therefore the estimated parameters be treated as the two-dimensional vector 
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where 0 ,, , >durl aaaa , 0 , ≥ruld aa  and 0 , ≤rdlu aa . The coefficients lda , rua , 

lua , rda  represent the complementary correlation of estimation errors for both para-

meters.  
Assume conditional independence [Dawid, 1979] of the estimated parameters. 

Then the density *| wWY
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Detailed analysis [Kulczycki and Charytanowicz, 2014] shows that the criterion 
minimizing the expectation value of losses takes on the form of equations unsolvable 
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in practice. Although if estimation of the densities presented above is reached using 
the kernel estimators, then one can design an effective numerical algorithm to this 
end. Thus, with any fixed mi  ,  2, ,1 = , one can define the functions RR →:,1 iU , 

RR →:,2 iU , RR →:,1 iV  and RR →:,2 iV , given as  
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Norm also the conditioning parameters id  by introducing the positive values  
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If one denotes the left sides of the above equations as )ˆ ,ˆ( 211 yyL  and )ˆ ,ˆ( 212 yyL , 

their partial derivatives are given by  
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Then the solution of equations (14)-(15) can be calculated through Newton’s multi-
dimensional algorithm [Stoer and Bulirsch, 2002] as the limit of the two-dimensional 
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while the quantities in the above dependencies are given by equations (14)-(19), whe-
reas a stop condition takes the form of the conjunction of the inequalities  

11,11, ˆ 01,0 |ˆˆ| σjj ≤− −yy      and     22,12, ˆ 01,0 |ˆˆ| σjj ≤− −yy ,        (22) 
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where 1σ̂  and 2σ̂  denote the estimators of standard deviations for particular coordi-

nates of the vector Y . 

4 Final Comments and Summary 

This paper presents the algorithm for calculating the conditional estimator of the vec-
tor of independent parameters, where losses resulting from under- and overestimation 
are asymmetrical and mutually correlated. The conditional approach allows in prac-
tice for refinement of the model by including the current value of the conditioning 
factors. Use of the Bayes approach ensures a minimum expected value of losses, a 
statistical kernel estimators methodology frees the investigated procedure from forms 
of distributions of the describing and conditioning factors.  

The correct performance of the algorithm has been proved in many numerical  
tests with illustrative generated data, and also by simulations, as well as by applying 
them to practical problems from control engineering, biomedicine and marketing. 
Above all, the general rule was translations of the examined estimator values in direc-
tions associated with smaller losses resulting from estimation errors, defined by loss 
function (7). Specifically, an increase in the value of the parameter la  with respect to 

ra , and so a growth in the value of this function for positive estimation errors of the 

first parameter (its overestimation), implied an increase in the value of the obtained 
estimator for this parameter. In consequence it reduces the probability of an overesti-
mation. The opposite occurs when the parameter ra  value is increased with respect to 

la : the value of the obtained estimator decreases, which lowers the probability of 

underestimation. The more the ratio rl aa  differed from 1, the more intensive are 

the above effects. Analogous dependences appeared for the parameters da  and ua  

when estimating the second parameter. Subsequently the increase in the parameter 

lda  value resulted in the simultaneous growth in the two parameters' values, reducing 

in both cases the probability of overestimation. Converse effects implied changes in 
the parameter rua . And finally, an increase in the absolute value of the parameter 

rda  reduces the probability of underestimation of the first parameter as well as over-

estimation of the second, through a decrease in the value of the obtained estimator for 
the first, and an increase for the second. The opposite applies to the parameter lua .  

The conditional approach implied the appropriate correction to the estimator value 
according to the nature of the correlation between describing variables and condition-
ing factors. If a parameter was positively correlated to such factor, an in-
crease/decrease in the condition value resulted in an increase/decrease in the estimator 
value for that parameter. The opposite occurred for a negative correlation. Such rela-
tion may be more complex, according to any potential form of the dependence of the 

conditional densities *
1| wWY

f
=

 and *
2 | wWY

f
=

 on conditioning values *w .  

An acceptable quality of results was obtained from sample sizes of just 50-100 
when the conditioning value was positioned close to the main modal value of a condi-
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tional variable, and 100-200 at distance of standard deviation. Taking into account  
the complex multidimensional character of the task, it does not seem to be an exces-
sive requirement in practice. Thanks to the averaging properties of kernel estimators, 
the algorithm proved to be robust to a small number or even lack of data from the 
neighborhood of a conditioning value.  

The procedure presented in this paper has been given in its basic form. A clear in-
terpretation means it is possible to make individual modifications. Above all this al-
lows the inclusion of conditional factors other than continuous (real). Similarly to the 
kernel estimation definition formulated above for continuous random variables, one 
can construct kernel estimators for binary, discrete and categorized (including or-
dered) variables, as well as any of their compositions, especially with continuous 
variables – for details see broad and varied literature in this subject. The above can be 
particularly useful for the modern data analysis tasks, which more and more often 
take advantage of the many different configurations for particular types of attributes.  

A broad description of the methodology introduced in this paper is presented in the 
article [Kulczycki and Charytanowicz, 2014] together with results of detailed verifica-
tions. The algorithm itself is given there in its ready-to-use form and can be applied 
directly without deep subject knowledge or laborious research.  
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