

Faculty of Electrical Engineering, Automatics,

Computer Science and Electronics

Department of Telecommunications

Master's Thesis

Name and Surname Grzegorz Gajewski, Jan Francisco Sanchez
Duduś
Field of Study Electronics and Telecommunications
Title Mobile platform for smart shopping on the

basis of Web 2.0.
Supervisor Jarosław Bułat, PhD

Krakow, 2010

We hereby declare, aware of bearing the criminal responsibility, that this
thesis is entirely the result of our own work, as stated in the introduction,
except where otherwise indicated by references to other authors.

 …......................... ….........................

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI,

INFORMATYKI I ELEKTRONIKI

KATEDRA TELEKOMUNIKACJI

Praca dyplomowa

magisterska

Imię i nazwisko Grzegorz Gajewski, Jan Sanchez Duduś
Kierunek studiów Elektronika i Telekomunikacja
Temat pracy dyplomowej Platforma mobilna do porównania cen w

oparciu o Web 2.0.
Opiekun pracy dr inż Jarosław Bułat

Kraków, rok 2010

Oświadczamy, świadomi odpowiedzialności karnej za poświadczenie
nieprawdy, że niniejszą pracę dyplomową wykonaliśmy osobiście i
samodzielnie (w zakresie wyszczególnionym we wstępie) i że nie
korzystaliśmy ze źródeł innych niż wymienione w pracy

 …......................... ….........................

Acknowledgement

I want to start by thanking my thesis supervisor, Jarosław Bułat, PhD, for
your support and guidance throughout my work on this thesis.

To my mother, although you are not anymore in this world I will
always keep you in my heart.

To my father, for all your support, love and wisdom. It would not have
been possible for me to study in Poland without your help. If today, I am
finishing my thesis is because of you.

To my sister, for always being there for me and for being so caring.
Your encouragement always has helped me to go on, especially while doing
my thesis. You are the best sister that one could have.

To my friend, Greg. I could not ask to have a better partner than you
for doing this thesis.

To all my other friends, thanks for your friendship.

Jan Sanchez Duduś

Introduction .. 1	
Chapter 1 System Overview ... 3	

1.1 Objectives and Scope of ShopDroid ... 3	
1.2 Use cases ... 4	
1.3 System components .. 5	
1.4 Client-Server Communication .. 6	

Chapter 2Tools used to build ShopDroid ... 7	
2.1 Platform choice ... 7	
2.2 Android Operating System ... 9	
2.2 Android Software Development Kit ... 13	
2.3 ZXing library .. 15	
2.4 Server requirements .. 16	
2.5 PHP scripting language .. 17	
2.6 Database choice .. 17	
2.7 XML Extensible Markup Language ... 18	
2.8 OAuth protocol ... 19	

Chapter 3 ShopDroid Project .. 20	
3.1. Main Screen ... 20	

3.1.1 Application settings ... 22	
3.1.2 About application .. 23	

3.2 Barcode scanning process ... 25	
3.2.1 Barcodes .. 25	
3.2.2 Decoding algorithm ... 31	
3.2.3 Code detection problems ... 34	
3.2.4 Android camera issue .. 36	

3.3 Geolocation ... 37	
3.3.1 GPS provider ... 38	
3.3.2 Network provider ... 38	
3.3.3 Avoiding Location updates when the application is in the background 39	

3.4 History .. 40	
3.5 Manual Search .. 43	

3.5.1 Searching by product name ... 45	
3.5.2 Search History ... 46	

3.6 Store locator .. 47	
3.6.1 Calculating distance ... 49	
3.6.2 Store Details .. 50	
3.6.3 Reporting wrong information .. 52	

3.7 Product screen ... 53	
3.7.1 XML Parsing ... 54	
3.7.2 Multiple Lists ... 56	
3.7.3 Product prices .. 57	
3.7.4 Product reviews ... 59	
3.7.5 About product .. 59	
3.7.6 Reporting wrong information .. 60	
3.7.7 Registered user actions .. 61	
3.7.8 Adding a new product .. 71	

3.8 Users ... 73	
3.8.1 OAuth authentication ... 73	
3.8.2 Connecting user account in ShopDroid ... 77	

3.8.3 OAuth database structure ... 80	
3.8.4 ShopDroid User reputation points system .. 81	

3.9 Administrator module ... 81	
3.10 Database .. 84	
3.11 Handling multiple screen resolutions .. 85	

Conclusions ... 87	
References ... 89	
Appendix A ... 91	

 1

Introduction

Barcodes appear on all products, from grocery products to electronic products. Different

services could be built targeting barcodes and users. The main purpose of this project is

to allow users to compare products between different stores.

Nowadays almost every person has his own cellphone and the use of smartphones

is growing amongst phone users. For example only in the U.S. 53.4 million people

owned smartphones during the three months ending in July, up 11 percent from the

corresponding April period [1]. Also in the European Union (only taking into account

U.K., France, Germany, Spain, Italy) as of July 2010 there were 60.8 million

smartphone users, this number has grown 41 percent since July 2009 [2]. Targeting

smartphone users with a service they could use at any time, anywhere would be ideal.

That is why this project targets a certain group of smartphone users so they could

compare different products everywhere.

ShopDroid was chosen as the name of the service for two reasons, one is that the

main purpose of this is to use while users are shopping. The other reason was the choice

of platform, Android.

The objectives and the scope of the ShopDroid project were:

• To develop a client-server architecture for price comparisons based on barcodes

• The system has to work on the basis of Web 2.0, with the content being mainly

created by users, the content is composed of the prices, geolocation, reviews and

other parameters related to a specific product

• The client has to be developed for smartphones that have a camera and access to

the Internet (i.e. GPRS, EDGE, etc.)

• The server will act as a product database together with its metadata

• The system has to provide security, user identification and user credibility rating

in order that the platform will still be useful even if malicious users to fake some

data (like making a product undesirable)

 2

• The final result of the thesis will be a working platform and a client developed

for a popular, mobile operating system such as Symbian, iPhone, Android or

Windows Mobile

At the time of designing ShopDroid there was only one similar solution available:

ShopSavvy. There are many differences between these two projects. First of all,

ShopSavvy does not work really well in Poland, due to not having a product and store

database for this country. Secondly, ShopSavvy has some features that ShopDroid

lacks, such as price alerts, however ShopDroid has a store locator feature that is not

present in ShopSavvy. Finally, ShopDroid was designed to engage the users and

therefore users can register an account, can add new products or new prices, can even

add stores and product reviews. ShopSavvy lacks this social feature.

Another similar application that appeared later, was the Amazon application. The

main differences are that Amazon does the barcode scanning in the server, and this

takes longer. Also, that application is only for products sold by Amazon.

This thesis is divided into two main chapters:

• Chapter 1 - System Overview: provides a general description about the system

and its components

• Chapter 2 - Tools used to build ShopDroid: describes which technologies and

tools were used for this project, also about the platform choice

• Chapter 3 - ShopDroid Project: describes how does the application work, and

how it was implemented, as well as all its features are described here. The

process of barcode scanning is also explained.

Grzegorz Gajewski developed the following components:

• server functionality of the system

• barcode scanning in the client

• users authorization

Jan Sanchez developed the following components:

• manual product search

• store locator

• user's history

 3

Chapter 1

System Overview

This chapter contains a general description of the system and its components. Also, the

communication between the client and the server is described.

1.1 Objectives and Scope of ShopDroid

In general, the purpose this system is to allow users to scan barcodes and with that

information be able to compare prices of products from different stores. This would be

beneficial for users since they could save money using this system.

The main objective of this project was to make a client-server application. The

client part should be an application for mobile devices, which would allow users to scan

barcodes and be able to compare prices of different products. Barcodes should be

detected automatically using a built-in camera.

The system would be user-oriented, with the users creating most of the content,

like adding or changing product prices, and adding new stores. Besides being able to

compare prices, users should be able to share their opinions about any product. This

system should be safe from data vandalism such as adding fake data about products or

prices, like in the case of a store wanting to attract more customers by editing other

stores prices to be more expensive.

Users should be required to register an account with the service in order to be able

to interact with the system. A points rating system should be implemented to track,

which are the good users and which are malicious ones. There should be also the

possibility for the users to report any wrong information or spam from other users. Also,

a secure model should be implemented for user registration in order to avoid the

stealing of user credentials.

 4

The application was targeted to mobile devices because these devices have

nowadays access to the Internet almost everywhere, so users would be able to check

prices while shopping at any store. Also, thanks to the fact that almost every device is

GPS (Global Positioning System) enabled, or have other geolocation features, the

system can offer services that will be based on the user’s location. That means if users

are in Krakow, Poland they will only get information about prices in stores near their

location. This would be helpful for users since they could see that a product they are

buying is cheaper in some other store nearby.

The target country of this project is Poland, since the application is being

developed in this country. However, in the future support for other countries could be

added as long as enough products’ data from those countries is obtained.

1.2 Use cases

Five use cases were considered when developing this project. For describing them it

should be noted that the actors are any of the users of the system, with the exception of

the administrator of the system.

The user is in a store and checking a product. Then the user scans the product

barcode. The system will show the user the prices in nearby stores. Finally, the user

decides whether to buy the product at the store the user is currently in, or in a nearby

store if the product is cheaper.

Another case would be if the user is at home, and is thinking of buying a product.

The user could either scan the product barcode (if the user has it already) or search

manually the barcode or the name of the product. The system will return the prices of

the product in nearby stores. Finally, the user will decide whether to buy the product or

not, and if buying the product in which store.

The third user case is as follows: The user is searching for stores nearby. The

system will show the user in a map where are the nearest stores located and the names

of the stores. Then the user could decide a store where to go and the system should

show the way to the user.

A fourth case would be when the user has already in the past searched for any

products, or scanned barcodes, and the user wants to check again for prices for that

 5

product without scanning the barcode or searching again. They system will show the

user the previously searched products and the user will select one of them. At the end,

the system will show the user the prices of that product in nearby stores.

A fifth case would be when the user has used a product and wants to give some

feedback about it. The user will find the product. The system will show the user the

product information. The user will be able to add any opinion on the product. This

opinion will be updated to the system and finally the user will be able to see the recently

added opinion, and other users’ opinions on the product.

1.3 System components

In the Chapter 2 the software components needed for the implementation will be

described in details.

One of the main components of the system is the barcode scanning. This is a

client component, and it is described in section 3.2. Locating nearby stores and showing

them to the user requires the client to get from the server the information about the

stores. Description about this component can be found on section 3.6.

Keeping track of the user’s history is only done in the client. This is described in

section 3.4. Another main component is showing the product data, like the name, a

picture of it, prices in different stores as well as reviews if any. The client will provide

the server with the barcode of the product and the server will return all the product data

to the client. The client will then show this information to the user. This component is

described in section 3.7.

If a product is not available then user is able to manually search by the product

name, or the barcode if known. The way how this is implemented is described in section

3.5. Having a secure model to save the user’s credentials is very important. This is

implemented in the client as well as in the server, with the server holding the users data.

This is described in more details in section 3.8. Also information about how the data is

kept in the server is described in section 3.10.

 6

1.4 Client-Server Communication

In order to minimize the server’s load, the client needs to communicate with the server

as little as possible, and when communicating with the server, the client has to get

enough information for displaying to the user. All the queries from the client to the

server are made using HTTP (Hypertext Transfer Protocol). The responses from the

server are in XML (Extensible Markup Language).

The client will ask the server for a barcode, and the server will return the product

information and records of several prices of the product in different stores. Information

about the stores is returned as well, in order to avoid further queries from the client if

the user chooses to view details about a certain store.

When searching products by name, the client will send a query to the server with

the searched product name, and the server will return a list of products that match the

product. If the user will select a product from the list, then the client will send a query to

the server with the barcode of the selected product and the process described in the

previous paragraph will take place.

Also when searching stores, the client will send to the server information about

the user’s location and the server will return the stores with information such as their

coordinates in order to show them in a map. More detailed information is included in

the response, since the user might want to check more details about a specific store. The

number of stores returned should be limited to a certain radius around the user.

Finally when adding a new product, adding a new price, editing a existing price or

adding a new store the client uploads this information to the server. Next time when

client requests this kind of information, the new or updated data should already be

shown.

 7

Chapter 2

Tools used to build ShopDroid

2.1 Platform choice

Before starting this project, there was still a decision to be made, which mobile platform

for a smartphone to choose. Four platforms were taken into consideration:

• Symbian

• Android

• IPhone OS (IOS)

• Windows Mobile

Windows Mobile had lots of different versions, which introduced compatibility

issues. At the time there were also rumors that the platform was dying, and Microsoft

releasing a completely new platform - Windows Phone 7 - confirmed this not long ago,

which is not going to be backwards compatible at all.

One of the main reasons not to consider developing for the iPhone is that the

iPhone SDK did not support at the time real time access to each single frame captured

by the camera. Also at that time, Apple’s developer’s agreement, did not allow any open

source applications, which make it hard to look for good material. The last reason was

Apple’s tight control on what is released on their App Store, which sometimes takes

even several weeks or months to get an application approved.

Symbian was a good platform to develop for, but again in the time, it was getting

new versions to the platform, and also there were plans to open source the platform

(which came true), so there were doubts on the future of the platform and that is the

main reason why this platform was not chosen. Also, having already developed for

 8

Symbian during a course in the university made us want to develop for a completely

new platform in order to gain new knowledge.

Android was the platform choice (Android logo is shown in Figure 2.1). There

were several reasons for this choice. One of them was that the platform allows direct

access to different hardware elements of the device, and in the case for this project;

there was a need for real time access to each frame captured by the camera. The open

nature of Android, being an open source project licensed mostly under Apache Software

License [3] and based upon the Linux kernel too, made it a very good choice. Another

reason was that there were plenty of materials and source examples and that publishing

an application in the Android Market is easy and fast.

Figure 2.1 Android Logo1

The requirements for the device makers that want to have Android were also a

reason. Since Android requires all devices to have a camera with auto-focus (which is

needed for barcode scanning), to be GPS enabled (useful for geolocation features) and

have access to the Internet.

At the time of choosing the platform Android had a quite brilliant future and it is

confirmed now by seeing how fast has its share grown. Information technology research

and advisory company Gartner forecasts that Android will be in the second place in

worldwide market share by the end of 2010 with 17.7% only behind Symbian. They

also predict that Android might challenge Symbian’s top position by 2014 [4]. This

analysis was made in August, 2010. Figure 2.2 shows these results.

1 http://en.wikipedia.org/wiki/File:Android_logo.svg

 9

Figure 2.2 Mobile OS market share by end of 2010 by Gartner

2.2 Android Operating System

Writing Android applications is done in Java, since the platform itself runs on top of

Java core libraries. However there is no Java Virtual Machine. Android has its own

virtual machine called Dalvik. Developers write the application in Java, this code is

compiled into Java bytecode (class file) and later recompiled into Dalvik bytecode,

which can only be executed on a Dalvik Virtual Machine [5].

One interesting feature of the Android platform is the use of Intents. To

understand them one should know the concept of Activities in Android. From the

Android documentation:

An activity presents a visual user interface for one focused endeavor the user can

undertake [6].

In general every screen in Android is an activity. Each activity has its own

window to draw in. An application can be composed of one or more activities. These

activities are activated through intents. From the documentation:

40.1%	

17.7%	

17.5%	

4.7%	

15.4%	

4.7%	

Symbian	

Android	

RIM	

Windows	 Mobile	

Iphone	

Others	

 10

An Intent object, is a passive data structure holding an abstract description of an

operation to be performed [7].

This allows a lot of flexibility in Android and makes it easy to share activities

between applications. For instance it is easy to call the Android default image chooser

or camera application to get a picture to the application being developed. Another

example is when the application wants to show some directions on a map, or when a

video needs to be opened. This activities are started one after the other so the user will

not know that some parts are taken from another application. It all seems to him that all

is run on the same application.

Android also provides a very good concept of the application life cycle. It is more

correct to talk about activity life cycle, since during the life of an application; many

activities might have been started and stopped. Figure 2.3 is presented to illustrate better

this activity life cycle.

All this methods can be overridden to perform certain tasks. This is useful for

certain applications that want to save some information when the application is being

sent to the background (i.e. when the user opens another application), or when the

application is being killed (i.e. the system might kill any application whenever it needs

resources).

Developers publish their applications in the Android Market in order to distribute

them. Almost all Android devices have access to this Market. The process is

straightforward, first a developer account is needed (with a fee of 25 dollars), and then it

is possible to publish any application. There is no review process for the applications

published, and they appear almost instantaneously to the users. There are some

limitations to this distribution model in the case of paid applications, since buying

applications it is only available in a handful of countries.

An important part of any Android application is the AndroidManifest.xml file.

This file, which all applications must have in their root directory, serves to control the

application. You can specify which kind of permissions does the application need, like

Internet permissions or camera permissions. These features will not work if not set in

this Manifest file. This also allows the user to know which features does the application

need, before installing it. The Android Manifest also allows changing the application’s

name and icon and setting the application’s theme or background. It is possible to

specify in the Manifest what kind of requirements are needed (like the screen size or

 11

accelerometer), with this, the application will only appear in the Android Market for the

devices that meet this requirements. This Manifest file has many more functionalities

that can be seen in the official documentation [8].

Figure 2.3 Activity life cycle1

1 http://d.android.com/images/activity_lifecycle.png found at
http://d.android.com/guide/topics/fundamentals.html#lcycles

 12

Localization is very well implemented in Android. String resources are stored into

an xml file called strings.xml inside the values folder. These are the default string

resources, and English is the default language. To add another languages, a new folder

needs to be created by adding the appropriate suffix to values. For instance, for Polish,

the folder values-pl needs to be created. Each of these folders needs to have their own

strings file. Android will automatically load the proper language depending on the

user’s language settings. If the application does not have any string resources for the

user’s language, then it will fall back to the default one. Strings are defined as the

following:

<string name="history">History</string>

This string is easily used in the application by calling R.strings.history. ShopDroid has

implemented three languages: English, Polish and Spanish.

Android is available in different devices, which have different screen sizes and

resolutions, and therefore different densities (spread of pixels across the height and

width of the screen in dots per inch). The platform provides a way to deal with different

screen sizes. When defining elements in the user interface, it is encouraged to use

density independent pixels instead of pixels. This allows the platform to auto-scale the

elements to different screen sizes. The conversion from dips to pixels is shown in (2.1).

!!"# = !"#$%& ×
160

!"#$%&' (2.1)

where density - the density of the device’s screen in dpi (dots per inch), dips - density

independent pixels

While this is quite handy for applications that implement default user interface

controls, other applications that have their own elements, such as games, might not be

able to use this option. Developers have also the option to restrict their application to

one screen size type of devices, when publishing to the Android Market.

 13

Android also allows Google Maps to integrate into the application; this makes the

application more feature-rich. Other elements like the Web browser can be integrated

also and provide additional possibilities for the application being developed.

2.2 Android Software Development Kit

Android SDK is a set of tools that are needed for development of Android mobile

applications. There are also additional tools that while they are not essential for Android

development, they make it easier.

First, there is the Android SDK and AVD (Android Virtual Devices) Manager,

shown in Figure 2.4. It is used mainly for installing the different platform packages that

exist for Android. This package includes the needed resources, compilers, and

emulators. ShopDroid was successfully tested in all available platforms. To the date,

there are five versions (1.5, 1.6, 2.0, 2.1, 2.2), while version 1.5 has been slowly

disappearing due to manufacturer upgrades. Also, version 2.0 already disappeared

because of version 2.1 being an update for it. Figure 2.5 shows how different versions

have changed over time.

Figure 2.4 Screenshot of Android SDK and AVD Manager

 14

 Figure 2.5 Historical Android platform distribution as of 16/09/20101

Furthermore, this manager is useful for handling the emulators, in other words, it

creates any emulator from a desired platform version, it can start emulators and it can

delete them if wanted.

Android officially supports the Eclipse IDE for developing by providing a plugin

for it. Even though it is possible to develop Android applications using other IDEs,

Eclipse is the preferred way. This plugin nicely integrates with the manager and

debugging tools for Android. A rusty interface editor is also included, but since it is

limited in usefulness, it was not used for this project.

Logcat is probably the most useful tool; it dumps a log of all system messages,

allowing seeing any exceptions or problems with the application. Inside the application

it is possible to add manually logging code so it will get dumped too. Figure 2.6 shows

Logcat in action.

Dalvik Debug Monitor Server (DDMS) is another useful tool. It was used mainly

to take screenshots of the application, and to mock the location coordinates in the

emulator.

Hierarchy Viewer is a tool that debugs the user interface. It shows in a more

graphic way, how the structure of the interface was designed. With it, it is possible to

get an idea on how some applications have implemented their user interface. Figure 2.7

shows this tool.

A testing tool called Monkey was also intensively used. This testing tool tries to

stress out the application by simulating many taps on the screen what might bring the

application down. If the application being developed passes this test, it means that it has

good performance.

1 http://developer.android.com/intl/zh-CN/resources/dashboard/platform-versions.html

 15

Figure 2.6 Example of Logcat

Figure 2.7 Hierarchy Viewer in action

2.3 ZXing library

ShopDroid uses ZXing (Zebra crossing) library as barcode decoder. The3 main

advantages of the ZXing project are: open source (Apache License v2.0) [9], support for

UPC and EAN codes, Java language, active support and development for 5 years. This

 16

project is focused on using the built-in camera on mobile phones to photograph and

decode barcodes on the device. Some barcode decoders take a picture of the barcode

and send it to server, where the decoding process takes place, however the ZXing

project performs all operations on device. It supports many code standards:

● UPC-A and UPC-E

● EAN-8 and EAN-13

● Code 39

● Code 93

● Code 128

● QR Code

● ITF

● Codabar

● RSS-14 (all variants)

● Data Matrix ('alpha' quality)

● PDF 417 ('alpha' quality)

The project can be found on the project’s website [9]. Apache License v2.0 allows

reusing and modifying published source code. The project has its own Android

application called Barcode Scanner. Thanks to that application, the code could be tested

before implementation. Barcode Scanner recognizes UPC and EAN codes quickly and

has high efficacy.

2.4 Server requirements

The server is used as centralized data storage. That solution makes data operations

easier. A data update is done only once on the server side and all clients can access the

new data. In the scenario with the database on the client side, changes will require

database synchronization or the client application to be reinstalled. The server

requirements are:

• PHP support

 17

• PostgreSQL database

• MySQL database

• HTTP Authorization header accepting

For the ShopDroid project a commercial server was used. Most of all hosting

companies offer servers that fulfill those requirements. It is also easy and cheap to

configure your own server, because all needed functionality is open-source and free to

use.

2.5 PHP scripting language

PHP: Hypertext Preprocessor is a scripting language mostly used in web applications.

Combining HTML tags with PHP helps to build dynamic web pages. In the ShopDroid

project, PHP is used to provide user authorization, administrator panel and as a logic

layer between client and database. The last feature is important as it helps to separate

the client application code from the database type. In that case any database related

changes would affect only the server side. That prevents from unnecessary updates for

every single client application. Main advantages of PHP: fast, stable, secure, open-

source, free to use [10].

2.6 Database choice

Choosing database to this project was a hard task. The first assumption made was that

the database used in ShopDroid project should be fast and easily expandable as there

will be a large amount of records. Other arguments, which were taken into account, are

database stability and reliability. Being free to use and open source additionally increase

database attractiveness. There are several databases which meets this requirement, some

of them: SQL Server Express, Oracle XE, PostgreSQL, Firebird, MySQL. MySQL and

PostgreSQL are popular among web developers what have direct impact on hosting

offers. While almost all servers have MySQL, some of them have PostreSQL and it is

really hard to find other systems.

 18

PostgreSQL is an object-relational database management system (ORBDMS)

[11]. This database was chosen to keep all products and stores related data. A big

advantage of PostgreSQL is a license (PostgreSQL license, which is a MIT-style license

[12]) that allows developers to use it even in closed projects for free. Other benefits:

conformity with standards, good support, great possibilities, that might be useful in the

future. If

MySQL is another object-relational database management system. Usually one

database is enough for the project, however ShopDroid project uses the oauth-php

library, which supports only the MySQL database. This fact was discovered in late

development when part of the system was already working with PostgreSQL, so it was

decided to use two databases system in ShopDroid. Additionally, storing user

credentials in a separate database increases security level and system efficiency. The

product and stores data is stored in a PostgreSQL database, and the users data is stored

in a MySQL database.

2.7 XML Extensible Markup Language

XML - Extensible Markup Language simple and flexible text format, commonly used to

exchange wide variety of data on the Web [13]. XML is a standard recommended and

specified by W3 Consortium. Each XML script has to start with the XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

ShopDroid uses XML format as a response to clients’ HTTP requests. There are

three types of responses: stores list, products list and product information. Stores list is

used when the user is looking for nearby stores on the map, product list is used when

the user is searching product by name, product information presents product, prices in

different stores, user reviews. A XML document has to have exactly one root tag. A tag

is a markup that begins with “<” and ends with “>”. The content is surrounded with

tags, the opening tag and the closing tag which additionally has “/” after “<”. When the

content is missing either the opening or closing tag, the XML document parsing process

will stop and return an error. The content can be empty.

 19

2.8 OAuth protocol

ShopDroid implements OAuth 1.0 open protocol for user authentication. The server -

OAuth service provider is using oauth-php implementation [14], the client - consumer

signpost library [15]. OAuth protocol is defined in RFC 5849: The OAuth 1.0 Protocol

document [16]. The OAuth protocol does not provide any implementation itself. This

protocol ensures high security level. Many big web companies like Google, Facebook,

Twitter or Yahoo are using OAuth in their APIs what gives evidence of reliability of

that solution.

There are several OAuth PHP implementations, but most of them include only the

OAuth client. Oauth-php is a Consumer And Server library. It is a fully working and

complete library with good documentation and support.

The library implements methods to:

• verify incoming requests against the library

• sign outgoing requests, with curl support for actually doing the request

• sign requests with a body

• administrate consumer keys and tokens for multiple users (server and consumer

side)

• log incoming and outgoing requests handled by the library (optionally in the

database) [14]

By default, the project is working with MySQL OAuth store. Authors of that project

claims it has an extensible OAuth store. However, trials to make a different store i.e.

using PostgreSQL database made changing a lot of undocumented source code. Finally,

ShopDroid is using the default OAuth store.

As in the case of Service Provider there are a few OAuth Consumer JAVA

implementations, but only one is Android ready - signpost. Signpost offers simple

message signing. This project has a great community and documentation. Code is well

tested and used in Android applications like Qype Radar.

 20

Chapter 3

ShopDroid Project

In this chapter all the client and server components of the ShopDroid project will be

described in details.

3.1. Main Screen

The main screen (shown in Figure 3.1) is the first activity that appears when the user

launches the application and therefore it has to show the application’s main

functionalities. The planned functionalities were four:

• Barcode scanning

• History

• Manual barcode and product search

• Locating nearby stores

The user interface elements are defined in the layout file main.xml, while the

source that makes this buttons function is defined in ShopDroid.java.

These four functionalities have to be quickly accessible by the user so it was

decided to have a large button with an image for each of the functionalities. Having

large buttons makes it very easy for the user to tap on them. Images are included inside

the buttons so that the user can easily relate them to a certain function. Putting images

inside a button can be down using the attribute android:drawableTop when defining the

button properties in the layout file. A small phrase below the image is also shown in

case the image is not clear enough.

A big empty space was left at the bottom of the screen to leave the future

possibility of adding advertisement and monetizing the application.

 21

Figure 3.1 Main screen

Another thing to consider was the landscape view of the screen. Android

automatically rearranges the user interface elements when switching from portrait to

landscape. It is usually enough to design the interface for portrait mode, which is the

default one. However, in some cases, as it was in this project’s main screen, the

automatic rearranging does not look good in landscape mode. Android leaves the option

to define the landscape mode for a certain layout if wanted. It was only needed to create

a layout file with the same name, put it on the layout-land folder and make the proper

modifications. The differences of the screen in landscape mode without and with a

landscape layout file can be seen in figure 3.2.

Google encourages the use of the Options Menu for the user to access certain

application functions and settings. Tapping on the menu key on any Android device

accesses this menu. For the main screen, the user can access the “settings” and “about”

menu as shown in Figure 3.3.

 22

Figure 3.2 Differences in the main screen landscape mode. Upper screenshot: without a landscape layout

file. Lower screenshot: with a landscape layout file.

3.1.1 Application settings

The settings screen, shown in Figure 3.4a, is useful to add certain options, like letting

the user disconnect his ShopDroid account, or in other words to log off. Another option

is to turn on the feedback once a barcode is scanned and decoded, the user can choose to

have the device beep or vibrate or none. The last option in the application is an

advanced option intended only for debugging purposes. Accessing the last option,

brings the Location screen which is used for mocking the current location, useful for

testing. This last screen is shown in Figure 3.4b.

These settings are defined in the settings.xml file inside the xml folder and in the

Settings.java file. Android makes it possible to define a key for each option in xml

(using the attribute android:key), which later on can be easily read from within the

code.

 23

Figure 3.3 Main screen menu

In general, settings or preferences are just another activity, and to be more specific

they are a PreferenceActivity. Use of the settings.xml file has to specified in

code like this:

addPreferencesFromResource(R.xml.settings);

Usually this code should be enough, but in the case of the ShopDroid application

some more code was needed for disabling and enabling the Disconnect Account option

whether the user has already logged on or not.

3.1.2 About application

The About screen (shown in Figure 3.5) is useful for describing the application and

giving credits. It is called in the code inside the main activity by creating an

AlertDialog:

new AlertDialog.Builder(this).setTitle(“A title”)
 .setMessage(“Some text”).setPositiveButton(“OK”, null).show();

 24

(a) (b)

Figure 3.4 a) Settings screen, b) Advanced settings

Figure 3.5 About screen

 25

3.2 Barcode scanning process

ShopDroid allows the user to scan barcodes using the phone-integrated camera. When

the user chooses “Scan now” option from main menu capture activity is launched. The

capture screen (Figure 3.6) displays the live camera view with a rectangle at the center

of screen, transparent borders, help text, and a horizontally center red line which shows

the user where to place the barcode.

Figure 3.6 Barcode scanning screen

During the scanning process yellow dots are drown when part of the code is

recognized. Camera auto-focus runs in the loop helps improve image quality. Usually

scanning process takes 5-7 sec, in good lightening conditions this time goes under 3 sec.

If the code is detected the Product screen is showed to the user.

3.2.1 Barcodes

A barcode is a graphical representation of data easily readable by optical devices. There

are many code standards, but only four are used for product tagging: EAN-13, EAN-8,

UPC-A, UPC-E. The global, non-profit organization called GS1 has chosen these codes

as GTIN (Global Trade Item Number). The cooperation between GS1 and

manufacturers can guarantee worldwide unique product identification numbers. UPC

family codes are currently used in Canada and USA while EAN codes are used in all the

 26

other countries. This chapter will describe the barcode decoding process with EAN-13

as example and only this code will be taken into consideration. [18, 19]

EAN codes

EAN (originally European Article Number, but now changed to International Article

Number) can appear in two formats: EAN-13 (Figure 3.7) and EAN-8 (Figure 3.8).

EAN-13 is commonly used for marking products, it encodes 13 digits, from which 12

are for the product number and 1 is for the checksum. EAN-8 (7 + 1 digits), which is a

shortened version, is intended for small packages i.e. pocket tissues, chewing gums and

elsewhere where a 13 digits long code does not fit.

Figure 3.7 EAN-13 example

Figure 3.8 EAN-8 example

 27

Code properties

Barcode properties are enumerated below:

• 1D - code readable in 1 dimension

• Continuous - no breaks between digits

• Numeric - encodes only digits in decimal notation

• Many-width - different bars and spacing height

• Checksum - additional digit for checksum

Digits meanings

• The GS1 Prefix, the first 2 or 3 digits usually identifying the country code where

the manufacturer is registered (590 for Poland).

• The Company number, 4,5 or 6 digits, that GS1 assigns to the company

depending on the number of different products lines.

• Item reference, from 2 up to 6 digits, provided by the manufacturer.

• Checksum, the very last digit.

Code structure

EAN family codes always start and end with a guard pattern, three bars: black, white

and black, which are longer than the other bars, as shown on figure 3.9. The middle

sign, which is build from five longer bars that alternate white and black, splits the code

into two equal parts. Each module encoding a digit contains seven bars matching bits,

the white bar is treated as binary ‘0’ and the black one as ‘1’. In table 3.1 the encoding

of digits is shown. All digits are divided into three groups: the first digit, the digits from

number two up to number seven and the last six digits. The first digit is encoded by

parity of the following six digits, as those digits have two possible encodings, L-code

with odd parity and G-code with even parity. The last six digits are encoded in R-code,

which is a mirror reflection of G-code. Figures 3.10 - 3.12 show actual each digit

encoding using bars, in accordance to L-code, G-code, R-code.

 28

Table 3.1 EAN-13 Digits encoding1

Digit L-code G-code R-code

0 0001101 0100111 1110010

1 0011001 0110011 1100110

2 0010011 0011011 1101100

3 0111101 0100001 1000010

4 0100011 0011101 1011100

5 0110001 0111001 1001110

6 0101111 0000101 1010000

7 0111011 0010001 1000100

8 0110111 0001001 1001000

9 0001011 0010111 1110100

Figure 3.9 EAN-13 structure2

1 http://en.wikipedia.org/wiki/European_Article_Number
2 http://pl.wikipedia.org/w/index.php?title=Plik:UPC_EANUCC-12_barcode.png

 29

Figure 3.10 Digits encoded in L-code1

Figure 3.11 Digits encoded in G-code2

Figure 3.12 Digits encoded in L-code1

1 http://en.wikipedia.org/wiki/File:EAN-L.png
2 http://en.wikipedia.org/wiki/File:EAN-G.png

 30

Table 3.2 shows how to encode the first digit using L-code, and G-code.

Table 3.2 EAN-13 First digit encoding. L - L-code, odd parity, G - G-code, even parity

Digit 6 digits group

0 LLLLLL

1 LLGLGG

2 LLGGLG

3 LLGGGL

4 LGLLGG

5 LGGLLG

6 LGGGLL

7 LGLGLG

8 LGLGGL

9 LGGLGL

EAN-13 Checksum calculation

The checksum needs to be calculated before printing the code. The checksum digit is

the result of (3.1). If the result equals 10 then the checksum is also 0.

!ℎ!"#$%& = 10− !!! + 3!!!!!

!

!!!

!

!!!

!"# 10 (3.1)

where xi - code digit on i-th position

An exemplary calculation of checksum is shown below:

Lets assume that the code equals 590063500111.

Odd sum: 5 + 0 + 6 + 5 + 0 + 1 = 17.

Even sum: 3*9 + 3*0 + 3*3 + 3*0 + 3*1 + 3*1 = 42.

1 http://en.wikipedia.org/wiki/File:EAN-R.png

 31

Final sum: 59

Sum modulo ten: 59 mod 10 = 9

Checksum: 10 - 9 = 1

3.2.2 Decoding algorithm

The main class, CaptureActivity, controls the scanning process and displays a live

camera preview. The decoding itself runs on another thread in order not to hang the user

interface screen, what is more it make use of multicore architecture of future

smartphones CPU without any code modification. CaptureActivity calls the

CameraManager class to set up the camera. CameraManager is responsible for

sending commands to the camera driver i.e. auto-focus request. The image taken by

camera needs to be sharp to recognize the barcode and requires the camera to have

autofocus. Almost all Android based smartphones fulfill that condition.

CameraManager sets the camera resolution to be equal to the actual screen

resolution. CameraManager also contains a method to calculate the framing rectangle

that will be drawn to show the user where to place the barcode. The minimum size of

this rectangle is 240x240 pixels and the maximum, 480x360. There is no need to take a

larger image for decoding as it unnecessarily consumes lots of computing power. The

image taken by the camera is in YCbCr420 format; frame is send to the decoding thread

as a message. The CaptureActivityHandler class handles messages used to

communicate with the decoding thread. The DecodeThread class tries to decode the

barcode from a given image. Setting the decodeFormats variable to

CaptureActivity. PRODUCT_FORMATS limits the code search to UPC-A, UPC-

E, EAN-13, EAN-8, RSS14 formats. Decoding runs in a loop, when one decode fails a

new one is started immediately. It creates BinaryBitmap and HybridBinarizer

objects from the given image, which contains methods for image processing, and it

passes a BinaryBitmap to decodeWithState method defined in the

MultiFormatReader class. MultiFormatReader calls all selected Readers one

by one to look up for the barcode. OneDReader, a basic class for all one-dimensional

codes, calculates the height of a given image, then it examines the rows starting from

the middle and moving outwards, above or below the middle alternately. The step

depends on the tryHarder variable, if it has been set, the algorithm checks each row,

 32

if not, only 15 rows are checked with a step 1/16 of image height. By default, the

tryHarder variable is unset. Tests showed that skipping rows does not remarkably

reduce efficacy but it does increase scanning speed. To improve performance a simple

sharpening is applied by calling the getBlackRow method. The body of that method

can be found in GlobalHistogramBinarizer inherited by HybridBinarizer.

It creates a histogram and searches the two tallest peaks: first for black and second for

white color. If the difference between them is too small, that means that the image

contrast is too little and the function throws an exception to avoid the risk of false

positives. When peaks have been found, the valley that is low and closer to white is

selected as a reference point. A bit array is created with a length that equals the image

width. Pixels are compared to the black point; if the luminance is smaller then the

appropriate bit is set in the array. When the whole array is filled, the code detection

algorithm starts. Each row has two decoding attempts, the first, regular, and the second,

reverse to handle decoding upside down barcodes. UPCEANReader contains methods

and constants common to UPC and EAN family codes. It takes a prepared bit array row

and tries to match it with the start guard pattern. To do that, the algorithm creates an

integer counters array with the same length as the pattern length. Patterns are also stored

in integer arrays, successive numbers are a sum of identical (white or black) bars in a

row. For the start pattern (black, white, black bars), the array is {1,1,1}. To find it, three

counters are created to count bits/pixels with the same color. When the counting is

done, the patternMatchVariance method determines how close is the recorded

sequence to the requested pattern. The measure to define that dependence is expressed

as the ratio of total variance from expected pattern proportions across all pattern

elements, to the length of the pattern (3.2). Value ‘0’ means perfect match, to pass the

value it needs to be lower than 0.42. This value was fixed by project authors after many

experimentally trials.

!! = !! − !!
!!
!!

!!!!

!!!

÷ !! (3.2)

where tv - total variance, pl - pattern length, ci - value of i counter, pi - value of i pattern,

tl - total length, all counters sum

 33

Once the start pattern has been found, the algorithm checks if there is a quiet zone

before the barcode, at least as big as the start pattern and it starts to decode the digits.

First it attempts to decode six digits on the left. Each digit encoding has exactly four

black/white fields, therefore it always ends with a bar color that is opposite to the first

bar. To decode a digit four counters are needed, firstly it records the pattern and than

tries to match it with any given pattern (for the left side, the number of patterns to check

is 20 because of different parity), the digit with the smallest variance is returned.

Calculation of the variance is done in the same way as for the start pattern and it needs

to be lower than 0.42, otherwise a not found exception will be thrown. If six digits are

positively matched, the algorithm determines the first digit as a result of parity as shown

in table 3.2. The algorithm finds the middle guard bars range {1,1,1,1,1} and decodes

the last six digits. While all digits are decoded correctly quiet zone after the barcode is

checked if it is at least as big as the end pattern. The checksum is calculated as

described in section 2.3, and the result must be equal to ‘0’ to pass. If there were no

errors a result is returned as a string containing 13 digits, if not another row is checked

for the code existence. If all rows from image are checked without success algorithm

takes new image and scanning starts again.

Classes required to decode a EAN-13 barcode [9]:

CaptureActivity

The barcode reader activity itself.

CaptureActivityHandler

Handles all the messaging that comprises the state machine for capture.

CameraManager

This object wraps the Camera service object and expects to be the only one

talking to it. The implementation encapsulates the steps needed to take preview-

sized images, which are used for both preview and decoding.

DecodeThread

Thread that does all the heavy lifting of decoding the images.

 34

BinaryBitmap

This class is the core bitmap class used by ZXing to represent 1 bit data. Reader

objects accept a BinaryBitmap and attempt to decode it.

BitArray

A simple, fast array of bits, represented compactly by an array of integers

internally.

MultiFormatReader

A convenience class and the main entry point into the library for most uses.

OneDReader

Encapsulates functionality and implementation that is common to all families of

one-dimensional barcodes.

MultiFormatOneDReader

As MultiFormatReader but limited to one-dimensional barcodes

MultiFormatUPCEANReader

A reader that can read all available UPC/EAN formats.

UPCEANReader

Encapsulates functionality and implementation that is common to UPC and EAN

families of one-dimensional barcodes.

EAN13Reader

Implements decoding of the EAN-13 format.

3.2.3 Code detection problems

The ZXing algorithm detects correctly most product barcodes; it only requires good

lightening conditions. However, there are some cases that it does not decode the

barcode. The problem could appear when a manufacturer does not stick with the GS1

recommendations and use different colors with low contrast as shown on Figure 3.13.

 35

Figure 3.13 Low contrast barcode example1

Another problem concerns barcodes printed on a rounded surface (i.e. bottle) with

a small radius (Figure 3.14). Bend on the barcode causes detecting problems because

perspective changes spacing between bars. Fortunately, most of all manufacturers print

the barcode on the bottle vertically; in that case it can be decoded without difficulty.

Figure 3.14 Barcode on rounded surface example

The last known problem can occur with barcodes located on flexible packages.

Code deformation as shown in Figure 3.15 makes it impossible to decode.

1 http://code.google.com/p/zxing/source/browse/trunk/core/test/data/benchmark/android-1/fail-1.jpg

 36

Figure 3.15 Deformed barcode example1

3.2.4 Android camera issue

Preview in the ZXing project is set to landscape mode by default. It is more comfortable

to hold a phone in portrait mode while scanning barcodes, especially when a phone is

hold with one hand. Due to hardware and system limitations it is impossible to force the

camera preview to portrait mode at the time of writing this document. It is well known

issue in the android developers community [20]. The ShopDroid application works

around this issue by using a fake portrait mode. Camera preview is set to landscape

mode. In CaptureActivity, an orientation listener has been implemented to handle

orientation changes internally. To have a portrait mode illusion some ZXing’s project

methods needed to be modified. Because of the framing rectangle being different, the

getFramingRect method in CameraManager class has been re-implemented for

correct calculations. X/Y coordinates are changed in fake portrait mode as shown at

Figure 3.16.

To correctly draw the rectangle, the onDraw method of the ViewfinderView

class includes two different ways of drawing depending on the view. The status text is

drawn on canvas rotated 90 degrees clockwise. The last problem to solve was camera

frame data transition. There is a method called rotate data in the CameraManager

class, which handles data rotation.

1 http://code.google.com/p/zxing/source/browse/trunk/core/test/data/benchmark/android-1/fail-2.jpg

 37

private byte[] rotateData(byte[] data, int width, int height) {

 int nw = height;
 byte[] newData = new byte[width * height];

 for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 newData[nw * (x + 1) - y - 1] = data[y * width + x];
 }
 }
 return newData;
}

Figure 3.16 Android screen coordinates

3.3 Geolocation

Geolocation is the ability to identify the geographic coordinates, in other words the

location, of the user’s smartphone. This is an important feature of the ShopDroid

application. It is needed in order to customize the user experience according to his

location. In this case, the application will only show the product prices from the stores

close to him.

The Android platform makes it possible to use two location providers, which have

been successfully implemented in this application:

 38

• GPS provider

• Network provider

3.3.1 GPS provider

All Android phones are GPS enabled. GPS would be the most accurate way of knowing

the location of the user. It should be accurate to about 15 meters (this depends on each

device). Getting a fix (that means that the device acquires the needed satellite signals,

navigation data and calculates the position) with this provider might take some time -

during tests, the fastest fix was in 5 seconds, while the slowest was around 2 minutes.

Using this provider also requires that users have to be outdoors or close to a window if

they are indoors. It also shows a GPS icon in the notification bar, indicating users that

the GPS is active and being used by the application as shown in Figure 3.17.

Figure 3.17 Gps icon notification

3.3.2 Network provider

When the better GPS provider does not work or it is not enabled in the phone (Android

disallows an application to turn on the GPS for the user) then the application can use the

Network provider, which can get the location coordinates from GSM (Global System

for Mobile Communications) triangulation or if connected to a wireless network, it

could get the location from the IP address of the network. It should be noted that this

last option (getting the location from a wireless network) depends on Google’s internal

database, and the accuracy level of this may vary.

A location listener must be created per each provider. Having created the listeners,

the application can request location updates. A problem aroused when implementing

 39

this in the application, was that creating and using the location listeners in an activity,

made them unusable by other activities. With Android, each screen can be understood

as an individual activity, with almost not reference at all to any previous or subsequent

activity, only some parameters can be passed between activities, which are some

primitive types and strings. Android FAQs (Frequently Asked Questions) provide a

solution for this:

The android.app.Application is a base class for those who need to maintain global

application state. It can be accessed via getApplication() from any Activity or Service. It

has a couple of life-cycle methods and will be instantiated by Android automatically if

your register it in AndroidManifest.xml [21].

The Application class is similar to a singleton; it lives throughout the entire

life of the application, no matter which activity is in the foreground. With this

functionality it seemed obvious to implement the location listeners inside the

Application class. All Android applications provide a default Application

class, but if need one can create a new one to add application specific features. This is

implemented in the ShopDroidApplication.java file. The listeners are created as soon as

the application is started, inside the onCreate() method of the application. Every

activity can get the current location by calling getLocation() method:

((ShopDroidApplication) this.getApplication()).getLocation();

This returns a Location object, from which the latitude and longitude values

can be obtained.

3.3.3 Avoiding Location updates when the application is in the background

Enabling the location listeners makes them active throughout the life of the application,

unless disabling them manually. This can cause some battery drainage, which is not

positive for the user. This can be seen as soon as the user switches the application, or

goes to the device’s home screen, the GPS icon will still be shown in the notification

area, indicating that it is active and that it might request new location updates. This is

 40

also true for the Network provider listener, which doesn’t show any icon in the status

bar, but nonetheless it will still be active.

In order to avoid this, the listeners must be disabled when the application is

paused. Unfortunately Android’s Application class does not provide any way to

check if the application was paused. This can only be done per each activity. So in

ShopDroid, each activity enables these listeners, which were already created once the

application started, whenever resuming, inside the activity’s onResume() method.

This method will even be called the first time the activity is created. Also, these

listeners are disabled whenever any activity goes into the background, this is

implemented inside the activity’s onPause() method.

For debugging and testing purposes, an option to mock the location was

implemented. ShopDroid’s Application class will check on start, if the mock

location option is activated, and if so, then it will return the mock location to whatever

activity that requests the location. By doing like this, none of the activities code needed

to be modified.

3.4 History

One of the ShopDroid application’s features is to save the users history and allow them

to check any found products as quickly as possible, so that they would not need to scan

or search the barcode again. Android, like most modern mobile operating systems,

provides support for SQLite. Using a SQLite database does not produce additional

overhead for the system, data can be read from the database extremely fast. While

writing several records to the database might incur in performance decrease, this

application only inserts one record each time it needs to add a new history item. This is

the reason why SQLite suits best the needs of this application.

The database is created thanks to the constructor of SQLiteOpenHelper. This

constructor also accepts the database version as a parameter, which is useful when

upgrading the database to alter, drop or create tables. A table history was created for this

feature using the following SQL statement:

 41

CREATE TABLE history(_id INTEGER PRIMARY KEY AUTOINCREMENT,
product TEXT NOT NULL, barcode TEXT UNIQUE NOT NULL);

Table 3.3 shows in more details the table created for the history feature.

Table 3.3 History table details.

Column Type Integration relations Comment

_id integer primary key, auto-
increment

auto-increment
primary key,
identification
number

product text not null product name

barcode text unique, not null barcode of the
product, it is unique
to avoid duplicates

All this functionality is implemented in HistoryManager.java inside the

com.janandgreg.shopdroid.util source package. HistoryManager objects are created

in two screens: the history screen, and the product screen.

In the product screen, a new entry will be added to the table if the product has

been found. It should be noted, that the barcode column is defined as unique, so there

will not be any duplicates. There is also a limit for the number of records which can be

easily changed. When adding a new entry, HistoryManager checks the number of

records with the following SQL statement:

SELECT COUNT(*) FROM history

It will check the value returned and if it is more than the maximum number of

records allowed, it will proceed by checking the oldest record and deleting it. The oldest

record is checked with the following statement:

SELECT MIN(_id) FROM history

 42

The History screen shows users all of their successfully found products that they

tried to search or scan. An example screen is shown in Figure 3.18.

Figure 3.18 History screen

This screen is implemented in History.java. This view uses the ListView widget.

To load all the history records it uses HistoryManager’s fetchAll() method. That

method returns a Cursor object with all the table records, which can be iterated over.

Also, a layout must be defined for a single item in the database. Once the Cursor is

returned, a SimpleCursorAdapter is created, that uses the newly created cursor

and the layout defined as parameters to show the entries in the ListView widget.

Users can also delete any single entries when long pressing the one they want to

delete (shown in Figure 3.19). It is also possible for users to delete all the history by

selecting that option when pressing the menu key.

 43

Figure 3.19 Delete history item

3.5 Manual Search

Users have the option to manually type the barcode of the product, or the product name

itself. This can be the case if the barcode for some reason cannot be decoded. Also if

users do not want to scan the barcode or they do not have access to the product, they can

manually search for the name of the product. This is shown in Figure 3.20. All of this is

coded in ManualSearch.java.

Figure 3.20 Manual Search screen

 44

The input from the user is taken as a string, and the application automatically

recognizes if it is of numeric type or not. It does by using this method:

Long.parseLong(String input)

This method throws a NumberFormatException if the input has something

else than numbers. So if it does not throw this exception, the user’s input is used as a

barcode by the next activity, which will be the Product screen. This is the exact same

result as if the user would scan the barcode and the barcode would be decoded by the

application. This is shown in Figure 3.21.

Figure 3.21 Searching products by name

However, if it throws a NumberFormatException, then the process is quite

different. It does not go directly to the same Product activity, but to another one, which

searches in the server database for all records that have the name of the product just

searched.

 45

3.5.1 Searching by product name

This subsequent screen for searching by product name is shown in Figure 3.22. This is

coded in the ProductSearchByName.java file.

Figure 3.22 Product results when searching by name

A simple GET request to the server returns the results in XML format. The XML

structure is presented in Table 3.4. The elements are self-explanatory and do not need

any additional comment.

This screen also has a small input box in the top in order to let the user search

again without moving back to the previous screen. The list of products is basically a

ListView, with a custom adapter, which is in the ProductAdapter.java file inside the

adapters package. This adapter was written with efficiency in mind, so that the interface

will not freeze on the user, even if there are plenty of records.

The adapter will load first the product names that are currently on the user’s

screen. Just after that it will spawn threads to download and show the thumbnails for

each product. This only occurs for the elements that can be seen in the screen, once the

user scrolls down, then new thumbnails will be downloaded. However it will not

 46

download a new thumbnail if it has already been downloaded previously. There is also a

special thread spawned to download the thumbnails of the products that are not seen in

the current screen. This thread will stop when the user is scrolling down the list in order

to avoid the lagging of the interface. It will continue after a period of time of idling, that

is the user not touching the screen at all.

Table 3.4 Products list XML structure, Violet means that it is a variable

<?xml version="1.0" encoding="UTF-8" ?>
<search_result>
 <product>
 <id>product id</id>
 <name>product name</name>
 
 <barcode>product barcode</barcode>
 </product>
</search_result>

3.5.2 Search History

When the user starts typing the name of the product, suggestions might appear as a

dropdown as shown in Figure XX. Whenever a user tries to search a new product, the

name will be added to a SQLite database, which is the same as the one for the general

history. The table for this is created with the following SQL statement:

CREATE TABLE search_history(_id INTEGER PRIMARY KEY
AUTOINCREMENT, product TEXT NOT NULL, word TEXT UNIQUE NOT
NULL);

Table 3.5 shows in details the table created for this feature.

The widget that allows having this kind of dropdown list is the

AutoCompleteTextView widget. This has the option to set an adapter from which it

loads the records of the table and displays them to the user.

 47

Table 3.5 Search history table details

Column Type Integration relations Comment

_id integer primary key, auto-
increment

auto-increment
primary key,
identification
number

word text unique, not null product name

3.6 Store locator

Users have also the option to get the stores nearest to their current location. This is

presented in an interactive way showing a map, which is provided by Google, and in

that map the stores are shown as small dots. An example of this is shown in Figure 3.23.

Figure 3.23 Store locator

 48

The code for this feature is in the StoreLocator.java file inside the source folder.

ShopDroid gets the values from the server, using a simple GET request. An example of

this request is shown below:

http://shopdroid.ggajewski.2be.pl/getstores.php?&lat=50.10784&long=19.95241&maxl
ong=19.95241&maxlat=50.10784&minlong=19.84942&minlat=50.00811

Latitude and longitude are taken from the device’s current location (either from

GPS or network provider). The number of stores returned is limited by the maxlat

(maximum latitude), maxlong (maximum longitude), minlat (minimum latitude) and

minlong (minimum longitude) values. This is done to limit the size of the XML

response, and also to show the stores to the user faster. This limits are two screens more

for each side, that means that the user will be able to scroll up, down, right or left, for

two more screens (which is the horizontal or vertical length of the map). After the limit

is passed in any direction, then a new request is send to the server with new values.

Android can easily return the latitude and longitude spans of the current visible

area. These values may vary depending on the device, because of different screen sizes.

Once these values are obtained, the next step is to obtain the latitude and longitude of

the map center, which can also be obtained from the system. Finally, the latitude or

longitude values are added respectively to the span values, which are multiplied by 2.5

(This is half the vertical or horizontal length of the map plus two times that length). An

example of this procedure is shown in (3.3).

!"#!"# = !"#! + 2.5 × !"#! (3.3)

where latc - latitude of the center of the map, lats - latitude span of the map, latmax -

maximum latitude

The XML structure of the response is presented in Table 3.6.

 49

Table 3.6 Stores list XML structure for stores list. Violet means that it is a variable

XML structure Notes

<?xml version="1.0" encoding="UTF-8" ?>
<stores>
 <store>
 <store_id>store id</store_id>
 <storename>store name</storename>
 <address>store address</address>
 <city>city where store is located</city>
 <zipcode>store zip code</zipcode>
 <lat>store location latitude</lat>
 <long>store location longitude</long>
 <distance>distance to store</distance>
 <opening>store business hours</opening>

 <phone>store phone</phone>
 <logo>file name</logo>
 <logosrc>store logo source</logosrc>
 </store>
</stores>

XML declaration
root opening tag
store opening tag, could be more than one

distance is calculated from a given location
format: [opening hour]-[closing hour]; “-1”
when store is closed

file name for store logo/picture image

store closing tag
root closing tag

3.6.1 Calculating distance

The distance between the user’s location and each store is calculated in the server side.

It does not calculate the distance for all the records in the server database; it is limited

by the maximum and minimum latitude and longitude values. This is made to reduce the

server load.

A great-circle distance is used as an approximation for the distance between two

locations. In order to explain in more details this calculation, the concept of the great-

circle needs to be explained.

A great circle is a section of a sphere which contains a diameter of the sphere. The

shortest path between two points on a sphere, also known as an orthodrome, is a

segment of a great circle [22].

Given two points with latitude and longitude in radians, A (latA, longA) and B

(latB, longB), the radius of a sphere R, the distance between these points d is calculated

using (3.4).

 50

! = cos−1 sin !"#! sin !"#! + cos !"#! cos !"#! cos !"#$! − !"#$! ! (3.4)

The Earth is not a sphere, so in order to use this expression, a spherical

approximation of the Earth is used, and the mean radius of it is 6371 km.

3.6.2 Store Details

Users can tap on any store dot to bring a bubble dialog with some more details about the

store, like the store name, address and the store logo whenever available, this is shown

in Figure 3.24. The fetching of the store logos works in a similar way to the one of the

manual search of products. In this case, a thread is spawn as soon as the xml response is

parsed, that starts downloading the logos of all the stores included in the xml response.

When the bubble dialog of a particular store pops up, the logo fetched shows too.

Figure 3.24 Bubble dialog showing some store details

Users have also the possibility to tap on the bubble dialog to bring a new screen

with many more details of the selected store. The new screen, as shown in Figure 3.25,

 51

presents the user the open hours of the store (if available), the phone number of the

store, which the users can call straight way by pressing the call button. There is also a

small map embedded which shows the location of the store, and a “Go!” button which

takes the user to the Google Maps application and shows him the directions on how to

get to the store from his current location. In this case, ShopDroid will pass to the

Google Maps application the user’s coordinates as the source address and the store’s

coordinates as the destination address. This is done via Intent as shown below:

Intent intent = new Intent(android.content.Intent.ACTION_VIEW,

“http://maps.google.com/maps?saddr=USER_LAT,USER_LONG&daddr=STORE_LAT,

STORE_LONG”);

Android will correctly detect the URL (Uniform Resource Locator) and will

launch the Google Maps application. The code for the screen with the store’s

information is in the StoreDetails.java file.

Figure 3.25 Store details screen

 52

3.6.3 Reporting wrong information

Users can also report any wrong information presented within the store details screen,

this is shown in Figure 3.26. They can report the following wrong items of the store:

• name

• opening hours

• address

• phone number

• logo

• if it does not exist at all

Figure 3.26 Reporting store wrong information

Users need to be logged in the service in order to be able to report wrong

information. However, all the wrong reports must be confirmed by an administrator

(more on this on section 3.9).

 53

3.7 Product screen

The main feature of ShopDroid is price comparison. The user can see the product name,

and prices in different stores as the result of a successful barcode scanning or manual

product search. There is one condition for this: the product must exist in the ShopDroid

database. The Product class, whose code can be found in Product.java file, controls

the product screen. This screen contains several information about products such as:

product name, product picture, nearest store name with product price (if available),

image button “like this product”, total number of users who clicked on like button, user

reviews (if available). Figure 3.27 shows an example product screen containing prices

in two different stores, and one product review.

Figure 3.27 Example product screen

At the beginning of Product Activity it connects to the ShopDroid server to

download the product related information. This connection is realized in an

asynchronous task using HTTP POST method. The request contains these values:

product barcode, number of prices shown limit, reviews limit, location latitude and

 54

longitude (only if location is available). Additionally if the user has connected his

account, the request is signed using the OAuth protocol. To keep the product screen

clearer, the number of prices and reviews is limited. The maximum number of prices

presented is five and the maximum number of reviews is three. If there are more a

“View more...” button appears at the end of the list. The ShopDroid server queries the

database for a product with the given barcode, if the product cannot be found it returns a

XML file presented below:

<?xml version="1.0" encoding="UTF-8" ?>
<error>404</error>

In the case that the product exists in the database, PHP executes another queries to

the database. One of the queries returns a list of prices in different stores limited by the

stores limit parameter, the other query returns a list of user reviews limited by reviews

limit. If the request is signed then the user ID is obtained and the script checks in the

database if the user has selected the “like button” before. The prices query has two

versions depending on that if the user location is known. The ShopDroid project uses a

dedicated script written in PHP to create XML responses. It simply takes an array of

data and puts it between the appropriate tags. Table 3.7 shows XML structure for the

product details.

After receiving the product XML from the server, the Product activity parses it

and displays it on the screen. Another asynchronous task is run to download the product

picture (if there is any).

3.7.1 XML Parsing

Android provides two different ways to parse xml documents. These are:

• Simple API for XML (SAX)

• Document Object Model (DOM)

These two parsers work exactly the same as in Java. The main difference is that

DOM uses more memory, since it loads first the entire document into the memory,

while SAX takes less memory but it takes more time to implement. A basic test was

 55

made to test the speed performance on Android. 105 complex records, using the same

structure as the prices XML structure, were parsed. Each of the tests was ran ten times

to help factor out any other events that might be going on with the system. The average

results are shown in Figure 3.28.

Table 3.7 Product details XML structure

XML structure Notes

<?xml version="1.0" encoding="UTF-8" ?>
<product>
 <id>product id</id>
 <name>product name</name>
 
 <imgsrc>product image source</imgsrc>
 <userlike>user like</userlike>
 <peoplelike>people liking
 product</peoplelike>
 <added_by>user name</added_by>
 <store>

 <store_id>store id</store_id>
 <storename>store name</storename>
 <address>store address</address>
 <city>city where store is located</city>
 <zipcode>store zip code</zipcode>
 <lat>store location latitude</lat>
 <long>store location longitude</long>
 <price>price</price>
 <distance>distance to store</distance>
 <opening>store business
 hours</opening>
 <phone>store phone</phone>
 <logo>file name</logo>
 <logosrc>store logo source</logosrc>
 </store>
 <review>
 <review_id>review id</review_id>
 <author>user name</author>
 <date>review date</date>

 <text>review text</text>
 </review>
</product>

root opening tag

1 if user clicked product like button, otherwise 0
A total number of users which have clicked on
product like button
name of the user who added product
store opening tag, almost like for store list,
except for the price

product price in that store

review opening tag

name of the user who wrote that product review
minutes, hours, days, months or years since
review adding time

 56

Figure 3.28 Chart showing XML parsing results

On average, the SAX parser completed the tests within 854 ms, whereas the DOM

parser completed them within 1066 ms. This tests were taken in the Android device:

Nexus One, with the following features [23]:

• CPU: 1 GHz Qualcomm QSD 8250 Snapdragon ARM

• Memory: 512 MB RAM

These results show that SAX parsing on Android is a bit faster than DOM parsing.

In addition to be faster it uses less memory, and that is the reason why SAX parsing was

chosen for this project. All the parsers implemented are inside the parsers folder.

3.7.2 Multiple Lists

Trying to have two or more lists in Android presents some scrolling issues, especially

when all the elements do not fit the screen and they need to be scrolled. The problem

appears because the system will not know which the user wants to scroll, either the

entire screen or one of the lists. To resolve this issue, an external library (CWAC-

MergeAdapter) was used.

This library implements a custom adapter, to which other adapters can be added.

This custom adapter uses only one ListView widget, thus making the scrolling issues

0	

200	

400	

600	

800	

1000	

1200	

Time	 (ms)	

SAX	

DOM	

 57

disappear. Not only adapters can be added, also views, like the top part describing the

product, can be added.

3.7.3 Product prices

Prices are parsed from the xml response, which are sorted by proximity to the user (if

the user location is known). By sorting this way, the first result will be most likely the

store where the user is at the moment, if the store is in the database. The rest of the

results are sorted by price, from cheapest to most expensive, in the client side.

ShopDroid conveniently does not show any currency symbol because the prices

will depend on the location of the user, and thus will be in the user’s currency. This

avoids any kind of currency conversion, and the server will always list the prices in the

right currency, although it does not show the currency symbol.

The first result (Figure 3.29) is shown at the top part of the product screen,

together with the product name and picture. This is to give more emphasis to that result.

If the user taps on this result, the store details screen will appear.

Figure 3.29 Price result of the first store

The rest of the results appear below the “like it” part. These results are part of a

custom adapter, which is implemented in the ProductAdapter.java file. This adapter

allows the rest of the prices to be loaded into the main ListView of the product

screen. An example of an individual price result is shown in Figure 3.30. The user can

also tap on any of these results to be taken to the store details screen.

The elements of each result are the store name, the price and the distance to the

store. The distance is calculated in the same way as described previously in section

3.6.1. However the maximum and minimum latitude and longitude are calculated in

 58

another way. There is a default radius threshold of 70 km (this can be changed by

specifying the value in the client).

Figure 3.30 Example of the price result

An approximation of the maximum and minimum latitudes to be searched can be

found using (3.5)

!"#! = !"#! ±
!
!×

180
! (3.5)

where latm - maximum or minimum latitude, latu - current latitude of the user, r - radius

threshold in km (70 km by default), R - mean radius of the Earth (6371 km)

Calculating the maximum and minimum longitudes looks like (3.6)

!"#$! = !"#$! ±
!

! cos !"#!
×
180
! (3.6)

where longm - maximum or minimum longitude, longu - current longitude of the user,

latu - current latitude of the user

This will be the first cut of the SQL query, in order not to calculate the distance

for every record. Once the distance is calculated for the records that obtained from the

first cut, the distance is checked again against the threshold radius, and the final results

are obtained.

If there are more than five results, then a footer “View All” appears in the prices

list. This takes the user to another screen, which contains all the prices for a product.

This is implemented in the PricesAll.java file, and is much more simpler because it only

contains one ListView. Each element of the list looks exactly the same as in the

product screen, and the same adapter is used to load the elements.

 59

3.7.4 Product reviews

Below the price results, reviews are shown if available for the product. This is shown in

Figure 3.31. The reviews are also obtained from the xml response and loaded to the

ListView in a similar way to the prices results; another custom adapter is

implemented in the ReviewsAdapter.java file. Whenever there are more than three

reviews, a footer “More” is shown, and this takes the user to a new screen which shows

all the reviews available for that product. The code for this new screen is in the

ReviewsAll.java file.

Figure 3.31 Example of reviews

Each review shows also the author of the review and how much time ago the

review was posted. Any registered user can mark any review as spam if that is the case

by long-clicking on any review and a menu will appear as shown in Figure 3.32. This

also requires an administration to confirm.

Figure 3.32 Marking a review as spam

3.7.5 About product

The About Product screen is useful for describing product information such as: full

product name and volume, product image source, and who added this product. It is

 60

showed in a Dialog widget (Figure 3.33). Product image source can be web URL when

the picture was downloaded from a web page or the user name when the picture was

taken and uploaded by a user.

Figure 3.33 About product screen.

3.7.6 Reporting wrong information

Users can also report any wrong information about the product screen (Figure 3.34);

this is similar to reporting wrong information about store screen. They can report the

following wrong items of the product:

• name

• volume

Only these values can be reported because they are not editable by users (only

administrators can change those values). In the future users could report other

information if products would have more information available (like nutrition facts).

 61

Figure 3.34 Reporting wrong information for a product

3.7.7 Registered user actions

Some actions in the Product screen are restricted to registered users - users who

successfully connected their accounts with ShopDroid. These actions are: changing the

product picture, editing the product price, adding a product review, adding a product

price, adding a new product, adding a new store, like product button. The reason of this

restriction is to protect product information from spammers or dishonest competition.

Spammers can add reviews not related with product or products/stores that actually do

not exist. Dishonest competition can write bad product reviews or lower the prices. The

protection mechanism will be described later in this document.

Add/change product picture

Each product can have one picture; if it is not set a “no image” icon is displayed (Figure

3.35).

 62

Figure 3.35 No product image icon

When users perform a long click on a product picture/no image icon they can

change/add the product picture. A menu pops up with the option “Add a new Photo”

and after selecting it, the picture upload menu shows up (Figure 3.36).

Figure 3.36 Picture upload menu example.

This menu is a part of the AddProduct activity, which will be described in

details later. Users have three options to upload a new photo: Take the picture

themselves, choose the picture from the phone gallery, search the picture in the Web

using Google image search engine. The first two options run a native android

application via intents. Intents can be used to launch an activity, but also an Intent is a

 63

mechanism in Android OS which allows other application to do some work and return a

result. This feature is very useful as ShopDroid does not have to implement all the

taking pictures code itself, but only run the native Camera application to take a picture

and return it into application. Figure 3.37a shows taking a picture screen and Figure

3.38b shows choosing the picture from gallery action.

(a) (b)

Figure 3.37 a) Taking picture screen, b) Choosing picture from gallery screen.

Last option - search picture of the Web implements a Web browser, which opens

the Google image search site with results for the product name (Figure 3.38). Users

have ability to change the search phrase, browsing result pages, but they cannot leave

this page. The code for this can be found in SearchImages.java, it detects when users

click on the picture and returns a picture web URL.

Once the picture is selected, the user is able to hit the send button. The picture is

uploaded in an asynchronous task and an uploading dialog is displayed on the screen. If

the picture was successfully send to the server, a screen is displayed with a message -

 64

“Picture successfully added. Thank you” and a return button. If a problem appeared, an

error message is shown to the user. In that case, users can either try to upload the

picture again or return back to the Product screen. On the server side the picture is

resized and the database is updated.

Figure 3.38 Picture Web search screen

Like button

The user has the ability to “like” a product by clicking on the image button. This system

can measure product popularity with a total number of users “liking the product”. There

where three options considered to measure product popularity: stars rating in a scale of

0-5, buttons like/dislike, like button. The last option was implemented, as it is the

simplest system in use so it has the highest probability that user will use it. On the right

side of the like image button is a text, which represents the total number of the users

who likes that product. The text includes whether or not the user likes that product and

correct declension. Figure 3.39 presents two different like button states.

 65

Figure 3.39 Like line examples.

Edit price

ShopDroid project allows registered users to edit the product price. Nowadays many

stores have special offers, discounts and other promotions that result in frequent price

changes. Editing price is simple and fast. To change the price, the user has to long click

on the store/price row, and the menu Edit price will come up (Figure 3.40). Choosing it

opens a dialog (Figure 3.41) where the user is asked for new price. OK button confirms

it, and the price is uploaded to the server, where PHP scripts check OAuth sign and

update the product price inside the database.

Figure 3.40 Edit price menu

Add review

Registered users can write product reviews. It is a useful addition, which allows users to

share feelings about the product. Composing review screen (Figure 3.42) is accessible

from the product options menu. The review text is limited to 500 characters. The send

button uploads the review to the server, where it is saved to the database. Again, the

message has to be signed with a valid OAuth signature. After the successful review

submission, the review text is automatically added to the product view without the need

of re-downloading product information.

 66

Figure 3.41 Edit price dialog

Figure 3.42 Review composing screen

 67

Adding a new price

Users can also add a new price of a store that does not show in the price results. Users

can add a new price by selecting the option from the menu. This will take the user to a

new screen as shown in Figure 3.43a. In this new screen the user can input the price and

select an existing store by clicking on “Add new Store”. This will pop up a list with the

stores that are in the user’s proximity (see Figure 3.43b). However, if none of the stores

in the list are the intended ones, or there is no store nearby, the user can choose to add a

new store.

(a) (b)

Figure 3.43 a) Adding a new price, b) Stores list near the user’s location

After the user adds the new price, and if an existing store is selected, a

confirmation message will appear and the user will be return to the previous (Product)

screen.

Adding a new store

 68

To add a new store, users have to go through seven simple steps. The first step is adding

the name of the store. Adding the city where the store is located is the next step.

ShopDroid will try to get the city from the users’ location, so they will not need to write

it. This functionality is provided by Android, which uses Google’s database. The third

step is adding the address. Again, this will also be obtained from the users’ location

(however this might not be very accurate) and users will only need to manually add the

address if incorrect, or if it could not be obtained from the system. These first three

steps are mandatory and users will not be able to get to the next steps if this information

is not provided.

The coordinates of the store added depend on the address provided by the user and

not the user’s location. The server then will check the address with Google’s geocoding

service using the following query:

http://maps.google.com/maps/api/geocode/xml?address=STREET,+CITY,+COUNTRY
&sensor=true

This query will return an xml response, which will have the geographic

coordinates of the searched address.

Next steps are optional; users might just skip them without providing any

information. Adding the zip code of the store is the fourth step. This too might be

obtained from the users’ current location. For the first four steps there is a character

counter that shows how many more characters users can still input, the limit by default

is 50 characters. The fifth step is to add a phone number. Users are limited to input

numbers, in order not to get wrong type of information into the database. Selecting the

opening hours of the store is the next step. There are two modes for this, a simple one

and an advanced one. The simple mode shows only three options: Monday till Friday,

Saturday and Sunday and the advanced mode allows the user to select the opening hours

for every day of the week. The last step is to add a picture of the store. This is exactly

the same as adding or editing the picture of the product and is described earlier in this

section.

These steps are implemented as one activity in the AddStore.java file. There is a

ViewFlipper widget that allows the application to change between views within the

same activity. The steps are shown in Figure 3.44a – 3.44g.

 69

 (a) (b)

 (c) (d)

Figure 3.44 a,b,c,d) Steps 1-4 for adding a new store

 70

 (e) (f)

 (g)
Figure 3.44 e,f,g) Steps 5-7 for adding a new store

 71

3.7.8 Adding a new product

A registered user has the ability to add a new product into the ShopDroid database. This

function is available when the product was scanned or manually searched by barcode

and does not exist in the database yet. In this case the “Product Not Found” screen

appears with two options in the menu: refresh and add product (Figure 3.45).

Figure 3.45 Product not found screen

Adding a product is similar to adding new store described before, but simpler and

shorter. The user has to go through three steps. The first step is adding the name of the

product. In the second step, the user has to fill the product volume and choose a proper

unit from the list (kilograms, liters or pieces). At the moment, ShopDroid only uses the

metric system for the product units, in future revisions other measurement systems

could be taken into account. These two steps are obligatory. The last optional step is to

choose a picture for the product, which is exactly the same as adding or editing the

picture of the product and it is described in section 3.7.7. All steps are shown in Figures

3.46.

 72

 Figure 3.46 Steps for adding a new product

 73

3.8 Users

As mentioned before a user needs to be registered to get the full ShopDroid experience.

It helps to protect product information and reviews from spam robots or human with

bad intentions. User reputation points system helps to detect bad users. To have really

good price comparisons it is important to keep objectivity and eliminate users who

provide bad/fake information. There are several authentication scenarios, but the system

has to be secure and easy to use so the OAuth protocol was chosen.

3.8.1 OAuth authentication

Official OAuth specification describes the authentication process as follows [24]:

OAuth authentication is the process in which users grant access to their protected

resources without sharing their credentials with the Consumer. OAuth uses tokens

generated by the Service Provider instead of the user’s credentials in protected

resources requests. The process uses two token types:

Request Token:

Used by the Consumer to ask the user to authorize access to the protected resources.

The user-authorized Request Token is exchanged for an Access Token.

Access Token:

Used by the Consumer to access the protected resources on behalf of the user. Access

Tokens may limit access to certain protected resources. Service Providers should allow

users to revoke Access Tokens. Only the Access Token shall be used to access the

protect resources.

OAuth Authentication is done in three steps (Figure 3.47):

1. The Consumer obtains an unauthorized Request Token.

2. The user authorizes the Request Token.

3. The Consumer exchanges the Request Token for an Access Token.

 74

Figure 3.47 OAuth authentication flow1

OAuth nonce and timestamp

To prevent reply attacks the OAuth protocol defines nonce and timestamp

combination. Nonce is uniquely generated for each request, it helps Service

Provider verify that the request has never been made before. Timestamp is the

number of seconds since January 1, 1970 00:00:00 GMT. Timestamp needs to

have higher value than a previous request with the same nonce [24].

OAuth request signing

ShopDroid uses HTTP POST method to send OAuth parameters described in

Table 3.8.

1 http://oauth.net/core/diagram.png

 75

Table 3.8 OAuth signed request parameters [24]

oauth_Consumer_key: The Consumer Key.

oauth_token: The Access Token.

oauth_signature_method: The signature method the Consumer
used to sign the request.

oauth_signature: The signature

oauth_timestamp: Timestamp

oauth_nonce: Nonce

oauth_version: OPTIONAL. If present, the value
must be 1.0. Service Providers must
assume the protocol version to be
1.0 if this parameter is not present.
Service Providers’ response to non-
1.0 value is left undefined.

Sample ShopDroid application request parameters:

oauth_token="ca97f23e482cce2b6ac9683d2ce0656b04c758fc6"

oauth_Consumer_key="ba7c4903f1961c356886e4eb7141691a04bf54957"

oauth_version="1.0"

oauth_signature_method="HMAC-SHA1"

oauth_timestamp="1282773022"

oauth_nonce="-1446670766868377449"

oauth_signature="G%2F1XgGKTm7m7QUsWsgqwcHUhmoI%3D"

ShopDroid Service Provider supports all signatures methods specified by

OAuth: HMAC-SHA1, RSA-SHA1, PLAINTEXT, ShopDroid client uses the

HMAC-SHA1 method to sign requests. Signing a request is a process which

encodes the Consumer secret and the token secret into the oauth_signature

variable. During the signature process only oauth_signature parameter can be

modified. HMAC-SHA1 method calculates the digests value as a base64-encoded

string, using the signature base string as the text, Consumer secret and token secret

 76

separated by an ‘&’ character as the key. The OAuth specification defines the

signature base string as follows:

The Signature Base String is a consistent reproducible concatenation of the

request elements into a single string [24].

Verifying signature

To verify request’s HMAC-SHA1 signature the Service Provider takes parameters

provided by the Consumer and compares the oauth_signature value with the

calculated signature as described previously using the Consumer secret and token

secret stored in the database.

OAuth Server Provider implementation problem

The project uses 2be.pl hosting. There was a problem with HTTP Authorization

header - the PHP script could not access that header [25]. It occurs when PHP is

installed and working as CGI. The solution is as simple as creating a .htaccess file:

RewriteEngine on
RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

The above script rewrites HTTP Authorization header so it can be accessible by

reading a $_SERVER variable in the PHP script. This solution does not have any

influence on the OAuth protocol security level.

OAuth protocol security threads

One of main security threads is secure tokens and secrets exchange. The OAuth

specification does not provide any mechanism, only suggests using transport-layer

mechanisms such as TLS or SSL. Currently ShopDroid uses hosting 2be.pl server,

which supports neither TLS nor SSL, which means token and secret transmissions stay

unsecured from eavesdropping. The production server should have support for SSL or

TSL.

 77

3.8.2 Connecting user account in ShopDroid

To connect the ShopDroid application with the server (Service Provider) the

Consumer key and secret are needed. It can be obtained by going to

http://shopdroid.ggajewski.2be.pl/oauth/register.php (administrator privileges are

required) and filling the registration form as shown on Figure 3.48.

Figure 3.48 Register application form

The Consumer key and secret are generated only once for the application

and hard coded into the ShopDroid source code. Authentication is done in three

steps as told before:

 78

1. User clicks on “Let’s do it” button (Figure 3.49a), application retrieves the

Request Token from the server http://shopdroid.ggajewski.2be.pl/oauth/

request_token. The Request Token is valid for 60 minutes.

2. The Web browser opens the login site http://shopdroid.ggajewski.2be.pl/

oauth/logon (Figure 3.49 b). After successfully login, the user is redirected

to the authorization site (Figure 3.49c) http://shopdroid.ggajewski.2be.pl/

oauth/authorize to authorize the Request Token and the callback URL

shopdroid://done.

3. The application recognizes the callback and exchanges the authorized

Request Token with the Access Token http://shopdroid.ggajewski.2be.pl/

oauth/access_token. The access Token is saved into the application’s

SharedPreferences.

Authentication has to be done only once, when the Access Token is saved in

the application all the server requests are signed and the user can be easily

identified. To erase the token from the application memory, the user has to go to

settings and choose disconnect account. SharedPreferences is a good place

to keep the Access Token, as it can be accessible only from the owner’s

application. When users do not have a ShopDroid account, they can easily create a

new one by clicking on the “Create new account” link in the login page. Figure

3.50 shows the new user registration form. All of the above mentioned websites

are optimized to be displayed on mobile phones.

 79

 (a) (b)

(c)

Figure 3.49 a) ShopDroid connect account screen, b) ShopDroid login website, c) ShopDroid authorize

Request Token website

 80

Figure 3.50 ShopDroid register new account website

3.8.3 OAuth database structure

The OAuth server database consists of three tables: oauth_server_registry,

oauth_server_nonce, oauth_server_token.

oauth_server_registry - table containing seventeen fields, used to store information

about the registered Consumer. Includes the Consumer key and Consumer secret used

for verification of incoming requests, detailed information shown in table A.1.

oauth_server_token - table containing ten fields, used to store information about

request/Access Tokens. Includes user identification number which is returned when

verification is successful, detailed information shown in table A.2.

 81

oauth_server_nonce - table containing five fields, used to store the timestamp/nonce

combination, detailed information shown in table A.3.

3.8.4 ShopDroid User reputation points system

User reputation points are a simple system used for quick detection and blocking users

with bad intentions. Each user after the registration has zero points. Users with points

lower than zero are subject to be deleted by the administrator. Table 3.9 presents

scoring for different user actions.

Table 3.9 ShopDroid User actions and points

User action Points

Add new product +5

Add new store +5

Edit product price +2

Like product +1

Review product +7

Bad/spam review deleted by admin -15

3.9 Administrator module

ShopDroid has a simply administrator module to manage stores, products, users and

products reviews. The administrator module is the website:

http://shopdroid.ggajewski.2be.pl/admin. Only users with administrator privileges can

access this website after login. Figure 3.51 shows the main administrator page.

All links on the main page are self-explanatory. “View last get_product result” is

a link to the xml file - dump of last “get_product” response - useful for debugging.

Manage reviews is a page displaying all reviews which was reported by

ShopDroid users as spam sorted by the number of reports (Figure 3.52). Each review

 82

can be simply deleted or marked as good by selecting the corresponding checkbox and

clicking on the submit button.

Figure 3.51 Administrator module main page

Figure 3.52 Administrator module manage reviews page

Manage bad users page lists all users whose points score is below zero (Figure

3.53). User accounts can be deleted or points can be reset to zero.

Figure 3.53 Administrator module manage bad users page

 83

Manage reported products page shows a list of products which description was

reported as wrong. In columns “bad name” and “bad volumes” numbers in brackets is

the report’s total count (Figure 3.54). The product can be deleted, marked as good or

edited (Figure 3.55).

Figure 3.54 Administrator module manage reported products page

Figure 3.55 Administrator module edit product page

Manage reported stores page is equivalent to the manage reported product page

for stores (Figure 3.56).

Figure 3.56 Administrator module manage reported stores page.

Add store is a form page to add new stores (Figure 3.57).

 84

Figure 3.57 Adding new store

3.10 Database

As mentioned before the ShopDroid system uses two separate databases. The

PostgreSQL database stores all products and user data, the MySQL database OAuth

tokens.

The ShopDroid database consists of ten tables called: admins, likes, prices,

products, reported_products, reported_stores, reviews, reviews_spam, stores, users.

Each table contains an auto-increment primary key to ensure uniqueness, speed-up

records searching. A more detailed description for each table is shown below.

products - table containing seven fields, storing all product information, detailed

information shown in table A.4.

stores - table containing eleven fields, storing all store information, detailed information

shown in table A.5.

prices - table containing five fields, storing products prices in different stores, detailed

information shown in table A.6.

users - table containing seven fields, saving all user related information, detailed

information shown in table A.7.

 85

admins - table containing two fields, used to give administrator privileges to users,

detailed information shown in table A.8.

likes - table containing three fields, saving information about the user liking the product,

detailed information shown in table A.9.

reported_products - table containing four fields, used to store user reports about wrong

product information, detailed information shown in table A.10.

reported_stores - table containing eight fields, used to store user reports about wrong

store information, detailed information shown in table A.11.

reviews - table containing five fields, storing user product reviews, detailed information

shown in table A.12.

reviews_spam - table containing three fields, used to store user reports about product

review (marked as spam), detailed information shown in table A.13.

3.11 Handling multiple screen resolutions

There exist several different Android devices in the market, which can have different

screen resolutions. Therefore, when developing ShopDroid this was taken into account.

For instance, when designing the user interface, none of the size of the elements is

specified in pixels, which would lock the application only for certain resolutions.

Instead of pixels, density independent pixels (as described in section 3.3) were used.

This allows different elements to scale accordingly.

This was not the only technique used; the position of the interface elements is

defined relatively. For instance, a new element can be positioned to the right or below

another element. Also it is possible to make the size of an element to occupy the rest of

what is left of free space of the screen.

Android also provides the option to set manually the size of any graphic resource

such as icons. Inside the res folder, it is possible to add more drawable folders

 86

depending on the needs. This will make the platform to choose the correct graphic

resource depending on the device’s screen resolution. If none are present, Android will

auto-scale the graphic resource. ShopDroid uses this feature for the application icons,

and some graphics such as the ones that appear in the screen for locating stores.

In some cases, when the elements do not fit the screen without the need of

scrolling, it is possible to wrap all the elements inside a ScrollView widget, which

will allow the user to scroll and be able to see all the elements of the screen. This widget

is not necessary if a ListView widget is used. ShopDroid uses ListView widgets in

several parts of it.

 87

Conclusions

The project was successfully realized. A working system based on barcodes where users

can compare product prices was built. Also users can interact with the system by adding

new products, changing prices, or writing their opinions about a particular product. So

this is a system that allows the users to create its content. A good security model was

implemented to keep users credentials safe and to avoid data vandalism.

The client was made targeting the Android Operating System. The application is

fully working and uses Android devices’ geolocation features; as well it uses the camera

for barcode scanning. The application was thoroughly tested and performed quite well,

without freezing the user interface.

All this thesis objectives were fulfilled and even additional features were

implemented, such as locating stores and having a history of the searched products.

Unfortunately, there was not enough time to deploy the application (publishing it into

the Android Market) and test it in a wider audience.

Getting a products database in Poland was hard to do. Most of the stores do not

have any information about their products in their web sites. Only one store - Alma -

was found to have this important information. Therefore, to start a service like this,

would require close cooperation from several stores, and also having very engaged users

that could get this information into the service.

Developing for Android was not that easy. Some of the documentation is lacking

or not very clear. Also supporting all current versions of Android is problematic and

time consuming, one needs to start an emulator instance for each version. Supporting

the earliest Android version, which is 1.5, makes sometimes the user interface to behave

differently that how it is supposed to work. Some workaround needed to be made.

Hopefully, these legacy versions will disappear in the future and make the task much

easier if the updates not introduce any new problems.

For future releases some features could be added. One of these features could be

adding information about nutrition facts to the product screen, so users could know

which products are healthy for them and which not. Also, product ingredients could be

 88

added, this would be extremely helpful for users with any allergies. Another feature that

could be added would be price alerts. With this kind of feature, users could set alerts for

a specific product and a price threshold for the product, so that whenever the price for

this product will go lower than the threshold set, the user will get an alert about it.

Making a shopping list could be another option. This would allow users to choose

before shopping what products they need to buy and they could see in which store they

would spend the least money.

In the future one could think about monetizing the application. If there are plenty

of users, having some advertisement showing in certain parts of the application could be

a good source of revenue. Also, the advertisement could be better targeted towards each

user (advertising companies could pay more for this), since the application will know

the users’ location and which products they want to buy. Another option could be

having two versions: a free version and a paid version, which would have additional

features. If the users like the free version, they might be tempted to buy the paid one.

Also, a web site could be built for the service, letting any user access the service

from any browser. Having some kind of integration with a social service such as

Facebook could be a great idea too.

A total of 58 stores are in the database. The number of products, which have at

least one price, is 9405 and the total number of prices (most products have more than

one price) is 118660.

 89

References

[1] ComScore press release

http://comscore.com/Press_Events/Press_Releases/2010/9/comScore_Reports_Ju
ly_2010_U.S._Mobile_Subscriber_Market_Share

[2] ComScore press release
http://comscore.com/Press_Events/Press_Releases/2010/9/European_Smartphone
_Market_Grows_41_Percent_in_Past_Year

[3] Android Open Source Project
http://source.android.com/source/licenses.html

[4] Gartner press release
http://www.gartner.com/it/page.jsp?id=1434613

[5] Android Developer’s Guide
http://developer.android.com/intl/zh-CN/guide/basics/what-is-android.html

[6] Android Developers’ Guide
http://d.android.com/guide/topics/fundamentals.html#appcomp

[7] Android Developer’s Guide
http://d.android.com/guide/topics/intents/intents-filters.html

[8] Android Developer’s Guide
http://developer.android.com/intl/zh-CN/guide/topics/manifest/manifest-intro.html

[9] ZXing Open Source Project
http://code.google.com/p/zxing/

[10] Official PHP manual
http://www.php.net/manual/en/

[11] W.J. Gilmore Beginning PHP and PostgreSQL 8

[12] PostrgreSQL database
http://www.postgresql.org/about/licence

[13] Extensible Markup Language (XML)
http://www.w3.org/XML/

[14] OAuth Consumer And Server Library For PHP
http://code.google.com/p/oauth-php/

[15] Simple OAuth message signing for Java
http://code.google.com/p/oauth-signpost/

[16] RFC 5849 - The OAuth 1.0 Protocol

[17] Android Developer’s Guide
http://developer.android.com/intl/zh-CN/guide/topics/data/data-storage.html#pref

[18] Wikipedia
http://en.wikipedia.org/wiki/Barcode

[19] Roger C. Palmer The Bar Code Book: Fifth Edition

[20] Android Issues
http://code.google.com/p/android/issues/detail?id=1193

[21] Android Resources
http://developer.android.com/intl/zh-CN/resources/faq/framework.html#3

 90

[22] Eric W. Weisstein CRC Concise Encyclopedia of Mathematics, Second Edition
p. 1236

[23] Official Nexus One phone specifications
http://www.google.com/phone/static/en_US-nexusone_tech_specs.html

[24] OAuth Core 1.0 specification
http://oauth.net/core/1.0

[25] Web Hosting Articles
http://www.besthostratings.com/articles/http-auth-php-cgi.html

 91

Appendix A

Database Tables

The structure of the server database tables is shown here.

Table A.1 Table “oauth_server_registry” OAuth database

Column Type Integration relations Comments

osr_id int(11) primary key, not null auto-
increment
primary key

osr_usa_id_ref int(11) default - NULL user
identificatio
n number

osr_Consumer_key varchar(64) not null, unique Consumer
key

osr_Consumer_secret varchar(64) not null Consumer
secret

osr_enabled tinyint(1) default - 1, not null 0 -
Consumer
disabled, 1 -
Consumer
enabled

osr_status varchar(16) not null Consumer
status

osr_requester_name varchar(64) not null Consumer
name

osr_requester_email varchar(64) not null Consumer e-
mail

osr_callback_uri varchar(255
)

not null Consumer
callback url

 92

osr_application_uri varchar(255
)

not null Consumer’s
application
url

osr_application_title varchar(80) not null Consumer’s
application
title

osr_application_descr text not null Consumer’s
application
description

osr_application_notes text not null Consumer’s
application
additional
notes

osr_application_type varchar(20) not null Consumer’s
application
url

osr_application_commercia
l

tinyint(1) default - 0, not null if
Consumer’s
application
is
commercial

osr_issue_date datetime not null Consumer
registration
date

osr_timestamp timestamp default -
CURRENT_TIMESTAMP
, not null

timestamp

 93

Table A.2 Table “oauth_server_token” OAuth database

Column Type Integration relations Comments

ost_id int(11) primary key, not null auto-increment
primary key

ost_osr_id_ref int(11) foreign key - osr_id from
oauth_server_registry, not null

Consumer
registry
identification
number

ost_usa_id_ref int(11) not null user
identification
number

ost_token varchar(64) not null, unique token

ost_token_secret varchar(64) not null token secret

ost_token_type enum('request',
'access')

default - NULL, token type:
“request” or
“access”

ost_authorized tinyint(1) default - 0, not null 0 - tokn not
authorized, 1 -
token authorized

ost_referrer_host varchar(128) not null referrer host

ost_token_ttl datetime default - 9999-12-31 00:00:00,
not null

token expiration
date, default for
Access Token if
infinity

ost_timestamp timestamp CURRENT_TIMESTAMP,
not null

timestamp

 94

Table A.3 Table “oauth_server_nonce” OAuth database

Column Type Integration relations Comments

osn_id int(11) primary key, not null auto-increment primary key

osn_Consumer_key varchar(64) not null, unique Consumer key

osn_token varchar(64) not null, unique token

osn_timestamp bigint(20) not null, unique timestamp

osn_nonce varchar(80) not null, unique nonce

Table A.4 Table “products” ShopDroid system database

Column Type Integration
relations

Comment

product_id integer primary key,
not null

auto-increment primary key,
product identification number

product_name text not null product name

product_imgsrc character
varying(255)

 source of the product image, can
be null if there is no product
image uploaded, user name if
image was taken by user or web
url if image was found on a
website

product_volume character
varying(10)

 product package volume
number

product_volume_unit character
varying(2)

 product package volume unit.
Three units are allowed: l - liter,
kg - kilograms, p - piece

product_barcode bigint unique product barcode number which
can be found on package

product_added_by integer foreign key -
user_id from
users

user identification number who
added product

 95

Table A.5. Table “stores” ShopDroid system database

Column Type Integration
relations

Comment

store_id integer primary key,
not null

auto-increment primary key, store
identification number

store_name text store name

store_address text store address

store_lat double
precision

 store location latitude

store_long double
precision

 store location longitude

store_city character
varying(60)

 store location city name

store_logo character
varying(255)

 source of the store image, can be
null if there is no store image
uploaded, user name if image was
taken by user or web url if image
was found on a website

store_zipcode character
varying(8)

 store location zip code

store_phone character
varying(20)

 store phone number

store_opening text store business hours

store_added_by integer foreign key -
user_id from
users

user identification number who
added store

 96

Table A.6 Table “prices” ShopDroid system database

Column Type Integration relations Comment

id integer primary key, not null auto-increment primary key

product_id integer foreign key -
product_id from

products, not null

product identification number

store_id integer foreign key - store_id
from stores, not null

store identification number

price real not null price for the product with given
product_id in the store with given
store_id

price_added_by integer foreign key - user_id
from users, not null

user identification number who
added price

Table A.7 Table “users” ShopDroid system database

Column Type Integration
relations

Comment

user_id integer primary key,
not null

auto-increment primary key,
user identification number

user_name character
varying(20)

 user name

user_email character
varying(255)

not null user email

user_password character
varying(32)

not null user password

user_registration_date timestamp with
time zone

default -
now(), not

null

user registration date and
time

user_loc character
varying(5)

 user localization code, to
letters for language two
capital for localization i.e en-
GB

user_points integer default - 0 user points in ShopDroid
system

 97

Table A.8 Table “admins” ShopDroid system database

Column Type Integration relations Comment

admin_id integer primary key, not null auto-increment primary
key

user_id integer foreign key - user_id from users, not
null

user identification number

Table A.9 Table “likes” ShopDroid system database

Column Type Integration relations Comment

like_id integer primary key, not null auto-increment primary
key

product_id integer foreign key - product_id from
products, not null

product identification
number

user_id integer foreign key - user_id from users, not
null

user identification
number

Table A.10 Table “reported_products” ShopDroid system database

Column Type Integration relations Comment

reported_product_id integer primary key, not null auto-increment primary key

product_id integer foreign key -
product_id from

products, not null

product identification
number

reported_product_name integer not null number increased by one
when user reports wrong
product name

reported_product_volume integer not null number increased by one
when user reports wrong
product volume

 98

Table A.11 Table “reported_stores” ShopDroid system database

Column Type Integration relations Comment

reported_store_id integer primary key, not
null

auto-increment primary key

store_id integer foreign key -
store_id from

stores, not null

store identification number

reported_store_name integer not null number increased by one
when user reports wrong store
name

reported_store_opening integer not null number increased by one
when user reports wrong store
business hours

reported_store_address integer not null number increased by one
when user reports wrong store
address

reported_store_phone integer not null number increased by one
when user reports wrong store
phone number

reported_store_logo integer not null number increased by one
when user reports wrong store
logo image

reported_store_not_exist integer not null number increased by one
when user reports that store
does not exist

 99

Table A.12. Table “reviews” ShopDroid system database

Column Type Integration relations Comment

review_id integer primary key, not null auto-increment primary key,
review identification number

user_id integer foreign key - user_id
from users, not null

user identification number -
review author

review_text text not null review content

review_date timestamp with
time zone

default - now(), not null review submission time and
date

product_id integer foreign key - product_id
from products, not null

product identification
number

Table A.13. Table “reviews_spam” ShopDroid system database

Column Type Integration relations Comment

review_spam_id integer primary key, not null auto-increment primary key

review_id integer foreign key - review_id
from reviews, not null

review identification number

review_marked integer not null number increased by one when
user mark review as spam

