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Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy 

z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. 

z 2006 r. Nr 90, poz. 631 z późn. zm.): „Kto przywłaszcza sobie autorstwo albo 

wprowadza w błąd co do autorstwa całości lub części cudzego utworu al-

bo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo 

pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez 

podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo 

w postaci opracowania, artystyczne wykonanie albo publicznie zniekształca taki 

utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.”, a także uprze-

dzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy 

z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 

572, z późn. zm.) „Za naruszenie przepisów obowiązujących w uczelni oraz za 

czyny uchybiające godności studenta student ponosi odpowiedzialność dyscy-

plinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu 

studenckiego, zwanym dalej «sądem koleżeńskim»”, oświadczam, że niniejszą 

pracę dyplomową wykonałem osobiście, samodzielnie i że nie korzystałem ze źró-

deł innych niż wymienione w pracy. 

 

       ________________________ 
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Abstract 

Conventional, model-fitting based algorithms for lens distortion correction impose 

many assumptions upon modeled distortions, which may lead to inaccuracy. In this pa-

per such method was compared to own implementation of a nonparametric correction 

algorithm. Lowest obtained RMSE in both cases was equal to 0.4 pixels. Usage of the 

nonparametric algorithm, however, allowed to avoid typical errors, such as invalid 

model extrapolation. Additionally the algorithm was verified for a broader grade of 

cameras. 

 

Keywords — lens distortion, radial model, nonparametric, textured pattern 

 

Abstrakt 

Konwencjonalne algorytmy korekcji zniekształceń obiektywu oparte na dopasowaniu 

modelu nakładają na modelowane zniekształcenia wiele założeń, które mogą powodo-

wać niedokładność. W niniejszej pracy dokonano porównania metody konwencjonalnej 

z własną implementacją nieparametrycznego algorytmu korekcji. Najmniejszy błąd uzy-

skany podczas doświadczeń w obu przypadkach wynosił 0.4 piksela. Użycie algorytmu 

nieparametrycznego pozwoliło jednak na uniknięcie typowych błędów, takich jak nie-

właściwa ekstrapolacja modelu. Dodatkowo prawidłowe działanie algorytmu niepara-

metrycznego zostało zweryfikowane dla szerszej grupy aparatów. 

 

Słowa kluczowe — zniekształcenia obiektywu, model radialny, nieparametryczny,  

wzorzec teksturowy 
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Introduction 

Computer vision is a field of computer science that is still becoming increasingly popu-

lar, particularly due to ubiquitous cameras: in computers, smartphones, game consoles 

or drones. Popularity entails high demands for accuracy and robustness. 

 For many tasks a camera should be first calibrated, i.e. both its position in rela-

tion the scene (extrinsic parameters) and optical properties such as focal length or pixel 

skew (intrinsic parameters) should be measured. Extrinsic parameters allow to change 

coordinate system from one associated with the world to one associated with the cam-

era. Intrinsic parameters define how from such points an image is formed. 

 No camera is free of imperfections, however. They cause the camera's optical 

system to behave differently than expected, leading to distortions in images and videos 

alike. This greatly impedes many algorithms that require consistency of input images. 

 To mitigate this, a distortion correction can be carried out. Usually it is done 

during calibration, with distortion characteristics being treated as additional intrinsic 

parameters. "The goal of the distortion calibration is to find the transformation (or un-

distortion) that maps the actual camera image plane onto an image following the per-

spective camera model" [4]. Standard approach is to model this transformation using 

a function with adjustable coefficients. 

 This method had been used for decades with good results. In recent years, how-

ever, subpixel accuracy has become essential. Even small residual distortions can cause 

photogrammetry or 3D surface reconstruction from 2 images to fail. 

 Therefore other algorithms are studied, where the transformation can be any 

function within image domain. Such methods, for instance [9], are more complicated, 

but allow to model any distortion, regardless of its uniformity. 

 This paper aims to compare results of both methods, both quantitatively and qua-

litatively. Although this already has been researched in [25] by authors of [9], used pa-

rametric models had higher than usual number of degrees of freedom and tests have 

been performed using one DSLR camera. Therefore a standard model (Conrady-Brown) 

was selected for comparison and other camera types were chosen. 

 In order to perform this comparison, a nonparametric algorithm had to be im-

plemented, along with adjuvant means to measure image quality before and after correc-

tion. 
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 Paper is divided into 3 main chapters. First chapter contains theoretical introduc-

tion and state-of-the-art. Research methods and implementation details are elaborated in 

the second chapter, along with select initial results that illustrate many early develop-

ment stage problems and their solutions. Final obtained results are given and com-

mented in the concluding chapter. 
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1. Subject of Lens Distortion 

This chapter is intended to introduce mathematical elements of computer vision, in con-

text of the phenomenon of geometric distortion. Theoretical relationships are compared 

with real camera design. Finally, methods for distortion correction that can be found in 

the literature are overviewed. 

1.1 Projective geometry 

Projective geometry [11] allows to map Euclidean space points ℝ
3
 to ℝ

2
 plane (projec-

tive plane), mimicking the functioning of human eye or a camera objective, as depicted 

in Figure 1.1. 

 The geometry is presented in Figure 1.2. Coordinate system XYZ is associated 

with camera, while xy describes the image. Image plane π is parallel to axes OX and OY 

and perpendicular to axis OZ. Distance between π and center point O is denoted as f 

(focal length). In order to avoid image inversion, it is assumed that image plane occu-

pies the same half-space as Euclidean points that are being projected. Axis OZ intersects 

image plane in P (principal point). Every Euclidean point Q can be connected to the 

camera center point with ray QO. If ray intersects π, Q's projection is defined by the 

point of intersection Q' [13, 27].  

 

 

 

 

 

 

 

 

 

 

Figure
1
 1.1: Motivation for projective geometry 

 

 

                                                
1
 source: http://www.hcc.commnet.edu/artmuseum/anseladams/graphics/pinhole.gif 
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1.1.1 Homogenous coordinate system 

To perform transition between Euclidean and image coordinates, homogenous coordi-

nate system is used. It can describe points at infinity, which are not a part of Euclidean 

space, and allows to express relationships between points with the means of matrix mul-

tiplication. 

 Following notation from Figure 1.2, one may observe that not only Q, but also 

every
2
 other point lying on ray QO will be projected as Q'. On the other hand, ray QO is 

a line that passes through point ( )0,0,0=O . Therefore it can be concluded that every 

point projected as Q' has form (1). 

 ( ) ( ) 0,,,,, ≠⋅= ttzyxzyx QQQ  (1) 

 where: x, y, z – Euclidean coordinates of a point whose projection is Q'; 

  xQ, yQ, zQ – Euclidean coordinates of point Q; 

  t – real parameter 

  

 Homogenous system is based on the principle of (1). Transition from Euclidean 

to homogenous coordinates is done by adding a fourth coordinate equal to unity (2). 

Two homogenous points are equal (i.e. represent the same line consisting of Euclidean 

points mapped to one common point on projective plane) if and only if there exists 

0≠k  satisfying (3). Conversion back to the Euclidean system is described by (4). 

 ( ) ( )1,,,,, zyxzyx →  (2) 

                                                
2
 excluding point O, which is not a part of homogenous space 

Figure 1.2: Image formation 



Subject of Lens Distortion 10 

 
21212121

,,, kttkzzkyykxx ====  (3) 

 where: k – real parameter 

 ( ) 0,,,,,, ≠







→ t

t

z

t

y

t

x
tzyx  (4) 

  

 It should be noted that if 0=t , then homogenous point ( )0,,, zyx  lies on the 

plane at infinity and cannot be expressed with Euclidean coordinates. 

1.1.2 2D image transformations 

If Euclidean points lie on a plane and are to be converted to homogenous coordinates, it 

can be assumed without loss of generality that 0=z  and thus z coefficient can be omit-

ted. This is usually the case in the field of camera calibration [30]. 

 If all homogenous image points are multiplied by a matrix H, a transformation 

(5) will be applied to the image. 

 
( ) ( ) ( )tyx

H

hhh

hhh

hhh

tyxtyx ,,',',':,,

333231

232221

131211

44 344 21

















=∈∀ π  
(5) 

 where: x', y', t' – homogenous coordinates of transformed point x, y, t  

 

 Depending on form of H, following transformation types can be distin-

guished [11], ordering from less complex: 

� isometry — rotation and translation, 

� similarity — isometry with scaling, 

� affine — non-isotropic scaling (skew), 

� homography — projective transformation; an example is shown in Figure 1.3. 

 

 

 

 

 

 

 

 

 Figure 1.3: Example of projective transformation 
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 When camera captures an image, in general case, a projective transformation is 

applied to the points of the photographed scene. Although neither lengths nor angles are 

preserved, point collinearity is an invariant property of this transformation. This trait is 

used to evaluate efficiency of algorithms that compensate geometric distortion
3
 of cam-

era lens. It is usually computed as RMS (Root Mean Square) of distance between points 

that are known to be collinear and their regression line. 

1.1.3 Pinhole camera model 

Basic principle of a pinhole camera is shown in (6). Camera matrix is solely a product 

of extrinsic and intrinsic parameters and has form (7) [9]. 

 Cxy ~  (6) 

 where: x – Euclidean point in homogenous coordinates (4-tuple); 

  y – homogenous image point corresponding to x (3-tuple); 

  C – 3x4 camera matrix [11]; 

  ~ – equality between homogenous points 

 
[ ]TIR

K

ccfc

ccsfc

C
yy

xx

−

















= |

100

0

444 3444 21

 
(7) 

 where: K – 3x3 matrix composed of intrinsic parameters; 

  fck –focal length along axis k;   cck – k-coordinate of principal point; 

  s – skew factor;   R – 3x3 3D rotation matrix; 

  T – Euclidean point representing camera center (3-tuple) 

1.2 Camera anatomy 

Described camera model is linear [10, 16, 21], due to usage of homogenous coordi-

nates [11]. However, since cameras consist of imperfect components, in reality they 

evince nonlinear behavior [29]. 

 As one can observe in Figure 1.4, light rays must travel through lenses in order 

to reach image sensor, which can be either a photosensitive film in analogue cameras or 

a CCD (Charge Coupled Device) in digital ones. The lenses can be deformed as well as 

misaligned. Image sensor also is not perfectly perpendicular to optical axis. This causes 

ray trajectories to curve from expectations and thus introduces distortions. 

                                                
3
 The phenomenon of geometric distortion is explained below in section 1.2. 
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Figure
4
 1.4: Analogue camera outline; digital cameras feature a CCD in place of film 

 

 There are other causes for nonlinearities, such as quantization noise and color 

aberration [14]. Moreover, ultra wide angle cameras adhere to other (non-perspective) 

geometries [23, 24]. They are out of the scope of this paper. 

1.3 Standard distortion model 

There is no distortion model based strictly on a physical basis [25]. Widely 

used [14, 15] Conrady-Brown model [8, 29] has following assumptions: 

1. There is a distortion center, which is neither principal point, nor geometrical im-

age center. Although those points are usually situated in proximity, they cannot 

be assumed to be equal [12]. Every line passing through distortion center is not 

distorted [26]. 

2. Pixel positions are distorted by two independent factors: tangential distortion 

and radial distortion. 

3. Tangential (decentering) distortion is modeled by (8) [19]. Due to this factor be-

ing usually smaller than radial component, it is sometimes omitted [4]. 

 
( )[ ]

( )[ ]



+++=

+++=

xypyrpyy

xrpxypxx

corrected

corrected

2

22

1

22

21

22

22
 (8) 

where: x, y – pixel coordinates;   r – distance from distortion center; 

 pi –tangential distortion coefficients 

 

4. Radial distortion is represented by (9). The radial function ( )rf  is frequently 

modeled with an even-order polynomial [12], such as (10).  

                                                
4
 source: http://www.mauitroop22.org/merit_badges/images/camera.jpg 
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( )

( )
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corrected

corrected
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 ( ) 6

3

4

2

2

1
1 rkrkrkrf +++=  (10) 

where: x, y – pixel coordinates;   r – distance from distortion center; 

 ki – radial distortion coefficients 

 

 There also exists plethora [26, 25, 16] of models using other functions, 

notably: rational [3], FOV [4] (Field of View), division [7], cubic rational [10] 

and rational polynomial [17] model. The aim is to choose a function that is con-

sistent with given camera type, but also uses as few coefficients as possible. 

1.3.1 Distortion correction with standard model 

In order to rectify image with this model, distortion coefficients must be calculated, as 

well as other camera intrinsic parameters. Level of RMSE (RMS Error) reported in lit-

erature commonly varies between 0.1 px and 1 px [4, 7, 30]. The algorithm [1, 13] can 

be summarized: 

1. Make at least ten [19] photographs of a planar pattern, in different posi-

tions [30]. If photographs are too similar, computations will become numerically 

unstable [17]. Popular pattern is a checkerboard, depicted in Figure 1.5. Camera 

settings, particularly zoom and focal length, must not be changed, lest distortion 

is inconsistent between photographs. 

 

 

 

 

 

 

 

 

 

 

 

2. Extract characteristic points, such as intersection points or figure vertices, possi-

bly with subpixel accuracy. 

Figure 1.5: A popular checkerboard pattern 
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3. Use a closed-form solution, such as DLT [11] (Direct Linear Transformation), to 

calculate initial intrinsic camera parameter values. This step ignores distortions. 

4. Perform iterative nonlinear optimization of an objective function. Because val-

ues obtained in step 3 are usually close to optimal, convergence to a local mini-

mum is avoided [13]. In case distortions are extremely severe, complexity of this 

step can rise [20]. 

1.4 Nonparametric approach 

Conrady-Brown model is very popular and has many variations tailored for different 

needs, e.g. for wide angle cameras [3]. Nevertheless, it contains flaws that in some cases 

may be critical. The assumption that distortion can be modeled with a simple radial 

function is not always correct. There are algorithms not making such assertions, or mak-

ing them to a lesser extent. 

 In [12] a non-iterative radial method correction is proposed, where only assump-

tion about the radial function is its monotonicity. Similarly to standard model, a calibra-

tion grid if required. Additionally authors provide a method of finding distortion cen-

ter — crucial issue if only radial component is considered. 

 More complex solution is considered in [25], where distortion is compensated by 

2D polynomials in image domain. It is argued that despite high order of used polynomi-

als (highest tested being 15th), their coefficients can be computed linearly. Over-fitting 

can be avoided as long as there is a large number of control points. 

 Very elaborate nonparametric algorithm is introduced in [24]. In order to better 

suit ultra wide angle cameras (140°–220°), stereographic projection model is used in-

stead of perspective projection. Calibration rig consist of numerous black balls of vary-

ing sizes. 

 Amidst these methods Grompone von Gioi et al. [9] algorithm was selected for 

implementation and analysis. Its main advantage over other nonparametric algorithms is 

simplicity of calibration rig, especially in comparison to [24]. 

1.4.1 Grompone von Gioi et al. algorithm outline 

The algorithm requires an image of a textured pattern, such as the one presented in 

Figure 1.6. The following steps should be taken: 

1. Take 2 slightly different images of the planar textured pattern. Camera settings 

must not be changed while images are being taken. 
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2. Extract keypoints from the pattern and its photographs using SIFT [18] (Scale-

Invariant Feature Transform) feature detection algorithm. 

3. Find correspondences between pattern and photographs' keypoints with a de-

scriptor matching algorithm. Match pairs constitute a sparse reverse distortion 

field (i.e. for each match pair there exists an affine transformation that locally 

maps pattern pixels to photography pixels). 

4. Filter outlier matches using loop validation: 

a. Project first photograph match points through second photograph's sparse 

reverse distortion field into pattern domain. 

b. Estimate homography between projected points and first photograph's 

pattern match points using RANSAC [6] (RANdom SAmple Consensus) 

algorithm. 

c. Discard matches marked as outliers by RANSAC. 

d. Discard second photograph. 

5. Find triangulation of pattern match points using Delaunay algorithm. 

6. Calculate affine transformation from pattern match points to scene match 

points for every triangle. 

7. Compute displacement vector for every pixel inside triangles to get dense re-

verse distortion field. Discard border pixels lying outside the triangulation's 

perimeter. 

8. Apply resulting displacement field to the photography in order to rectify it.  

 

  

 Theoretical formulas that allow successful image rectification are as follows. 

Since there are distortions, camera matrix has form (11) [9] instead of (7). Field D does 

not change as long as camera settings are constant. Homography H is a result of camera 

position in regard to pattern plane (any 3D translation and rotation) when calibration 

photograph for the algorithm was taken. The algorithm allows to estimate only DH; 

D and H are unknown individually. Application of ( ) 1−

DH  to a distorted image cancels 

out distortions, but introduces a homography H
-1

. The homography transforms camera 

into a virtual pinhole camera, whose parameters no longer have physical meaning. 

 [ ]TIDHKRC −= |ˆ  (11) 

 where: D – 2D vector field in image domain representing distortions; 

  H – 3x3 homography matrix 
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 After applying feature matching there is relationship (12) [9] between match 

points. 

 IuuIvv
uIDHvIDH == ,  (12) 

 where: v – 1st photograph; 

  u – 2nd photograph; 

  Hk – homography matrix H for photograph k; 

  Ik – match point on the pattern; 

  kI – corresponding match point on photograph k 

  

 Principle of the loop validation is shown in (13) [9]. Points vI, having form (12), 

are projected into pattern by applying ( ) 1−

u
DH . The relationship between such projec-

tions and Iv is a homography Hu
-1

Hv. No additional distortions are present. 

 ( ) ( )
vvuvvuIuuv
IHHIDHDHvDHI

111 −−−

===  (13) 

 where: Iuv – projection of vI through v's distortion field 

 

 The algorithm was examined by its authors — RMSE after rectification was 

reported to be equal to 0.08 pixels. This method was also used as a benchmark for mod-

el-based algorithm comparison in [25]. However, in the papers only one camera is cali-

brated and in both cases it is a high-end DSLR camera. Thus it is unknown how well 

does the algorithm correct images captured by inexpensive cameras. 

  

 

 

 

 

 

 

 

 

Figure 1.6: Textured pattern used in [9] 
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2. Used Distortion Correction Methods 

This section describes test rig along with reasons for particular choices. Cameras were 

designated for particular figures so that presented issues would be most noticeable. Pho-

tographs used to generate figures were taken during early stages of research and are not 

included on the CD-ROM. Details of the two analyzed algorithms are elaborated: 

1. The parametric correction algorithm [19]. 

2. The nonparametric correction algorithm based on [9]. 

2.1 Software environment 

Python 2.7.10 was chosen as programming language for both algorithms. Key features 

that lead to this choice were: availability of the OpenCV library as well as a MATLAB-

like numeric library (NumPy) and Python's rapid development capabilities. OpenCV 

version 2.4.11 was used, due to absence of SIFT in version 3.0. The work resulted in 

package containing over 1600 lines of code. It features following classes: 

� Radial — a wrapper for OpenCV correction, 

� NonparametricCorrection — implementation of the nonparametric correc-

tion algorithm, 

� RMS — a module for line straightness evaluation. Two types of patterns can be 

photographed and analyzed to calculate RMSE: 

o Checkerboard — same as for OpenCV calibration. Corners are extracted 

and fitted into vertical and horizontal lines. Whole board must be visible. 

o Straight line — a single continuous line (a photograph of this pattern is 

depicted in Figure 2.1). Using Canny [2] edge detector, both edges of the 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: Sample photograph of the straight line pattern 
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line are extracted. Outliers are filtered with hit-or-miss transform, using 

8 binary signatures. Left points are compared with their regression line. 

For reliable error estimation, multiple images should be used, each con-

taining the line in different region of the field of view. It should be noted 

that robust line detection was not the main focus of this paper, therefore 

it is not foolproof and each result requires manual countercheck. 

2.2 Experimental setup 

Although distortion correction can be used in photography solely for visual enhance-

ment, it is mainly used in computer vision. Among applications of computer vision 

there are, for instance, surveillance video interpretation or endoscopic imaging [23]. 

Hence it cannot be presupposed that camera is of high quality. Therefore both algo-

rithms were tested on a wide range of photographic devices, as shown in Table 2.1. 

 Setups #1–#5 were thoroughly analyzed. In setup #6 the camera was unable to 

focus on single line pattern and therefore RMSE could not be measured. If the pattern 

had been situated further from the camera, it would have been focused, but the line 

would not have passed through whole image as required. Setup #7 was available only 

for early tests of the second algorithm. The pattern was photographed on monitor, with 

camera situated on a tripod. Nonetheless, these initial results are noteworthy. 

 Lanczos interpolation over 8x8 pixel neighborhood was used for rectifications. 

2.2.1 Decisions based on initial results 

Initially patterns were displayed on a monitor, ensuring pattern flatness. This approach 

was used in [26] with excellent outcomes. However, most cameras, particularly setup 

#5, performed poorly. Photograph of monitor displaying the pattern is presented in 

Figure 2.2 — extreme vignetting can be observed in image corners. Therefore another 

approach was taken and patterns were printed. Offset A4 paper was selected for its stiff-

ness. Then prints were fixed onto clip frame glass with spray adhesive. 

 For parametric model a 10x7 checkerboard (i.e. with 10 horizontal and 7 vertical 

intersection points) was printed. It was already featured in Figure 1.5. More dense 

checkerboards were used initially, but they were not reliable in conjunction with avail-

able cameras. The shorter square edge, the less precise corner search, as shown in 

Figure 2.3, where a denser board (49x32) was used. Four corners found by OpenCV are 

marked as red pixels. It can be observed that their positions are inconsistent. 
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Table 2.1: Tested cameras 

Setup Device name Camera type Resolution [px] 

#1 Canon Legria FS200 camcorder 1024x768 

#2 Creative VF0420 low-end webcam 800x600 

#3 Konica Minolta DiMAGE A200 bridge camera 3264x2448 

#4 Nokia E90 cell phone 2048x1536 

#5 Genius WideCam 1050 wide angle webcam 1280x1024 

#6 Nokia E9 smartphone 3264x2448 

#7 Olympus E520 DSLR camera 3648x2736 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Image of monitor, with imaging software watermark; setup #5 

Figure 2.3: Magnification of one checkerboard square; setup #3 
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 RMSE measurements were carried out with two patterns featuring a single line. 

Lines varied in thickness, because there was a possibility that either: a line too thick 

would be detected as 4 edges (due to effects of camera processing), or a line too thin 

would not be detected at all. 

 Initial test have shown that worse cameras did not perform well with a highly 

detailed textured pattern. There were too few feature matches, which resulted in discon-

tinuous reverse distortion field. Most notable results are depicted in Figure 2.4. Hence 

three textured patterns were chosen for nonparametric algorithm, each with different 

detail level. During final measurements usage of the most detailed one gave satisfactory 

results only in setup #5. 

 

 

 

 

 

 

 

 

 

 

 

 Apart from setup #7, all photographs were taken by the window on a foggy day, 

when sunlight was scattered, so as to provide illumination as uniform as possible. Pat-

terns were laid down and cameras were moved around them. For each fully analyzed 

setup there was taken following number of photographs: 14–23 of chessboard, 19–40 of 

line pattern and 4–6 of textured pattern. 

2.3 Parametric algorithm 

Parametric correction was done by using following OpenCV functions: 

findChessboardCorners(), cornerSubPix(), initCameraMatrix2D(),     

calibrateCamera() and initUndistortRectifyMap(). Then resulting distor-

tion field was used to rectify images with remap() function, which transforms the im-

age according to (9). The mapping can be visualized as in Figure 2.5, similarly to [1].  

Figure 2.4:Matches between pattern and image points, defining the reverse distortion field; setup #2 

(a) detailed pattern (138 matches) (b) simpler pattern (565 matches) 
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 ( ) ( ) ( )( )yxmapyxmapsrcyxdst
yx

,,,, =  (14) 

where: x, y – pixels; mapk – displacement map for coefficient k; 

 src – input (distorted) image; dst – output (rectified) image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1 Verification 

Since aforementioned OpenCV functions are an implementation of [1], Camera Cali-

bration Toolbox for Matlab was used to verify select setups. Because of tedious manual 

grid corner extraction procedure, not every setup was verified. Outcomes for setup #1 

were collected in the Table 2.2. The parameters are: focal length (fcx, fcy), principal 

point location (ccx, ccy), radial (k1, k2, k3) and tangential (p1, p2) distortion coefficients. 

Uncertainties were computed as triples of the standard deviations (99.73% confidence 

level).  

 It is notable that for almost all coefficients their absolute values are smaller than 

uncertainties, especially for sixth order radial coefficient k3. Had been only the Toolbox 

used, this coefficient would have been set to 0 and calculation would have been redone, 

Figure 2.5: Mapping resulting from parametric correction; setup #1; 

vectors connect distorted pixel positions with their undistorted counterparts; 

contours mark areas with constant vector length 
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most likely resulting in better calibration. The OpenCV implementation, however, does 

not return any information about parameter uncertainties. So the goal of verification was 

just to check whether OpenCV functions were used adequately and not whether their 

default behavior produced best results possible. 

 Results from OpenCV are within reported uncertainties, so it can be concluded 

that the library has been used correctly. 

 The Toolbox allows additional visualizations. For example, Figure 2.6 depicts 

camera extrinsic parameters for each of the supplied photographs. 

 

Table 2.2: Verification of calibration results; setup #1 

OpenCV Camera Calibration Toolbox 
parameter 

value value uncertainty 

fcx 1313.47 1313.55 1.86 

fcy 1311.39 1311.42 1.85 

ccx 515.52 515.58 2.32 

ccy 396.43 396.12 1.80 

k1 -2.083e-1 -2.100e-1 2.259e-2 

k2 1.125e-1 1.372e-1 3.836e-1 

k3 6.461e-1 5.705e-1 1.939e+0 

p1 3.690e-4 3.265e-4 2.893e-4 

p2 -2.117e-4 -2.069e-4 3.202e-4 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Camera positions (piramids) in relation to the checkerboard; setup #1 
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2.4 Nonparametric algorithm 

Because Grompone von Gioi et al. algorithm description in [9] is terse, analyzed im-

plementation differs in details from the paper. This was an opportunity to inspect addi-

tional input options and scenarios. 

  First of all, it was observed that for some photographs the feature match distri-

bution was unbalanced between pattern regions. For instance in Figure 2.7 there are 3 

regions with hardly any keypoints. While SIFT algorithm can be set to higher sensitivity 

to features, its time complexity
1
 and memory consumption are high (see section 3.3.3). 

Additionally, it would be impractical to search for more features in areas that already 

are replete. Thus after first feature detection, images were partitioned into rectangular 

chunks and a more sensitive SIFT was repeated only on select chunks. This step was 

named chunking. 

                                                
1
 More precisely, time complexity of the descriptor brute-force matcher is high. 
2
 Photographed pattern consists of images whose copyrights belong to: R. Grompone von Gioi, P. Mon-

asse, J.-M. Morel, Z. Tang, P. Kratochvil, B. Reynolds, Spiral Graphics Inc., plaintextures.com,         

textureofnewyork.com, A. Kuzniatsou and textureshot.com. 

Figure 2.7: Keypoints (orange) found in photograph
2
; setup #3 
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 Secondly, there was the issue of outlier removal. After feature matching, there 

are regularly some matches that do not correlate with real correspondences. They can be 

observed in Figure 2.8 as (mostly) long lines that do not follow the tendency. Basic me-

thod used to filter out bad matches was a Lowe ratio test, proposed in [18]. It was not 

enough, however. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 If there existed a homography between the pattern and photograph (i.e. if there 

were no distortions), this task could be accomplished with RANSAC (RANdom SAm-

ple Consensus) algorithm [6]. However, because distortions are present, RANSAC 

would also discard not only outliers, but also many valid matches from highly distorted 

image regions (usually borders). 

 Solution to this problem was presented by algorithm authors and denoted as loop 

validation [9]. A second photograph of the same pattern, slightly shifted, is also ana-

lyzed. Every match point on the pattern can be projected back into pattern domain by 

reverse distortion field of the second image. Such projection introduces additional arbi-

Figure 2.8: Matches between pattern points and image points, with outliers; setup #3 
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trary homography, but nullifies distortions, as shown in section 2.4. Thus RANSAC can 

finally be applied. 

 The projection was implemented with bivariate B-spline interpolation [22]. For 

every match of a pattern point, its 18 closest neighbors on second image were selected. 

To avoid the influence of outliers present in second image, in total 8 neighbors with 

most extreme displacement vector values were rejected. Remaining 10 were used for 

interpolation. After applying loop validation to both images, one with more remaining 

matches was singled out for further processing. 

 Finally it transpired that reverse distortion field after piecewise affine interpola-

tion was still visibly discontinuous between triangles. Moreover, every outlier not elim-

inated by loop validation produced an unacceptable artifact. Modulus of such field is 

depicted in Figure 2.9. Hence three smoothing strategies were examined: 

1. Least squares low-order 2D polynomial fitting. 

2. Incremental Gauss filtering. 

3. Single Gauss filtering preceded by nearest-neighbor interpolation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Modulus of a jagged reverse distortion field; setup 4; 

lowest values are drawn with black, NaNs — with green 
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 Gauss filtering replaces each matrix value with a weighted mean of its neighbors 

values. If any of neighbors is equal to NaN, this value will propagate. Thus had been 

reverse distortion field simply filtered, its area would have shrunk. Therefore in 2. a set 

of gradually smaller filters was used to fill out areas left by larger filters. In 3. the bor-

der area was filled by nearest neighbor interpolation, one Gaussian filter was applied 

and then original border was reset to NaN. 

 After smoothing and image rectification there were observed additional strong 

distortions on borders. This effect was attributed to triangulation. A product of triangu-

lation is shown in Figure 2.10. Triangles near the perimeter tend to be unusually oblong. 

Since local affine transformation is constant within each triangle and should differ mi-

nimally from neighboring transformations, lengthy triangles introduce deformations. To 

resolve this issue, border triangles of side-to-height ratio exceeding a threshold were 

rejected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Pattern match points triangulation; setup #6; 

each triangle is denoted by a random color 
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2.4.1 Verification 

 Because no publicly available implementation of the algorithm was found, pre-

cise result verification was impossible. A verbose approach was taken instead and every 

algorithm step was documented. For instance, in Figure 2.11 randomly chosen 64 

matches are presented. This form is more visually appealing than form of matches 

shown in Figure 2.4 and Figure 2.8, as it can be plainly seen that match points do corre-

spond with each other. It confirms that feature matching was implemented correctly. All 

output images are described in detail on the CD-ROM (see Appendix B). 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Matches between pattern (left bottom, right top) and photograph (right bottom);  

images are laid out so that horizontal and vertical components 

of correspondences are visible separately; setup #5 
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3. Discussion of Results 

In this chapter results of both analyzed algorithms are presented and interpreted. They 

are based on final photographs, if not stated otherwise. 

 As already explained in Chapter 2, RMSE assessment was not flawless. There 

were cases of line edges fusion or faulty corner detection, the former due to edges being 

situated too tightly and the latter due to corners being placed too close to image border. 

Such images were manually excluded from being processed. Hence number of photo-

graphs with detected features varies between algorithms for each setup. For other im-

ages ROIs (Regions Of Interest) had to be specified, so that paper edges or background 

features would not be detected instead of intended pattern line. 

3.1 Straightness of original images 

Before any algorithm can be appraised, original photographs were examined to estimate 

room for improvement. This step seems to be frequently omitted in the literature. 

 Results are presented in Figure 3.1. Both checkerboard (checker horizontal, 

checker vertical) and single line (lines horizontal, lines vertical) patterns were used for 

plots depicted in the left column. Same checkerboard images that were applied later for 

parametric calibration were used. As far as single line pattern is concerned, the pattern 

itself was situated roughly perpendicularly to optical axis and only lines passing hori-

zontally or vertically through image were photographed. It was observed that this way 

quantization error was lower and outlier (line "appendices") elimination was easier. 

 For each control image, the RMS error value is calculated as RMS distance from 

respective regression lines of all points detected in the image. In case of checkerboard 

images a distance is calculated twice for each corner point: once for horizontal regres-

sion line and once for vertical. In single line images points of both edges are taken into 

account, each edge compared with its own regression line. Image index refers to image 

processing order and can be used, in conjunction with right log file, to identify detailed, 

per-image results. 

 In the right column a course of one line from a single line pattern photograph is 

shown, with both edges visible. Longer edge is colored with darker color. Edge points 

are ordered by their distance from image border corresponding to their orientation. Each 

line selected for the right column had highest RMSE among setup's control images and 

also was properly detected in later steps (after rectifications). 
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(a) Per-image RMSE; setup #1 (b) Most curved line; setup #1 

(c) Per-image RMSE; setup #2 (d) Most curved line; setup #2 

(e) Per-image RMSE; setup #3 (f) Most curved line; setup #3 

Figure 3.1 a)–f): RMSE of original images 
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 Same layout is used later in Figure 3.6 and Figure 3.15. The image index values, 

however, do not represent same control images between those figures, because after 

rectifications some control images were not properly processed and had to be discarded. 

On the other hand, for every setup the same single line pattern image was used in the 

right column, so that they could be directly compared. 

 It is noticeable that detected edges do not constitute smooth curves in most 

cases. This phenomenon is discussed later. 

 In case of setups #1, #2 and #4 initial distortions were fairly low, with maximal 

absolute error not exceeding 7 px and most per-image RMSE not exceeding 2.5 px. 

(i) Per-image RMSE; setup #5 (j) Most curved line; setup #5 

(g) Per-image RMSE; setup #4 (h) Most curved line; setup #4 

Figure 3.1 g)–j): RMSE of original images 
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Setup #5 is a wide angle camera, therefore large error was foreseeable. High values re-

ported for setup #4 were puzzling, however, especially considering that distortions were 

not evident on photographs (see Figure 3.2). In order to explain this phenomenon, im-

age resolution should be checked. Setup #3 photographs are approximately 2.55 times 

wider and 2.4 times higher than setup #5 photographs, so their calculated RMSE, espe-

cially before rectification, should not be directly compared.  

 A better metric, relative to image dimensions, is proposed in (15). Final RMSE 

(calculated as RMSE of edges and checkerboard corners detected in all control images) 

values are collected in Table 3.1 and their corresponding ρ values. 

 
[ ]

[ ]
3

10⋅=

pxd

pxRMSE
ρ  (15) 

 where: RMSE – total RMSE computed for all control images; 

  d – maximal image dimension 

Table 3.1: Total RMSE in absolute and relative values 

Before rectification Parametric algorithm Nonparametric algorithm 
Setup 

RMSE [px] ρ RMSE [px] ρ RMSE [px] ρ 

#1 1.38 1.35 0.38 0.37 0.39 0.38 

#2 1.34 1.68 0.43 0.54 0.40 0.50 

#3 8.29 2.54 0.41 0.13 0.46 0.14 

#4 1.62 0.79 1.73 0.84 0.92 0.45 

#5 6.68 5.22 1.25 0.98 0.38 0.30 

 

 

 

 

 

 

 

 

 

 

 

 

 It can be observed in Figure 3.1 that level of errors in checkerboard images was 

rather constant in all setups and was noticeably lower than in line images. This is be-

Figure 3.2: Photographs of the single line pattern, featuring most curved line 

(a) Setup #5 (b) Setup #3 
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cause a line can be situated arbitrarily close to image border (where distortions are usu-

ally highest), while nearly entire checkerboard is always in the image center. For this 

reason checkerboard alone is not a good tool for straightness evaluation (hence setup #6 

was not included in the figure). 

 It is, however, a source of other valuable information, apart from its obvious role 

in the parametric algorithm calibration. Compelling checkerboard-based plots were 

found when the board was parallel to the image plane and was not rotated. Parabolic, 

smooth curve shapes observed in the Figure 3.3 (a) might suggest that distortion has 

a uniform nature and therefore could be modeled parametrically. This phenomenon was 

observed to a moderate degree in setup #1, #2, #3 and #5. In setup #4 and #6 no such 

shapes were visible. This indicates that either distortion is irregular, or corner extraction 

was not precise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Parametric algorithm 

General results of the parametric correction are depicted in Figure 3.4, where RMSE 

was calculated basing on all edge and corner points found in all control images. Setup 

#1, #2 and #3 have been corrected by the algorithm to acceptable values (comparing to 

the state-of-the-art), with setup #3 having impressive relative improvement of 95%. 

While setup #5 has improved, final outcome is still distorted. Setup #4 has actually 

worsened. 

 

Figure 3.3: Plots of corner distance for board parallel to the image plane and not rotated; 

grid points are ordered by their distance from relevant image border; 

RMSE measurement is based on all grid points 

(a) Setup #3 (b) Setup #4 
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 It can be stated that calibration has failed for setup #4. Not only are rectified 

images worse, but also tangential distortion component dominates over radial, which is 

unusual. The rectification field has been depicted in Figure 3.5 (a); same relationship 

can be recognized for setup #6 in Figure 3.5 (b). It is notable that they are both compact 

phone cameras. 

 In case of setup #4 there was also autofocus, which could not be switched off, 

and might have contaminated measurements, as noted in the Chapter 1. To verify this 

conjuncture, Camera Calibration Toolbox for Matlab was used. Both fc and cc parame-

ter uncertainties were lower than 1%, however. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Total RMSE before and after parametric correction; 

scaled down in (b) for better depiction 

Figure 3.5: Mapping resulting from parametric correction in miscalibrated setups 

(a) Setup #4 (b) Setup #6 

(a) Full scale plot (a) Plot scaled down in y axis 
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3.2.1 Per-image results 

First of all, it can be observed in Figure 3.6 that in setup #1, #2 and #5 checkerboard 

corners were very straight after rectification, with per-image RMSE oscillating on 

0.1 px and 0.2 px levels. This was to be expected — corner positions are used by the 

algorithm, therefore they are optimized. 

 Large RMSE of checkerboard corner positions in setup #3 can be attributed to 

blur resulting from narrow depth of field. A plot of corner distances is presented in 

Figure 3.7, along with the photograph. Corners present in the lower half of image (low 

grid point indexes) exhibit larger distances from their respective regression lines than 

focused corners found in upper half. 

 RMSE measurements based on line patterns allow more comprehensive analysis. 

In setup #1 all rectified lines are curved to an equal degree, so it can be concluded that 

this camera follows the adopted model well. Errors of single points are usually lower 

than 2 px, and those above 1.5 px seem to stem from overall low image quality rather 

than residual distortion. 

 In setup #2 there are 3 lines curved averagely 52% more than others. One of 

such lines is depicted both in Figure 3.1 (d) and Figure 3.6 (d). Close inspection shows 

that line's concavity has shifted during rectification. It has happened only to lines lying 

on image borders, where parametric model is less accurate. Similar observations have 

been made for setup #3 on 4 vertical lines visible in Figure 3.6 (e), whose distortion 

level exceeds 0.5 px. 

 Another argument supporting presumption that calibration in setup #4 was inva-

lid can be gathered from Figure 3.6 (g). — 3 lines have been deformed to higher extent 

than any line was in original photographs. Moreover, resulting line shape presented in 

Figure 3.6 (h) is no longer parabolic. 

 Plot for setup #5 shown in Figure 3.6 (i) is very characteristic. While all lines are 

more straight than in the beginning and most have been acceptably rectified, many of 

them are still visibly distorted (see Figure 3.8). Their curvature functions have pre-

served same concavity and similar shape, which means that distortions in those areas 

were larger than model could compensate, while simultaneously maintaining good recti-

fication in image center. 
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(e) Per-image RMSE; setup #3 (f) Rectified most curved line; setup #3 

(a) Per-image RMSE; setup #1 (b) Rectified most curved line; setup #1 

(c) Per-image RMSE; setup #2 (d) Rectified most curved line; setup #2 

Figure 3.6 a)–f): RMSE of images corrected by the parametric algorithm 
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Figure 3.6 g)-j): RMSE of images corrected by the parametric algorithm 

(i) Per-image RMSE; setup #5 (j) Rectified most curved line; setup #5 

(g) Per-image RMSE; setup #4 (h) Rectified most curved line; setup #4 

Figure 3.7: Results of the parametric algorithm for a blurred checkerboard image; setup #3; 

horizontal and vertical refer to line alignment relatively to the pattern; 

RMSE measurement is based on all grid points 

(a) Rectified checkerboard image (b) Corner distance plot 
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 It should be stressed that although RMSE of 0.4 px is larger than most values 

reported in the literature, the measurement itself was not very accurate. Canny edge 

detection works only on pixel level, resulting in high quantization noise. For instance, 

rectified line studied in Figure 3.6 (b) is very straight, oscillating usually not further 

than 0.5 px from regression line. Because of pixel size, the edge points could not be 

closer to the regression line. Yet, RMSE in this image is equal to 0.38 px. Image of line 

examined in (b), with marked edges and regression lines, is depicted in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Moreover, on some images line edges have oscillated not due to nonlinearity, 

but because of image quality being not high enough. There are such oscillations in 

Figure 3.8: Image featuring most curved line, rectified by the parametric algorithm, 

but still not straight; setup #5 

Figure 3.9: Edge pixels (blue) and regression lines (red) in a rectified image; 

pixel aspect ratio is not equal to unity; setup #1 
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Figure 3.6 (f). It is clear that in reality the edge lies between alternating points, thus its 

distance from regression line would be shorter. 

3.2.2 Susceptibility to errors 

During one of initial tests, calibration was performed with setup #5 using photographs 

depicted in Figure 3.10. The aim was to check algorithm outcome when no corners were 

located near borders. 

 Results are shown in Figure 3.11. As expected, anomalies can be identified in 

corners of the mapping (b). Specifically there is a change of displacement vector 

length's monotonicity, which leads to worse rectification in image corner, as visible in 

(d). This is due to model being extrapolated to domain of whole image. The algorithm 

does not indicate which parts of the mapping are thus unreliable.  

 

 

 

 

  

 

 

 

 

 

 

 

3.2.3 Time complexity 

Time measurement were carried out on a PC equipped with Intel Core 2 Quad Q3000 

processor and included: image reading, corner detection and complete intrinsic parame-

ter calculation. CALIB_CB_FAST_CHECK flag was used to speed up checkerboard 

search ("can drastically speed up the call in the degenerate condition when no chess-

board is observed" [19], but does not affect precision if corners are found). Results are 

presented in Table 3.2. Elapsed time depended both on image quality (sharpness) and 

resolution. During initial test, calibration based on 17 sharp images obtained from 

setup #7 (largest tested, in terms of photograph dimensions) took 32 seconds. 

Figure 3.10: Calibration photographs used for test; setup #5 



Discussion of Results  39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Differences in image corner caused by different mappings; setup #5 

(a) Mapping resulting from good parametric correction (final photographs) 

(b) Mapping resulting from bad parametric correction (photographs depicted in Figure 3.10) 

(c)  Corner of photograph rectified by (a) (d)  Corner of photograph rectified by (b) 
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Table 3.2: Time performance of the parametric algorithm 

Setup Time elapsed [s] 
Number of 

input images 

Discarded images 

(due to not detected corners) 

#1 2 14 0 

#2 1 15 0 

#3 17 15 0 

#4 8 15 1 

#5 4 23 2 

#6 58 16 2 

 

3.3 Nonparametric algorithm 

For each setup, 2–3 pairs of pattern photographs were taken, each pair featuring differ-

ent texture. Then best pairs were selected, with criterion being percentage of preserved 

photograph pixels. It ought to be not confused with size of valid rectified images (i.e. 

number of interior, nonblack pixels). An example is presented in Figure 3.12. Photo-

graph has been transformed by inverse of estimated homography between itself and the 

pattern in (c). Although result is smaller, no pixels were lost. They have been sampled 

down instead. On the other hand, some pixels have been discarded during formation of 

(d), due to being located outside of triangulation's perimeter.  

 Results are depicted in Figure 3.13. Total RMSE (all edges and corner points in 

all control images) has improved for all setups, albeit it is still high in setup #4. How-

ever, as result of the algorithm's approach, other factors must be taken into account in 

order to rate the outcomes. They have been collected in Table 3.3. Column Pattern con-

tains index of used pattern, with 2 meaning the most detailed one. 

 First of all, it is noticeable that the chunking strategy provided very few addi-

tional matches. It is insignificant next to the number of initial matches. 

 The ratio of number of inliers left after loop validation to image resolution varies 

among setups. While it could influence resolution (and thus quality) of the reverse dis-

tortion field, no such relation was observed (as setup #3 performed better, in terms of 

RMSE, than setup #4, despite difference in the ratio). For reference, in [25] number 

of inliers was reported to be equal to about 8000. Supposing maximum camera resolu-

tion was used, the ratio was equal to 0.98 matches per kpx. 

 As already stated, percentage of preserved pixels is an important quality metric. 

RMSE of 0.4 px in setup #2 is an insignificant improvement, considering that a third of 
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every image was lost in process (see Figure 3.14). In other setups, where camera quality 

was better, this percentage was notably higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
1
 Copyrights to the photographed pattern belong to P. Kratochvil. 

Figure 3.12: Illustration of border pixel loss and photograph
1
 resizing; setup #3 

Figure 3.13: Total RMSE before and after nonparametric correction; 

scaled down in (b) for better depiction 

(a) Pattern (b) Photograph of the pattern 

(c) Photograph warped by homography (d) Rectified photograph 

(a) Full scale plot (b) Plot scaled down in y axis 
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Table 3.3: Nonparametric algorithm results (regarding matches) 

Setup Pattern 
Feature 

matches 

Matches gained 

through chunking 
Inliers 

Inliers per 

image kilopixel 

Percentage of 

discarded pixels 

#1 1 1526 2 1493 1.90 8.1% 

#2 0 944 6 639 1.33 33.6% 

#3 0 3953 0 3176 0.40 7.3% 

#4 1 1727 21 1603 0.51 6.6% 

#5 2 3093 13 2876 2.19 10.2% 

#6 0 1318 0 811 0.10 14.5% 

#7 1 6951  6728 0.67 10.9% 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1 Per-image results 

In case of the nonparametric algorithm, RMSE measurements based on checkerboard 

have frequently failed (i.e. the board could not be found, because field of view has been 

diminished). When they did succeed, RMSE no longer was on the extremely low level 

encountered in the parametric algorithm. 

 In Figure 3.15 (a) two lines stand out as badly corrected. Closer inspection of 

Figure 3.16 shows that left one is indeed still slightly curved. Right one, on the other 

hand, regularly alternates between 3 pixels, meaning that it is not extracted entirely cor-

rectly. 

 Results for setup #2 are less reliable, because remaining field of view is small. 

Moreover, less lines were found (only 10). 

  

(a) Original photograph (b) Rectified photograph 

Figure 3.14: Worst encountered case of field of view depletion; setup #2 
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(a) Per-image RMSE; setup #1 (b) Rectified most curved line; setup #1 

(c) Per-image RMSE; setup #2 g (d) Rectified most curved line; setup #2 

(e) Per-image RMSE; setup #3 (f) Rectified most curved line; setup #3 

Figure 3.15 a)–f): RMSE of images corrected by the nonparametric algorithm 
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(g) Per-image RMSE; setup #4 (h) Rectified most curved line; setup #4 

(i) Per-image RMSE; setup #5 (j) Rectified most curved line; setup #5 

Figure 3.15 g)-j): RMSE of images corrected by the nonparametric algo-

rithm 

Figure 3.16: Curvature of 2 most distorted lines (after rectification); setup #1 
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 Three remarks can be made on correction of setup #3. Firstly there are 3 hori-

zontal lines in Figure 3.15 (e) with per-image RMSE exceeding 0.6 px. One of them is 

depicted in Figure 3.15 (f). They are not completely straight, but the parts most distant 

from regression line are edge beginning and end. Secondly, there is a vertical line with 

0.75 px RMSE. After rectification it is situated right beside image border and is still 

clearly curved (see Figure 3.17). Both this phenomena are explained in section 3.3.2. 

Finally there is one vertical line with very low RMSE. This line happens by chance to 

be well fit in the pixel grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 There is no straightforward explanation for result diversification in setup #4. 

Some line were rectified well, as in case of the one depicted in Figure 3.15 (h). Others 

that were not previously severely distorted, have retained their shape (see Figure 3.18). 

Moreover, when correction was calculated basing on the other pair of texture images, 

there was an impressive amount of inliers (7231), but resulting RMSE was even worse 

(1.32 px). However disappointing these results are, they are both better than parametric 

correction outcomes. 

 As far as setup #5 is concerned, rectification results are uniform, with the excep-

tion of one vertical line. This line happens to be somewhat diagonal after rectification, 

resulting in high quantization noise (see Figure 3.19). It is also curved in its end, simi-

larly to setup #3 lines. 

 

 

 

(a) Rectified line photograph (b) Line curvature 

Figure 3.17: Vertical line rectified by the nonparametric algorithm, but still curved; setup #3 
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 A rectified image is presented in Figure 3.20 for every camera, excluding setup 

#2 (due to high pixel loss). Checkerboard was selected for visual purposes. Modulus of 

final reverse distortion field from setup #7 is depicted in Figure 3.21. Despite jagged 

edges (resulting from implementation details), it is comparable to [9]. 

 

 

 

Figure 3.19: Diagonal line curvature after rectification; setup #5 

Figure 3.18: Same line before and after nonparametric correction; setup #4; 

RMSE measurement is based on all grid points 

(a) Line curvature before rectification (b) Line curvature after rectification 
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(a) Setup #1 (b) Setup #3 

(c) Setup #4 (d) Setup #5 

Figure 3.21: Modulus of the reverse distortion field; setup #7 

Figure 3.20: Images rectified by the nonparametric algorithm 
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3.3.2 Implementation-specific details 

The nonparametric algorithm avoids its parametric counterpart's extrapolation flaw (ex-

plained in section 3.2.2), by not including into calculations pixels lying outside reverse 

distortion field. In the studied cases this led to field of view diminishment. While this 

stems from algorithm design, observed results were worse than anticipated. 

 Although loop validation was implemented, good matches on the field's bound-

ary were still marked as outliers, while some bad matches remained, introducing obtru-

sive artifacts. As explained in section 2.4, three smoothing algorithms were tested. First 

one was least-squares 2D polynomial approximation. Polynomials of order 2, 3 and 4 

were used, but it transpired that neither was able to fit well into the field's dynamic 

range (see Table 3.4). 

 Then Gauss filter was tested. Because the field's area had shrunk after simple 

filtering, NaN pixels had to be given a value first (using nearest neighbor interpolation). 

This worked well, as long as values used for interpolation were correct. Otherwise fil-

tering lead to propagation of incorrect displacement values, which resulted in high dis-

tortions near borders. It was the case in setup #3, where lines tended to be curved at 

both ends. In Figure 3.22 a gleam can be observed near edges, indicating that value 

propagation took place. 

 Other approach was to use filters with different sizes; to fill out areas left by 

bigger filters. The drawback was that the field was less smooth near edges and thus 

some artifacts were still present. Out of these 2 methods each was chosen individually 

for each photograph pair, so that results would be best (although total RMSE difference 

was insignificant). 

3.3.3 Time complexity and memory consumption 

Time performance for one photograph pair is collected in Table 3.5. Tests were carried 

out on the same PC as for parametric algorithm and didn't include smoothing, because 

many methods were evaluated, but only one contributed to final results. Much interme-

diate data was saved to storage during time measurements, but it didn't influence per-

formance visibly, as most lengthy task was usually the feature matching. 

 While memory consumption was not directly measured, it should be noted that 

during feature detection 32-bit address space assigned to Python process (effectively 

2 GB) had not been enough. Hence algorithm was developed for 64-bit systems. 
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Table 3.4: Mean absolute difference between initial reverse distortion field and its smoothed versions 

Setup 
2nd order 

polynomial 

3rd order 

polynomial 

4th order 

polynomial 

Gauss 

filter 

#1 2,15 4,44 13,81 0,39 

#2 1,55 1,04 3,34 0,47 

#3 13,29 12,86 61,45 1,57 

#4 2,26 10,39 23,45 1,00 

#5 8,54 4,46 18,08 1,03 

#6 2,22 11,95 57,20 2,15 

 

Table 3.5: Time performance of the parametric algorithm 

Setup 
Time elapsed 

[min] 

Time relative to product 

of image and pattern 

keypoint counts [µs] 

#1 1.4 2.15 

#2 1.1 0.40 

#3 11.5 1.05 

#4 4.1 0.89 

#5 7.2 0.67 

#6 3.6 0.56 

#7 28.6 1.66 

Figure 3.22: Absolute difference between initial and Gauss-smoothed reverse distortion field; 

setup #3 



Conclusions 50 

Conclusions 

Many algorithms were considered for analysis in the paper. Finally two algorithms were 

singled out: a popular implementation of the Conrady-Brown model and own imple-

mentation of a promising algorithm proposed by [9]. Results were generally worse than 

state-of-the-art, but even so have allowed to perform deductions. 

 Three cameras were corrected to similar degree by both algorithms. Phone cam-

era correction performed by the nonparametric algorithm, while not as good as antici-

pated, has successfully lowered RMSE. It was impossible to fully correct high distor-

tions introduced by the wide angle camera with the parametric algorithm. The sixth or-

der polynomial model is not sufficient. 

 The parametric algorithm applies rectification blindly to whole image, even if in 

some parts there were not enough (or were not any) points to deduce about distortion. 

Thus calibration images should be carefully planned to fill whole image space. None-

theless model fitting is prioritized in image center. The algorithm is quick (usually tak-

ing few seconds). The results are highly portable — rectification maps can be easily 

recalculated using only a handful of parameters (distortion coefficients and distortion 

center position), so the algorithm can be easily used in conjunction with a camera data-

base. 

 Nonparametric algorithm estimates its area of validity. This can, however, dra-

matically diminish field of view when camera quality is very low. As noted in [9], one 

of advantages of the nonparametric algorithm is that its results are not final and could be 

processed further to attain better rectification. This particular implementation was 

shown to introduce small distortions near borders due to piecewise interpolation 

scheme. The algorithm needs only 2 photographs, but introduces a homography. Data 

processing is very demanding in terms of computing power, even for images as small as 

SXGA. Since algorithm is nonparametric, full rectification maps have to be stored (2 

floating point arrays of same size as images). 

 Obtained results have shown that Canny edge detector is not suitable for RMSE 

estimation when subpixel rectification is expected. In most cases 0.4 px mean errors 

were caused by quantization noise, while distortion residual was imperceptible. How-

ever, there were also cases when distortions far surpassed the noise. 
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 Implementation of the Grompone von Gioi et al. algorithm is far from perfect. 

Following improvements could be considered in future: 

� better piecewise affine interpolation, so that there would be no discontinuities 

on triangle boundaries and separate smoothing would not be necessary, 

� triangulation enhancement — oblong border triangles are currently simply dis-

carded, perhaps better approach is achievable, 

� mitigation of photograph scale change due to introduced homography, 

� more robust outlier elimination, 

� other feature detection algorithms can be incorporated, as SIFT was designed 

to detect features on different scales and this is not necessary (and is patented 

for commercial use), 

� a faster feature matching algorithm can be chosen, 

� support for regular patterns (e.g. a very dense checkerboard); characteristic 

points could be extracted by centroid search instead of corner detection, which 

is faulty in such cases. 

 Additionally precision of edge detection in RMSE evaluation module might be 

enhanced. A more precise variation [5] of Canny edge detector or entirely different 

technique such as [28] could be used to achieve subpixel accuracy. 

 Other line pattern should also be considered. Line printed on A4 paper was in 

some cases too short and it was impossible to capture it passing through whole image 

and focus at the same time. 
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Appendix A — nonparametric package usage 

The package was verified to be working with Python version 2.7.10 for Microsoft Win-

dows. While not required, 64-bit release is recommended, because of high memory con-

sumption during feature detection stage of the nonparametric algorithm. Additionally, 

following Python modules are required: 

� OpenCv, version 2.4.11, 

� NumPy, version 1.9.3, 

� SciPy, version 0.16.1, 

� matplotlib, version 1.5.0, 

� PyQt4, version 4.11.4. 

 The nonparametric package should be placed in Python search path 

(C:\Python27\Lib\site-packages by default), so that it can be imported with 

statement: import nonparametric. 

 For parametric correction, one instance of Radial class is created. Basic con-

structor parameters are: pattern_size, input and output. Despite its name,      

Radial class corrects both radial and tangential distortions. 

 Afterwards the object should be called. Call arguments control RMSE evalua-

tion. The call performs full calibration, image rectification and RMSE evaluation (only 

for rectified photographs). 

 Nonparametric correction differs programmatically from the parametric one. An 

instance of NonparametricCorrection class should be created for every photograph 

pair. This way there is more control over each pair options. Usually at least scene1, 

scene2, output_folder and pattern_config constructor parameters should be 

specified. It is essential that every object has a unique output_folder parameter 

passed to the constructor.  

 Then constructed objects should be called, similarly to the Radial objects. Call 

arguments likewise regulate RMSE evaluation, but also some optional correction steps. 

It should be stressed that in case any checkerboard control photographs are used, 

rms_pattern_size argument should be specified. The call performs full calibration, 

image rectification and RMSE assessment, including original images if it was not con-

ducted yet. The RMSE results are stored in static class members. They can be cleared 

afterwards, using static methods: reset() or report_and_reset(). 
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 All arguments and internal methods are described in documentation located in 

docstrings inside the source files. 

 A simple case of package usage is presented in Listing 1. Default input and out-

put directories are assumed. Two predefined patterns are supplied to the nonparametric 

algorithm. 

  

Listing 1.: Illustrative usage of the package 

import nonparametric 

import glob 

 

radial = nonparametric.Radial( pattern_size=(10,7) ) 

radial() 

 

names = glob.glob('images/pattern/*.JPG') 

pattern_configs = [1, 0] 

for i in range(len(names)/2): 

 output_folder = 'pair_{0:d}'.format(i) 

 correction = nonparametric.NonparametricCorrection( 

  scene1 = names[2*i], 

  scene2 = names[2*i+1], 

  output_folder = output_folder, 

  pattern_config = pattern_configs[i] 

 ) 

 correction() 

 

nonparametric.NonparametricCorrection.report_and_reset() 
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Appendix B — CD-ROM contents 

CD-ROM supplied with the paper contains: 

� thesis.pdf — digital version of this paper, 

� data/ — input images, correction results and scripts; structure of this folder is ela-

borated in the Readme.txt file inside the directory, 

� nonparametric/ — source code of the developed Python package along with 

three sample pattern images; authors of images used for pattern creation are listed in 

the __init__.py file, 

� win_x86-64/ — installation files. Installation instructions are included in the Re-

adme.txt file. 

 

 

 

 

 


