
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W

KRAKOWIE

WYDZIAŁ INFORMATYKI, ELEKTRONIKI I TELEKOMUNIKACJI

KATEDRA TELEKOMUNIKACJI

PRACA DYPLOMOWA MAGISTERSKA

Algorithm for Visual Odometry.
Algorytm do wyznaczania pozycji i orientacji obiektu na podstawie sekwencji wideo.

Autorzy: Krzysztof Szczęsny, Jan Twardowski

Kierunek studiów: Teleinformatyka

Opiekun pracy: dr inż. Jarosław Bułat

Kraków, 2017

Uprzedzeni o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego

1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.):

„Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego

utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia

wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu

twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystycznego wykonania

albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.”,

a także uprzedzoneni o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia

27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): „Za naruszenie

przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi

odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu

studenckiego, zwanym dalej «sądem koleżeńskim».”, oświadczamy, że niniejszą pracę dyplomową

wykonaliśmy osobiście i samodzielnie i że nie korzystaliśmy ze źródeł innych niż wymienione w pracy.

We would like to thank our remarkable
supervisor, Jarosław Bułat – for his
useful insights, substantial support, and
limitless patience.

Contents

Abstract.. 7

Introduction... 8

1. Theoretical background and state-of-the-art ... 11

1.1. Pinhole camera model ... 11

1.2. Stereo vision .. 14

1.3. Monocular visual odometry... 16

1.4. Literature ... 18

1.5. The Rebvo algorithm outline ... 19

2. Analysis and improvements of Rebvo algorithm .. 23

2.1. Notation (Keyline structure) and main loop .. 23

2.2. Algorithm outline .. 25

2.3. Edge extraction .. 26

2.3.1. Edge detection algorithm choice ... 26

2.3.2. Data preprocessing .. 26

2.3.3. Difference of Gaussians strength tests... 27

2.3.4. Depth initialization .. 35

2.3.5. Keyline joining .. 38

2.4. Edge tracking... 39

2.4.1. Warping function ... 39

2.4.2. Auxiliary image ... 41

2.4.3. Keyline matching criteria .. 42

2.4.4. Energy minimization ... 43

6 CONTENTS

2.4.5. Initial conditions.. 46

2.5. Mapping... 47

2.5.1. Forward matching.. 48

2.5.2. Directed matching ... 48

2.5.3. Regularization.. 52

2.5.4. Depth reestimation... 53

2.5.5. Scale correction ... 54

2.6. Tests on artificial data .. 55

2.7. Trajectory fitting .. 55

3. Discussion of results .. 57

3.1. Experimental setup .. 57

3.2. Trajectory comparison ... 59

4. Conclusion.. 67

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

CONTENTS 7

Abstract

GPS applications (e.g. car navigation) struggle with precision during rapid changes of mo-

tion, e.g. when sharp turns are made during roundabout exit. Yet driver needs feedback from the

positioning system particularly at such moments. Visual Odometry systems are usually more ac-

curate (quick to act) than GPS in this regard. This work performs in-depth analysis of a chosen

state-of-the-art, real-time VO algorithm and proposes some improvements that are especially

suited for road scenarios. Analyzed algorithm was implemented in GNU Octave and tested us-

ing popular datasets. Much attention was paid to intermediate results. Tests show that algorithm

converges quickly to the expected trajectory shape. Some challenges of urban scenarios were

not solved, but solutions were suggested.

Keywords – visual odometry, motion estimation, edge detection

Abstrakt

Aplikacje korzystające z GPS (np. nawiagcja samochodowa) mają niską dokładność

lokalizacji podczas gwałtownych ruchów, np. przy zjeżdżaniu z ronda, chociaż właśnie wtedy

informacja o pozycji jest dla kierowcy najważniejsza. Systemy odometrii wizyjnej zazwyczaj

przewyższają w tym zakresie GPS. W niniejszej pracy przeprowadzono dogłębną analizę

wybranego nowoczesnego algorytmu odometrii wizyjnej, mogącego pracować w czasie rzeczy-

wistym na urządzeniu mobilnym. Na podstawie przeprowadzonych badań zaproponowano ulep-

szenia algorytmu, które mogą być przydatne szczególne w warunkach drogowych. Analizowany

algorytm został zaimplementowany w środowisku GNU Octave oraz przetestowany z użyciem

popularnych sekwencji testowych. Podczas analizy dużo uwagi poświęcono wynikom pośred-

nim poszczególnych kroków algorytmu. Testy wykazały, że algorytm szybko zbiega do oczeki-

wanej trajektorii. Nie udało się wyeliminować wszystkich błędów, jakie mogą wystąpić w sek-

wencjach nagrywanych kamerą umieszczoną w samochodzie, ale wskazano możliwe rozwiąza-

nia.

Słowa kluczowe – odometria wizyjna, estymacja ruchu, wykrywanie krawędzi

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

8 CONTENTS

Introduction

Odometry is a term describing measurement of distance (from Greek: odos – “path“,

metron – “measure“). For instance, car odometer is a device that calculates total traveled dis-

tance through multiplication of wheel diameter by the number of wheel spins. Visual odometry

(VO) aims to determine the egomotion of an object – its position relative to a rigid scene – by

observing changes in video registered by one or more cameras attached to said object.

Main advantage of visual approach to odometry is ubiquity of cameras embedded into virtu-

ally every mobile device – be it a smarphone, game console or even a smartwatch. Not every of

those devices has a gyroscope, and even if a GPS (Global Positioning System) chip is present,

its locational accuracy is low. Practical applications of visual odometry include:

1. SLAM (Simultaneous-Localization And Mapping) used by autonomous robots, e.g. Mars

Exploration Rovers, drones or self-driving cars. Calculation and maintenance of such

maps is usually a computationally demanding task, however.

2. Handheld video stabilization, realized in software.

3. AR (Augmented Reality) – last year in particular saw the emergence of Pokémon GO [2],

an acclaimed mobile game. Recently Google has released ARCore [3] , a software devel-

opment kit that internally uses many VO ideas.

Following this trend of development for mobile devices, a vision-based driving assistance

system was initially envisioned for this thesis. It was meant to use peripherals available in every

smartphone. Its purpose would have been a real-time navigation aid for consumer-grade smart-

phones – assistance for GPS in places where more precision is needed, e.g. on a roundabout,

where exit roads are located too close to each other. Ultimately only a prototype of pure visual

odometry system was created, but results and ideas for future improvement do not invalidate

the original concept.

The developed and analyzed algorithm is very closely based on a solution presented in [1].

This work was chosen as it presented a novel approach, similar to efficient semi-dense methods.

Each step of the algorithm flow was analyzed and tested on video sequences from publicly

available datasets that also contain ground truth data for validation purposes.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

CONTENTS 9

Thesis is divided into four chapters. Chapter 1 contains theoretical introduction and state-

of-the-art. It is also explained what are the challenges of monocular vision that set it apart

from the more popular stereo approach. Details of the presented algorithm are elaborated upon

in Chapter 2. Final obtained results are given and commented in Chapter 3. The concluding

Chapter 4 contains final remarks and directions of future development.

During algorithm development, Jan Twardowski was mainly responsible for edge joining

(Sec. 2.3.5), post-minimization edge matching (Sec. 2.5.2) and regularization (Sec. 2.5.3); while

Krzysztof Szczęsny – for energy minimization (Sec. 2.4.4) and depth reestimation (Sec. 2.5.4).

Other algorithm sections and testing were performed jointly.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

10 CONTENTS

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

1. Theoretical background and state-of-the-art

In this chapter theory behind computer vision, 3D reconstruction and mathematical appara-

tus used in our algorithm are introduced. Pinhole camera model and basics of stereo and mono

vision are briefly discussed. Literature related with this topic is overviewed. Finally, Rebvo [1]

algorithm flow is described.

1.1. Pinhole camera model

Pinhole camera model [4] is a widely used and simple model that establishes connection

between world coordinates <3 and image-domain coordinates <2 (i.e. projective geometry).

Fig. 1.1. Image formation in pinhole camera model. Source: [5]

12 1.1. Pinhole camera model

Operation of pinhole camera is depicted in Fig. 1.1. Every 3D point Q can be associated

with a ray QO that passes through camera origin O, which in the simplest case can be defined

as origin of the 3D coordinate system. Such ray can be defined with homogeneous coordinates

as set of points {(X, Y, Z)} that satisfy (1.1):

(X, Y, Z) = k(Qx, Qy, Qz) (1.1)

where:

k – real parameter, k 6= 0,

Q – world coordinates point.

Image plane π is a rectangle parallel to plane XOY . Its distance from origin is equal to

f (focal length). Usually it is assumed that image plane’s z coordinate is positive – otherwise

formed image would be upside down. Point where axisOZ intersects π is called principal point.

World coordinate points Q are projected onto π as Q′, thus forming a 2D image. This rela-

tionship can be concisely written using camera matrix as in (1.2).

q = Q′ ∼

fx s cx

0 fy cy

0 0 1

︸ ︷︷ ︸

K

R [I| − t]

︸ ︷︷ ︸
C

Q (1.2)

where:

q – 2D point on image plane,

Q′ – 2D point on image plane expressed in homogeneous coordinates (3-vector),

Q – 3D point corresponding to q, expressed in homogeneous coordinates (4-vector),

∼ – equality between homogeneous points,

K – 3x3 camera intrinsic parameters matrix,

C – 3x4 camera matrix,

fk – focal length along axis k (fx 6= fy if pixels are not square, but rectangular),

s – skew factor (usually equal to 0),

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

1.1. Pinhole camera model 13

ck – k-coordinate of the principal point,

R – 3x3 rotation matrix between 3D world coordinates and camera coordinates,

t – translation vector between 3D world coordinates and camera coordinates (3-vector).

Real cameras do not fully conform to this model [5]. They contain lenses that enlarge field

of view (see Fig. 1.2). Lens curve passing light rays in a nonlinear fashion (this can be observed

in fish-eye cameras [6]). Moreover, lenses themselves are imperfectly made and aligned. Other

nonlinearlity sources include color aberration and CCD (Charge Coupled Device) sensor quan-

tization noise [7], but this list is far from being exhaustive. All these phenomena account for

distortions.

Fig. 1.2. Outline of an analogue camera. A digital camera would feature a CCD

in place of film. Source: http://www.mauitroop22.org/merit_badges/ images/

camera.jpg

Conrady-Brown model [8] [9] is a classic approach to removing geometric distortions. The

most significant distortion component is modeled with a radial, even-ordered polynomial, that

is centered at the distortion center (usually located in proximity of the principal point). During

camera calibration, coefficients of the said polynomial are measured – they are assumed to be

constant1 for given camera. Then each image taken by the camera can be rectified with inverse

distortion field [11]. Example of such field is depicted in Fig. 1.3. More complex models [12],

or even model-free methods [13] [14] also do exist, but calibration procedure is far more chal-

lenging. If undistortion procedure is successful, then one of the most fundamental projective

1In fact they can vary with temperature, focus change and over long periods of time [10].

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

 http://www.mauitroop22.org/merit_badges/images/camera.jpg
 http://www.mauitroop22.org/merit_badges/images/camera.jpg

14 1.2. Stereo vision

geometry properties is preserved – straight 3D world lines are mapped to straight 2D image

lines [15].

Fig. 1.3. Example of a distortion modeled with Conrady-Brown model. Vec-

tors connect distorted pixel positions with their undistorted counterparts and

contours mark areas with constant vector length. Tangential (non-radial) com-

ponent is noticeable in this particular field. Source: [5]

1.2. Stereo vision

Most implementations of visual odometry systems use two cameras spaced by a constant

baseline, that can be determined during stereo calibration. Abundance of such methods can be

explained with similarity to how human visual system works [16]. Stereopsis (perception of

depth) is a result of binocular vision determined by comparing object position seen by both

eyes and by taking into account the baseline, i.e. spacing between eyes. This is illustrated in

Fig. 1.4.

Correspondence between matched points is described by (1.3) with the fundamental ma-

trix. At least 7 matching feature points (points with well defined surroundings) are needed to

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

1.2. Stereo vision 15

Fig. 1.4. Human stereo vision system. Source: https://commons.wikimedia.

org/wiki/File:Binocular_disparity.png

obtain F, but usually much more are used so as to mitigate noise [17]. When cameras are cali-

brated, essential matrix E can be calculated with (1.4). Essential matrix can be then decomposed

into rotation and translation between 3D points registered by both cameras using SVD (Singular

Value Decomposition); 1 solution out of 4 has to be chosen. E has scale ambiguity, which can be

resolved using baseline in (1.5) [18]. It is worth mentioning that baseline can not be determined

using autocalibration2 alone – an object of known dimensions must be measured on images.

pT2 Fp1 = 0 (1.3)

where:

pi – point as registered by i-th camera, in homogeneous coordinates,

F – 3x3 fundamental matrix.

KT
2 FK1 = E = [t]sR (1.4)

where:

Ki – i-th camera intrinsic parameters matrix,

E – 3x3 essential matrix,
2Calibration without any a priori knowledge about the scene.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

https://commons.wikimedia.org/wiki/File:Binocular_disparity.png
https://commons.wikimedia.org/wiki/File:Binocular_disparity.png

16 1.3. Monocular visual odometry

t – translation vector t = [tx ty tz]
T

[t]s – skew-symmetric matrix:

0 −tz ty

tz 0 −tx
−ty tx 0

,

R – 3x3 rotation matrix.

Z =
fb

|p1 − p2|
(1.5)

where:

Z – world OZ coordinate of the point (i.e. depth),

f – focal length,

b – baseline.

1.3. Monocular visual odometry

There are two main issues in monocular visual odometry which will be discussed in this

section: scale ambiguity and position drift over time.

In case when only one camera is available, matches between consecutive frames still can be

searched for. However, without knowing the 3D transformation, baseline is unknown, so scene

can be reconstructed only up to a scale [4] [19]. Main difficulty is that this transformation is

the quantity that odometry is supposed to estimate. Information from only one camera is not

sufficient to solve the ambiguity. For instance, Fig. 1.5 depicts a situation when two objects

with differing dimensions appear to be of the same size after projection to image plane. There

are 2 main ways of alleviating this problem.

One way is to use an IMU (Inertial Measurement Unit - accelerometer & gyroscope). Data

from this unit can be used to estimate baseline and extrinsic camera parameters [20]. Actually,

IMU alone can be used for odometry. By combining it with video input, however, accuracy and

robustness can tremendously increase.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

1.3. Monocular visual odometry 17

Fig. 1.5. Single pinhole camera scale ambiguity. Two objects have same size

on the virtual image plane, despite differing in reality

Another approach is to use explicit depth data, e.g. RGB-D (Red, Green, Blue and Depth)

from Kinect [21]. This helps in global scene scale estimation. A disadvantage is that such de-

vices have narrow depth detection range (usually up to few meters [22]) and are not available in

most consumer-grade mobile devices.

A very frequent problem in pure visual monocular odometry is unbounded position drift

over time. Each 3D transformation that is estimated between consecutive frames is an instan-

taneous linear and angular velocity. To obtain accumulated position and azimuth after given

frame, individual velocities have to be integrated. Each estimation error gains significance with

time. In literature two ways of mitigation are the most common.

First of all, information from GPS can be employed to ensure that position does not drift

away [23]. GPS signal quality greatly depends on location, so this approach may be unsuited for

indoor use cases. GPS can not help with azimuth estimation, however. Finally, GPS is, out of

the discussed methods, the only way to transform relative coordinates to real word coordinates

(i.e. latitude and longitude). Other possibility would be to use special markers.

In SLAM systems loops in trajectories can be used as means of correcting position

drift – knowing landmark3) descriptors in past frames, such loops can be detected and system

parameters can be adjusted to close them [24] [25].

3Landmark is an excellent feature point, observable from many frames.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

18 1.4. Literature

1.4. Literature

“The term VO was introduced by Nister in his landmark paper [26], and he provided the

first real-time and long-run VO implementation with a robust outlier rejection scheme, which

is still widely used up to now“ [27]. Solution proposed by Nister supported both mono and

stereo vision, and used additional data from IMU. Real-time operation was accomplished on

then-popular 1 GHz Pentium III processor.

Many papers focus alone on the problem of detection of independently moving objects (vi-

sual odometry outliers). In [28] such objects are identified using particle filter and probabilistic

approach. More focus is given in [29] to a related, but more difficult task – estimation of indi-

vidual objects velocities.

In [30] a neural network-based classifier is utilized for separating the road from rest of ob-

jects registered. Then optical flow of the road is calculated. This flow has a special mathematical

structure [31], making it easier to infer the camera egomotion from it.

Well known and efficient feature detector is described in [32]. Features that are espe-

cially good from the SLAM point of view are introduced in [33]. Classic approaches monitor

only temporal properties (i.e. how they appear in a single image). However, spatial properties

(i.e. how features appear in the 3D space) should be taken into account in systems that preserve

feature history.

A comparison of the most popular feature detectors is presented in [27]. Moreover, a con-

sistency check step for feature matching is proposed, ensuring that features are best matched

not only between frames n and n+ 1, but also in the reverse direction.

In [34] a novel approach to monocular systems scale ambiguity proposed: by assuming

a known, constant camera height above ground plane, global scale can be estimated. This step

is performed between all consecutive frames, independently from main visual odometry algo-

rithm.

Similarly in [35], scale is estimated on the basis of known camera height and pitch angle

(downward tilt). Moreover, this is a full system that estimates camera velocity using optical

flow. As long as speed does not exceed a couple of meters per second, only 20% coverage

between consecutive frames is needed.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

1.5. The Rebvo algorithm outline 19

Other approach to scale estimation is presented in [36], where a ground-extraction scheme

and modified Kalman filter is used.

The celebrated MonoSLAM method is described in [25]. It has introduced a shift to the

paradigm of visual odometry – “from mobile robotics to the ’pure vision’ domain of a single

uncontrolled camera“. Instead of full map, only 100 best feature points are remembered. They

are used for loop closure, that remedies the position drift. MonoSLAM achieves real-time on

a low-end 1.6 GHz Pentium M processor.

Authors of [37] aim to fully reconstruct the 3D scene by using bundle adjustment. Method

is proved to be both fast and robust.

Quite different approach to visual inertial odometry is presented in [38] – instead of fea-

ture points, mutual information between visual and intertial input is used to determine camera

motion.

A dense method is proposed in [39]. It operates not on features, but on all of image pixels,

making it somewhat more robust on the one hand, but inadequate for mobile devices on the

other. A semi-dense method presented in [40] uses probabilistic inverse depth maps. Real-time

is achieved, but only on a quad-core i7 processor.

1.5. The Rebvo algorithm outline

In this section the Rebvo algorithm description is briefly paraphrased for the needs of this

thesis.

Tarrio and Pedre present new-fashioned approach to monocular visual odometry in [1]. The

algorithm is reported to be capable of running in real time on an ARM processor. This sets it

apart from numerous other state-of-the-art methods whose authors claim to achieve real time,

but do not stress out that it is only possible on high-end PCs (Personal Computers).

It is similar to semi-dense methods, that achieve VO using only selected features (in this

case – edges). It is not a full SLAM system, so only two consecutive frames are stored at each

time and no global map is created. Information from previous frames is retained in the form of

estimated depth. Features are matched on pixel basis. This concept is compliant with argument

made by Harris: “Because of ill-conditioning, the use of parametrized curves (e.g. circular

arcs) cannot be expected to provide the solution, especially with real imagery.“ [41]. Similarly

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

20 1.5. The Rebvo algorithm outline

to many other state-of-the-art systems, depth information is stored as its inverse. It is worth

mentioning, however, that inverse depth is most useful in full SLAM systems, where the “ray

from the first camera position from which the feature was observed“ [42] can be stored along

with that feature.

Algorithm consists of three main steps, similar to other visual odometry systems. First of

all, edge extraction is performed, preferably with subpixel precision. Moreover, edge gradient

is calculated for each pixel. Neighboring pixels are joined into connected4 edges, using gradient

information.

Then tracking is performed. Edges from previous frames are first projected into 3D space

using their already estimated depths. Then an iterative procedure (Levenberg-Marquardt algo-

rithm) aims to find such 3D transformation that establishes consensus between frames (i.e. min-

imizes the geometric re-projection error). Projected points are rotated and transformed in 3D,

then projected back onto image plane. Minimized cost function is essentially the sum of squared

distances between back-projected edges from the previous frame and closest edges from the cur-

rent frame. Actual cost function also takes into consideration gradient correspondence criteria.

Obtained pairs of edge pixels do not constitute an exhaustive list of matches, considering that:

– transformation is not ideal,

– depth of pixels is only estimated,

– there is quantization noise,

– edges can be detected inconsistently between frames,

– even for undistorted images, some residual distortion noncompliant with pinhole camera

model will be present [43],

– outliers can be present (e.g. objects moving with respect to the otherwise rigid scene).

Final step – mapping – associates matching edges between frames using obtained optimal

3D transformation. Due to aforementioned problems, after tracking an additional matching rou-

tine is needed for each edge pixel. Because depth of previous frame edges is estimated with

some uncertainty, camera motion establishes a line segment defining the area where possible

4Connected in the sense that each edge has no gaps between neighboring pixels.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

1.5. The Rebvo algorithm outline 21

matches will be searched for. Once such candidate has been found, it is tested for gradient

correspondence and, most importantly, for model consistency – deviation of position on the

segment obtained from linear transformation equation can not exceed depth uncertainty. After

matching, depth information is propagated for matched edge pixels from previous frame to the

current, and is optionally regularized. Previous depth has to be reestimated (OZ axis velocity

has to be taken into account). This is achieved using Extended Kalman Filter. Scale drift, inher-

ent problem of pure visual odometry, can be then mitigated to some limited degree by diving

estimated depths by frame shrinking factor.

Accuracy of results obtained in [1] is comparable with other state-of-the-art algorithms [44].

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

22 1.5. The Rebvo algorithm outline

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2. Analysis and improvements of Rebvo algorithm

This chapter contains thorough analysis of proposed algorithm. The algorithm is carefully

explained, step by step, using various examples. Symbols used through the chapter are ex-

plained in Section 2.1. Short overview of all substeps is given in Section 2.2. Much attention

is paid to edge detector, because it had to be implemented along with the main algorithm, as

available ready-made edge detection methods did not meet algorithm requirements. Figures

used throughout the chapter were generated using input images from TUM [45] and KITTI [46]

datasets. Chapter is concluded with remark on trajectory postprocessing, used to estimate algo-

rithm accuracy.

Note: considerations, modifications and improvements of the original algorithm are empha-

sized. The have also been collected in Chapter 4.

2.1. Notation (Keyline structure) and main loop

Pixels that contain subpixel edge positions are called Keylines and, after edge extraction,

are stored as an array of structures defined in Table 2.1. When (n+1)-th frame of video input is

being processed, only n-th and (n+1)-th Keyline arrays are available; (n−1)-th is discarded, as

it is no longer needed. This is presented in Fig. 2.1. Fields of n-th Keyline array will be denoted

with subscript p (for previous) and t (for transformed). Subscripts c (current) and r (rotated)

will be associated with the (n+ 1)-th frame.

24 2.1. Notation (Keyline structure) and main loop

start

n := 1

parameters_initialization()

KLsp := edge_detection(n)

n++

KLsc := edge_detection(n)

edge_tracking()

minimization

successful?

mapping()

card(KLsnew.md) >

500?

KLsp := KLscno

yes

no
yes

Fig. 2.1. Simplified flowchart of the algorithm. KLsx are arrays of Keyline

structures

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.2. Algorithm outline 25

Table 2.1. Keyline structure

Structure field Description

q = [qx, qy]
T subpixel position in image

h = [hx, hy]
T normalizeda q: h = q − [cx, cy]

T

ρ, σρ estimated inverse depth: 1
Z

, and its variance

ρ0, σρ0 inverse depth predicted by Kalman filter and its variance

~g edge gradient obtained from DoG

pid, nid index of previous and next Keyline in an edge

mf index of next frame Keyline obtained during forward matching

md index of next frame Keyline obtained during directed matching

k number of consecutive frames that this Keyline has appeared on

a Usage of normalized coordinates is more robust [47]. In the implementation, h is also often temporarily divided

by f , so that calculations on homogeneous coordinates are more stable.

2.2. Algorithm outline

Explanation of the algorthim given in Section 1.5 is valid not only for [1], but also for the

discussed implementation. Briefly summarizing:

1. Edge extraction – Section 2.3. A number of tests is performed to decide whether a pixel

contains an edge – Section 2.3.3.

2. Edge tracking (minimization) – Section 2.4. Keylines from previous frame already had

their depths estimated in previous iteration of the algorithm. By using pixel positions and

depths, Keylines are projected from image plane to 3D space, where they transformed

in order to “keep up“ with camera movement, and back-projected to image plane of the

current frame – Section 2.4.1. They should coincide with new current frame Keylines that

belong to same objects in the scene. Minimization is performed until this 3D transforma-

tion is optimal – Section 2.4.4.

3. Due to reasons mentioned in Sec. 2.5, in order to find matches between previous and

current Keylines, additional matching has to be executed – Sec. 2.5.2. Depth information

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

26 2.3. Edge extraction

is propagated from previous frame to current, smoothed out (Sec. 2.5.3) and updated to

take into account the motion that camera has underwent (Sec. 2.5.4).

2.3. Edge extraction

Primal step of algorithm is subpixel edge extraction. Keyline structures are populated using

extracted data (edge position and edge gradient). Keylines that are estimated to lie on same edge

are joined.

2.3.1. Edge detection algorithm choice

While many edge detection algorithms could be used in this step, authors of Rebvo have

chosen DoG (Difference of Gaussians), because it provides [1]:

1. repetivity – an edge is detected similarly throughout consecutive frames,

2. precision – edge positions are accurate,

3. low time & memory complexity.

Another advantage of DoG, unmentioned by Tarrio and Pedre, is that edge gradient can

be obtained directly from normal vector of the fitted local plane. In this thesis DoG was used

as well. Most vital property was subpixel precision, otherwise Canny detector [48] would be

employed. In principle, subpixel edge detection precision is possible, because as long as Whit-

taker–Nyquist–Kotelnikov–Shannon theorem assumptions are satisfied, the true continuous im-

age intensity function can be reconstructed from discrete pixel values.

2.3.2. Data preprocessing

First of all, RGB images are converted to grayscale. Color information is not used in the

algorithm.

Before performing any edge detection technique, one critical issue has to be addressed. If

input images were rectified1 in such a way that extrapolation beyond original borders had been

needed, artificial edges will be present in every frame (because extrapolation procedure usually
1If images were not rectified, they should be.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.3. Edge extraction 27

assumes 0 pixel intensity beyond the image). Gradient of these edges is almost always strong,

meaning that they tend to pass all tests and to be identified as valid keylines, thus generating

false positives. During later minimization step, they greatly distort the procedure, making it

behave as if the 3D space was curved. Example of such border is depicted in Fig. 2.2.

Fig. 2.2. Input image, already rectified by dataset authors, zoomed-in near left

border. Individual pixels produced by rectification can be observed on the right

In case of DoG, these artificial edges need to be removed before Gaussian blurring – oth-

erwise they would spread out, making it tricky to reject them later. In tested datasets, artificial

borders’ thickness did not exceed 1 pixel, so simply 1-pixel wide frame of outermost pixels

was always discarded. In general case, width of the frame can be figured out from distortion

model, instead of being set manually. However, for highly distorted images, a rectangular frame

would also discard many valid pixels – either in corners (barrel distortions), or near middle of

borders (pincushion distortions).

2.3.3. Difference of Gaussians strength tests

After necessary preprocessing, edge detection can be started. Generally edge detection

works by finding positions in image where pixel intensity changes most rapidly. Basic idea

of DoG is to approximate image second derivative (the Laplacian) [19] [49]. The zero-crossing

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

28 2.3. Edge extraction

of Laplacian corresponds to such positions. Example based on real data, reduced to one di-

mension for clarity, is presented on Fig. 2.3. Other approaches to edge detection involve curve

fitting [50] [51].

Fig. 2.3. DoG zero-crossing subpixel edge detection. Discussed method was

applied to an image, then one row of pixels containing very a apparent edge

was extracted. Red cross denotes calculated subpixel edge position

In order to filter out noise, image should be first smoothed with a Gaussian filter. These

operations can be combined into one operator – Laplacian of Gaussian – which in turn can be

approximated with difference of two images smoothed with Gaussian filters using two different

sigmas2 Edge detection results for initial sigma values were satisfactory in performed tests,

therefore other sigma values (or automated sigma adjustment schemes) were not tested.

Exemplary Difference of Gaussians image is depicted in Fig. 2.4. Implementation in-

sight: while individual smoothed images can be computed using uint8 as underlying data

type (for speed), the difference has to be computed using signed data type. Otherwise obtained

function will not cross zero!

2LoG is best approximated by DoG when σ1

σ2
=
√
2 [52].

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.3. Edge extraction 29

Fig. 2.4. Difference of Gaussians applied to an image from the TUM

dataset [45]. Near-zero values indicate feasible edge candidates

Another parameter is window size – it defines pixel neighborhood that will take part in

later calculations of edge position. For window size w, (2w + 1)2 immediate neighbors will be

considered, including the center pixel itself. For sake of this thesis, value w = 2 was used.

Edge detection procedure is performed for every pixel that lies at least w pixels from image

border, so that neighborhood does not need to be extrapolated. The procedure consists of five

subsequent tests. If a pixel passes all of them, it is considered to be an edge (and additionally

its subpixel position and edge gradient ale calculated along the way). Influence of these tests on

final result is depicted for an exemplary frame in Fig. 2.5. Color map explanation:

– dark blue (0 in the color map) – neighborhood outside image,

– blue (1 in the color map) – rejected by the first derivative norm test,

– light blue (2 in the color map) – rejected by DoG sign balance test,

– cyan (3 in the color map) – rejected by well-conditioning test,

– green (4 in the color map) – rejected by zero-crossing position test,

– orange (5 in the color map) – rejected by third derivative norm test,

– red (6 in the color map) – reserved for debug purposes,

– dark red (7 in the color map) – identified as a Keyline.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

30 2.3. Edge extraction

Fig. 2.5. Edge detection tests results. Pixel colors indicate which test has re-

jected given pixel (or if is has been identified as edge)

First test – first derivative norm

In order to speed up computations by early identifying non-edges, first derivative of pixel

intensity is calculated by applying two Sobel operators (derivatives along x and y axes) and

taking norm of the result. This norm is then compared with a threshold.

Tarrio and Pedre use hysteresis to determine threshold value after every frame. On the one

hand, presented algorithm operates offline, so abundance of keylines is not an issue. On the

other, hysteresis parameters still need to be adjusted for given dataset. Invalid parameters can

alter overall algorithm results significantly, so from algorithm analysis point of view, the fewer

of them, the better. Thus instead simpler solution was tested out.

Image is partitioned into a2 rectangular chunks, for relatively small a, e.g. 7. Then for

each chunk number of pixels that would pass the first derivative test for given constant thresh-

old is counted. If this number is relatively low, threshold is locally multiplied by a constant

b1 < 1, e.g. 1
3
. However, if the number is relatively large, then threshold is locally multiplied

by b2 > 1, e.g. 5
3
. Local threshold array can finally be smoothed with Gaussian filter to avoid

discontinuities.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.3. Edge extraction 31

Proposed procedure also has parameters, but there are few advantages:

– parameters are much simpler to interpret,

– effectively only one parameter is crucial (the constant threshold) and rest of procedure

serves as a refinement,

– operates without delay, which is vital especially if keyline number is too low.

In Fig. 2.6 some pixels on the right half of the image were considered further for being

edges, although ultimately they were also rejected. On the other hand, more non-edge pixels

have been rejected by the first test on the left half (green regions are a bit thinner). However,

if any edges are added by this method, they are not very stable and tend to be nonetheless

untraceable in later frames (they do not exhibit the repetivity property).

(a)

(b)

Fig. 2.6. Edge detection tests results. Pixel colors: dark blue – neighborhood

outside image; blue, light blue (not present), cyan (not present), green and or-

ange – rejected by tests 1 to 5, respectively; red – reserved for debug purposes

(not present); dark red – final Keylines. (a) Constant first test threshold, (b)

Chunked first test threshold

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

32 2.3. Edge extraction

Second test – DoG sign balance

Neighborhood of pixels that have passed the first test is checked for “sign balance“. Number

of positive and negative DoG values has to be comparable within a defined percentage, e.g. 20%.

Example results of the test for 2 different pixels are depicted in Fig. 2.7. It was observed that

pixels very rarely fail this particular test.

Fig. 2.7. Example of the DoG sign balance test. Negative values are denoted

as black pixels, postive – as white. Green color marks neighborhood of pixel

that has passed the test and is, possibly, an edge. Pixel marked with red was

rejected

Third test – well-conditioning

Then DoG values are approximated by a plane using linear regression – (2.1) is solved

for θ. Pseudo-inverse of A, needed to solve it, has to be computed only once for the whole

algorithm. Zero-crossing of the plane can be determined algebraically, resulting in (2.2). This

has been visualized in Fig. 2.8. These closed-form formulas are the main reason for DoG not

being computationally demanding, as curve-fitting approaches are usually iterative.

For more resilience, an additional test is performed. If (2.3) is not satisfied, then equation

system 2.1 is considered to be badly conditioned and this pixel is rejected. This was not

considered in [1]. The purpose of this test is to avoid divide-by-zero errors in fourth test (Sec-

tion 2.3.3). All pixels that do not pass the third test would still be filtered out later – they also

do not pass the fifth test (Section 2.3.3).

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.3. Edge extraction 33

Fig. 2.8. Geometric interpretation of zero-crossing search. Local approxima-

tion of DoG values has been depicted with a colored plane. It intersects the

z = 0 plane, creating the red line. Blue line also lies on the z = 0 plane; it

passes through the origin (cyan point) and is perpendicular to red line. Inter-

section of these two lines (black point) is the zero crossing

Aθ = δ (2.1)

where:

A – 3x(2w + 1) matrix of pixel positions: [X Y 1],

X – column vector of x coordinates of pixel centroids in neighborhood, assuming that

central pixel’s centroid is located at x = 0, ((2w + 1)-vector),

Y – column vector of y coordinates of pixel centroids in neighborhood, assuming that

central pixel’s centroid is located at y = 0, ((2w + 1)-vector),

δ – DoG values corresponding to X and Y ((2w + 1)-vector),

θ – parameters defining the approximated plane: z = θxx+ θyy + θz.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

34 2.3. Edge extraction

[xs, ys]
T =

[
−θxθy
θ2x + θ2y

,
−θyθy
θ2x + θ2y

]T
(2.2)

where:

ks – estimated k-coordinate of the subpixel edge position (0 is the pixel center).

θ2x + θ2y > 10−6 (2.3)

Fourth test – zero-crossing position

Obtained zero-crossing marks the subpixel position of the edge; an example of a few sub-

pixel positions along an edge is presented in Fig. 2.9. Inequality (2.4) tests whether it lies within

the pixel itself. If not – edge is not detected. After this test, most of Keyline candidates form

1-pixel wide edges.

Fig. 2.9. Obtained zero-crossings of a particularly well detected edge. Black

pixels denote background (non-Keylines) and blue – Keylines. The blue line

is a 1-pixel wide edge. White vectors represent edge gradient. Initial points of

vectors are the subpixel zero-crossings

max(|xs|, |ys|) < 0.5 (2.4)

Fifth test – third derivative norm

Normal vector of fitted plane is defined by (2.5). Vector ~r can projected onto z = 0 plane,

creating third derivative vector: the edge gradient ~g. If ||~g|| is small, then rz component must

have dominated ~r, meaning that fitted plane was almost parallel to the z = 0 plane. In turn this

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.3. Edge extraction 35

implies that edge was not sharp. Therefore, as a final test, norm of ~g is tested – it must exceed

a threshold for edge to be finally detected.

~r = [θx, θy, −1]T (2.5)

where:

~r – normal vector of the fitted plane z = θxx+ θyy + θz.

Edge detection tests summary

Colored regions visible in Fig. 2.5 do resemble to some degree a probability distribu-

tion – the probability that given pixel contains an edge. Thus initially use of fuzzy logic was

considered. Ultimately, as already mentioned, detected edges were deemed to be acceptable, so

this idea was not pursued. Such approach would also require more processing power, making it

less suitable for mobile devices.

Presented edge detection algorithm has proved to be quite robust under lighting conditions

changes, as reported in [1]. An example is depicted in Fig. 2.10 (input images) and Fig. 2.11

(map of detected edges).

2.3.4. Depth initialization

After Keyline has been successfully identified on image, a data structure described in Sec-

tion 2.1 is populated with obtained data. This step is different for the very first processed frame,

because its Keylines must have some initial depth values. During first tests, a constant ρ = 1 was

used. Then for some time explicit Kinect depth map was used, as it was available in the TUM

dataset. Finally, after other ares of algorithm have been improved, it was observed that in most

cases quick convergence (5-10 frames) could be achieved by initializing depth with random

values, even with images scaled down by 80% (to 128 by 96 pixels). Convergence depends

on speed of camera during these first frames. Overall, this is much better result than in [1],

where 2-5 seconds needed for depth convergence were reported. Noise was generated using

normal distribution with parameters chosen for each dataset: N(2, 0.5) for TUM and N(10, 3)

for KITTI.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

36 2.3. Edge extraction

(a)

(b)

(c)

(d)

Fig. 2.10. Edge detection in 4 consecutive KITTI [46] frames under lighting

conditions changes – input images

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.3. Edge extraction 37

(a)

(b)

(c)

(d)

Fig. 2.11. Edge detection in 4 consecutive KITTI [46] frames under lighting

conditions changes – input images. Detected edges are denoted with cyan

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

38 2.3. Edge extraction

Some thought was given to more elaborate initialization schemes. Feature point corre-

spondences could be used in order to determine first frames scene geometry [40] in a quicker

and more robust way, while rest of algorithm would still operate on edges. Feature point de-

scriptors, such as the SIFT (Scale Invariant Feature Transform) [52], or even simpler corner

detectors [41] [32], are well suited for this task.

Their main disadvantage is their complexity, especially in case of more robust ones, like

SIFT. They need to be somehow matched – this becomes unfeasible for real-time applications

once number feature points is too large [5]. This in turn means that many parameters would

have to be carefully chosen so that a consumer-grade mobile system would not be flooded by

excessive features and remain responsive. Finally, feature point descriptors encode larger pixel

neighborhood than edges, but they lack structural information, meaning that match is likely

produce more outliers, that need to be dealt with (filtered).

2.3.5. Keyline joining

After obtaining individual Keylines, they are joined together to form connected edges. For

each Keyline, its neighbors are searched among 3 out of 8 bordering pixels. Search is performed

in direction perpendicular to ~g, an example is depicted in Fig. 2.12.

Joined Keylines are used for pruning. First of all, edges consisting of 3 pixels or less are

discarded, as they are unlikely to be good features to track. Secondly, outermost Keylines of

every joined edge are likewise removed – out of all Keylines in that edge, they are most likely

to be affected by noise. Pruned Keylines can be seen in Fig. 2.13, as well as in Fig. 2.11.

In later steps, the algorithm considers only individual Keylines, not joined edges (as men-

tioned in Section 1.5). Information about neighbors is used after edge detection only once – in

Regularization step, where ρ and σρ are averaged over Keyline and its 2 immediate neighbors.

Initially more edge joining strategies had been considered: morphological operations

on Keylines, loop avoidance and edge segmentation (into parts with similar gradient). How-

ever, once it was understood that edge joining takes such small part in algorithm flow and that

by-pixel approach is preferable [41], this direction of research was abandoned.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.4. Edge tracking 39

Fig. 2.12. Edge joining principle. White pixels denote Keylines, black pix-

els – non-Keylines, green x – currently processed pixel, green arrow – ~g, red

arrow – ~g rotated by π
2 clockwise , red rectangle – edge joining candidates

2.4. Edge tracking

Goal of edge tracking is to find a 3D transformation (rototranslation – translation and rota-

tion) that best describes transition between two consecutive frames. Previous frame Keylines are

projected to 3D space, where they are rototranslated; then resulting points are back-projected to

image plane (transformations are elaborated upon in Section 2.4.1). Reprojected Keylines are

matched against Keylines of the next frame – see Sections 2.4.2 and 2.4.3. Minimization of the

residual is performed using Levenberg-Marquardt algorithm. Similarly to [1], implementation

is based on [53].

2.4.1. Warping function

2D Keyline ←→ 3D point transformations are defined by (2.6) and (2.7). They can be

derived from 1.2, assuming fx = fy = f and s = 0. These assumptions were valid for

tested datasets. It should be noted, however, that in case of smartphone cameras, full pinhole

model should be considered, complicating these formulas. Once points have been projected

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

40 2.4. Edge tracking

Fig. 2.13. Edge pruning result. Gray pixels – background; black – valid Key-

lines; white – pruned Keylines

using γ, they can be rotated and translated in 3D space using (2.8). The rotation matrix has form

R = exp ([~ω]s).

γ(hp, ρp) =

[
hpx
fρp

,
hpy
fρp

,
1

ρp

]T
: <2 ×< → <3 (2.6)

where:

γ – projection function.

γ−1(Q) =

[[
fQx

Qz

,
fQy

Qz

]T
,

1

Qz

]T
: <3 → <2 ×< (2.7)

where:

γ−1 – back-projection function,

Q – 3D world point (3-vector).

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.4. Edge tracking 41

ψ(~v, ~ω,Q) = exp ([~ω]s)Q+ ~v (2.8)

where:

ψ – warping function,

~v – camera translation (3-vector),

~ω – camera azimuth rotation in axis-angle notation3 (3-vector),

exp – matrix exponentiation function, which can be approximated using Euler-Rodrigues

formula [11].

2.4.2. Auxiliary image

Auxiliary image is a lookup table that speeds up minimization. It is a matrix of size equal to

the image. An entry in the matrix is nonzero if distance from its coordinates to closest Keyline’s

q is lower than a search radius rsearch, usually equal to 5 pixels. Then such entry contains

a reference to the found closest Keyline.

During minimization, Keylines from previous frame are projected to 3D space using depth

information (ρ), rototranslated, and then projected back to image plane. Positions obtained from

the back-projection are compared against the auxiliary image of next frame to check if such

position corresponds to a Keyline (and to which).

Auxiliary image creation can be perceived as widening of an edge by “spanning“ its pixels

along ~g. A depiction is presented in Fig. 2.14a. Because pixel positions are discrete, increments

of this spanning should be lower than 1 px. Otherwise, when ~g is not perpendicular to pixel

grid, edge widening process will occasionally skip over some pixels. This leads to coarseness

and discontinuities (gaps) in auxiliary image (see Fig. 2.14b), which can later bias the mini-

mization by producing false local minima.

Some gaps are unavoidable, however, because ~g is available only in places where there is

a Keyline. Even with subpixel position precision, there still is at most only one Keyline per

pixel. If edge has any curvature, then at some radius auxiliary image will feature spikes. They

are visible in both Fig. 2.14a and Fig. 2.14b.

3Axis-angle vector ~ω describes right-hand rotation by ||~ω|| radians about Oω axis [4] [54].

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

42 2.4. Edge tracking

(a) (b)

Fig. 2.14. The auxiliary images created with different step sizes. Pixel color

encodes distance to nearest Keyline (the warmer, the closer). (a) step 0.5,

(b) step 1

2.4.3. Keyline matching criteria

During each iteration of minimization, reprojected old Keylines and new Keylines are pre-

matched, using auxiliary image. In order to determine validity and score of this match, following

criteria are tested. Result of applying them on a frame is depicted in Fig. 2.15.

1. History – if kp is lower than some constant threshold kthresh (e.g. 2), then this Keyline

is considered to be too uncertain (its history is too short) and it does not take part in

minimization at all. This test is performed only after kthresh frames have been wholly

processed by the algorithm in order to allow system to initialize.

2. Depth uncertainty – Keylines where σρp exceeds its 95. percentile are rejected. This pa-

rameter is estimated by Kalman filter during the mapping step.

3. Gradient similarity – score based on angle between ~gp and ~gc, as well as on their magni-

tudes, can not exceed a threshold.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.4. Edge tracking 43

Fig. 2.15. Minimization tests results. Pixel colors: dark blue – not Keyline;

blue – σρ too high; cyan – too short history; teal – 2D reprojection lies outside

the image; orange – no corresponding Keyline in next frame’s auxiliary image;

red – gradients dissimilar; dark red – successful matching

2.4.4. Energy minimization

Each minimization iteration executes following steps:

– Using previously estimated Jacobian matrix J and other information from previous itera-

tion, propose new parameter vector in the 6-dimensional parameter space [~v, ~ω].

– For each Keyline in previous frame:

– Perform reprojection: ht = (γ−1 ◦ ψ ◦ γ) (hp, ρp).

– Find closest hc that conforms to similarity criteria.

– Calculate the residual.

– Calculate overall iteration score.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

44 2.4. Edge tracking

Minimized function takes form defined in (2.9). Distance between matched points is casted

onto edge gradient, because “location information is only present in direction [of the gradi-

ent]“ [1]. Sample residuals are depicted in Fig. 2.16 and Fig. 2.17. The matching function M

is not differentiable, making it impossible to calculate Jacobian of ζ analytically. Therefore

Jacobians were calculated using the same formulas as in Tarrio and Pedre’s implementation.

E = ζ (~v, ~ω) =

p∑
i

wi
σ2
ρi

[
M
ht,hc

((ht) • ~gc)
]2

(2.9)

where:

wi – weight (square of the Huber norm [55]),

ht – transformed hp, ht = γ−1 (ψ (~v, ~ω, γ (hp, ρp))),

M – matching function, M
ht

(•) =

•, ∃hc : ht matches hc

rsearch, otherwise
.

Increment of the input vector is dictated by the Levenberg–Marquardt update equation [56].

One way of determining it is to use SVD on a 6x6 matrix Λ, as it is performed by Tarrio and

Pedre. However, Λ is always a positive definite [53], meaning that Cholesky factorization can

be used, instead of slower, but less constrictive SVD. However, size of the decomposed matrix

is quite small, so computational gain is negligible.

This was tested in GNU Octave, using OpenCV [11] linear algebra routines, compiled to

MEX files. Random values were chosen to populate variables in the LM equation and then it

was solved 106 times, first using SVD, then Cholesky factorization. Average running times per

iteration have been collected in Tab. 2.2.

Table 2.2. SVD and Cholesky running time comparison

Method Average time

SVD 29µs

Cholesky 24µs

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.4. Edge tracking 45

Fig. 2.16. Minimization residual after final iteration, with and without the

weighting Huber norm. Negative values are present, because direction of dis-

placement is taken into account

After optimal transformation parameters have been found, uncertainty of the result is esti-

mated as covariance matrix in form
(
JTJ
)−1

. If the matrix being converted is ill-conditioned,

then it is assumed that minimization has failed. For example, this can happen if no matches

at all were found. Then all residuals will be equal and ζ will be completely flat locally. Usually

minimization fails only if number of input Keylines is too low.

Moreover, after last minimization iteration, the mpf field of previous Keylines is populated.

For every Keyline that was successfully matched to a current Keyline, reference to this current

Keyline is saved in the said field.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

46 2.4. Edge tracking

Fig. 2.17. Minimization residual after final iteration. Negative values are

present, because direction of displacement is taken into account

2.4.5. Initial conditions

Levenberg-Marquardt algorithm is prone to falling to local minima. Repetitive patterns,

such as fences, are especially challenging (see Fig. 2 in [57]). Generally, global minimization

of arbitrary function is an intricate problem with no infallible solution. There has been pro-

posed a plethora of heuristic methods: evolutionary algorithms, simulated annealing, physical

simulations (Momentum), etc. However, they are unsuitable for real-time applications [19].

In case of LM, crucial issue is choice of initial condition vectors. Following [1], two ini-

tial conditions were tested, and calculations proceeded using better one (see Fig. 2.18). These

vectors are: ~0 and rototranslation of the previous frame. If linear and angular instantaneous ve-

locities of the camera do not change rapidly, it is reasonable to assume that previous and current

velocities are not far apart in the parameter space.

One exception is the special case when too few Keylines are matched and system decides to

reinitialize. This usually happens when number of detected Keylines also drops – for instance

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.5. Mapping 47

Fig. 2.18. Total energy minimization. Two initial conditions are tried, then

better one is continued

in the fr2_360_kidnap sequence (TUM [45]). In the context of algorithm results postprocessing

(i.e. fitting the estimated camera trajectory to ground truth data), it is better to assume no prior

knowledge and overwrite the previous parameter vector with zeros.

During some tests, the prior rototranslation vector for the first frame in sequence was ob-

tained from ground truth data in hope of accelerating algorithm convergence (and to assess

whether it could retain good information that was fed to it). However, usually ground truth data

uses other reference frame, as position of the laser positioning system is different from position

of the camera itself.

2.5. Mapping

For obtained information to be useful in the next iteration of the algorithm, it needs to be

preserved. Since this is not a full SLAM system, data needs to be updated and passed on to next

array of Keylines. This is achieved by the mapping step: Keylines from previous iteration are

matched to Keylines that are currently being processed. Data that is passed on between matched

Keylines contains:

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

48 2.5. Mapping

– estimated ρ and σρ, that need to be refined with the Kalman filter,

– history (k),

– index of matching Keyline from the previous frame.

At this stage initial matching has already been performed during minimization. As it was

noted in Section 1.5, it is quite coarse, however. In addition, there is another reason for such

elaborate match searching scheme. After system has been initialized (i.e. after kthresh frames

have been processed), history test will become active in the minimizer. As far as the minimizer

is concerned, only Keylines already having some matching history will have possibility of being

matched again and propagated further. On the other hand, “new“ Keylines with no prior history

will not have opportunity of gaining it, because they will be always skipped in the very first

minimizer test and not matched. This is why additional matching is needed.

Finally, the mapping step contains depth information inter-frame processing procedures

(regularization, Kalman filtering, scale correction).

2.5.1. Forward matching

Since calculated transformation between the two frames is supposed to be the optimal one,

after applying it to 3D positions of previous Keylines and casting them into the image plane,

their expected positions on the next frame will be obtained. This was already done at the min-

imization step; said Keylines were then paired with their corresponding match using property

mpf (see conclusion of Section 2.4.4). Forward matching simply uses this information and

copies appropriate field values from previous Keylines to their new forward matched counter-

parts. If later a better match is found, already copied data will be simply overwritten. Forward

refers to the fact that minimizer creates initial matches from previous frame to current.

2.5.2. Directed matching

Considering that there might have been some outliers that affected the quality calculated

transformation and that potentially valid matches with no history need a chance to pick it up, it

is essential to extend the list of matches to include Keylines that have not been back-projected

perfectly.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.5. Mapping 49

So as to make finding candidates for matching easier, current Keyline array is reverse-

rotated4 and casted onto the old edge map. This decreases the distance between corresponding

points and reduces the problem to a pure translatory problem.

This approach can be compared to mutual consistency check in [27]. During minimization,

previous Keylines were forward rotated onto current image plane and matching was performed.

Now current Keylines are reverse rotated onto previous image plane in hopes of finding more

matches.

Translation ~v calculated during minimization, along with the reverse-rotated hr, defines for

each current Keyline a line. Were ρr known precisely, relationship between matching points

would satisfy (2.10). As it is not, (2.10) defines a line.

hp = hr − ρr
(
fvrx,y − hrvrz

)
(2.10)

Because of assumption that ρr > 0, search line is reduced to a halfline. A possible match

should lie on the halfline. In order to further constrain search area, maximum and minimum

pixel displacements are estimated, leaving only a line segment (see Fig. 2.19). Keylines that lie

within it are possible candidates for matches. Directed refers to probing along the direction of

line segment.

Searching starts at a point that is estimated to be a most possible match. The procedure

is performed checking pixels closer to segment ends, in an alternating manner. A segment of

halfline If an inspected pixel a previous Keyline, it is considered a possible match, that still

needs to be validated. Firstly, ~gp and ~gr are compared, analogously to the third keyline matching

test of the minimizer (see Section 2.4.3). Secondly, potential match needs to conform to the

motion model, defined in (2.11).

∣∣∣∣∣ ‖hp − hr‖∥∥fvrx,y − hrvrz∥∥ − ρr
∣∣∣∣∣ < τ(σρr) (2.11)

where:

~vr – translation vector, ~vr = (exp ([~ω]s))
T ~v,

τ – uncertainty estimation function that takes into account σρr .

4Rotated using rotation opposite to rotation ~ω that was obtained during minimization.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

50 2.5. Mapping

Fig. 2.19. Directed matching along halfline segent. Orange pixels denote cur-

rent Keylines, rotated to previous frame by RT ; cyan – previous Keylines; dark

red – position of a current and a previous Keyline. Green and red arrows span

over the line segment

This provides additional outlier rejection scheme – any match that is not compatible with

model is rejected. A Keyline that moves in 3D differently than rest of the scene most likely

belongs to edge of an object that moves independently, as alluded in Section 1.5. This is partic-

ularly visible on TUM fr2_desk_with_person dataset, where objects present in the scene were

shuffled around. As it can be seen in Fig. 2.20, Keylines belonging to a moving person have

their history repeatedly reset. Outliers are filtered even if camera itself moves – as long as their

motion is not consistent with the scene.

After forward matching and directed matching, the number of valid matches must exceed

previously defined threshold. Threshold value of 500 Keylines has proved to be a good figure

during tests, regardless of image scale. If threshold is not met, algorithm resets, as there is not

enough Keylines with established history to base future transformation calculations on. A valid

matching results is depicted in Fig. 2.21.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.5. Mapping 51

(a) (b)

(c) (d)

(e) (f)

Fig. 2.20. Outlier rejection example on the TUM [45] dataset. Keyline color

on (a), (c) and (e) denotes Keyline history k (the warmer, the greater)

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

52 2.5. Mapping

Fig. 2.21. Matches laid over an image from the TUM [45] dataset. Red pixels

denote Keylines in this frame; blue – Keylines in next frame (not transformed

in any way); pink – positions occupied by a Keyline in both frames, regard-

less if these Keylines are related; green vectors – directed matches between

Keylines. Not matched Keylines are still visible

2.5.3. Regularization

Regularization is based on the assumption that Keylines located near each other on the im-

age are also close to one another in 3D, meaning that their ρ are similar. As edges of real-life

objects are seldom jagged, difference in depth between adjoining Keylines can be smoothed

out. This is done by taking a weighted mean of ρ and σρ of directly joined Keylines (see Sec-

tion 2.3.5). Weights take into account σρ and a simple angle-based gradient similarity measure.

To be regularized, a Keyline needs to have 2 neighbors (this means excluding ends of edges).

However, the aforementioned assumption is not always true. This is why additional tests on

neighboring pixels are needed. Firstly, depth of the neighbors must be comparable, taking into

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.5. Mapping 53

account their uncertainties. Then angle between gradients of neighboring Keylines is checked

for similarity. These tests are usually passed; most of rejected Keylines are corners.

During tests some datasets exhibited salt-and-pepper noise in estimated depth maps; e.g. sin-

gle Keylines were predicted to be extremely distanced from their neighbors). Such noise had

the tendency to be propagated by regularization, instead of being filtered. For such rare scenar-

ios a median filter was used before the normal regularization procedure. For each Keyline, its

depth was reestimated as median of its immediate neighbors, removing single wrongly predicted

depths. In normal scenarios, median filter does not visibly affect algorithm outcome.

2.5.4. Depth reestimation

Depth can not be simply copied to current Keylines from corresponding previous ones, as

camera has moved between frames, changing distance from the origin to 3D points. An EKF

(Extended Kalman Filter) is separately used for each Keyline in estimate current depths; depth

uncertainty is reestimated as well. Uncertainty of estimated translation and rotation, obtained

in Section 2.4.4, is taken into account. Prediction and correction equations for ρ are (2.12) and

(2.13), respectively

F (ρp, ~v) =

(
1

1
ρp

+ vz

)
N(1, Qrel) +N(0, Qabs) (2.12)

where:

F – prediction function,

N(µ, σ) –normal-distributed random variable with mean µ and standard deviation σ,

Qrel – multiplicative noise standard deviation (constant),

Qabs – additive noise standard deviation (constant).

H(ρc, ~v) =

((
f [vx, vy]

T − hcvz
)
• ~gp
‖~gp‖

)
ρc +N(0, 1) (2.13)

where:

H – correction function.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

54 2.5. Mapping

Depth has been constrained in [1] between 1
20

and 1000. However, it has been observed that

Keylines too close to the camera can disturb the algorithm convergence. Much better results

were obtained when minimal allowed depth was raised to 1. These values are relativ to initial

depth in the first frame (mean value of the used distribution) and to other algorithm parameters.

2.5.5. Scale correction

Scale correction step proposed by Tarrio and Pedre does not resolve the scale ambiguity

problem. It is argued in [1] that employed Kalman filter is biased, due to the fact that variance of

velocity is much lower than σρ. For each frame a single “shrinking factor“ Ξ can be calculated.

Then it can be applied by Keylines by dividing ρ and σρ by it.

Tests have concluded that Ξ oscillates too much while the system is initializing. Therefore it

is proposed not to estimate scale until system convergence (usually a threshold of 20 frames

suffices).

This does not remedy the fundamental problem of scale ambiguity in monocular systems.

To fix this issue, dimensions of real-life objects present the scene need to be known a priori.

Excellent example of such objects, with well defined shape and size, are traffic signs and

license plates, ever-present in urban environments that the algorithm was originally envisioned

for. Solutions for identifying those objects are:

– Haar feature-based cascade classifier combined with ORB (Oriented FAST and Rotated

BRIEF) descriptor [11],

– machine learning methods: SVM (Support Vector Machine) and neural networks,

– rectangle detection by the means of Hough transform,

– sliding window applied over image saliency [58].

This however entails additional, heavy computing cost and would not fit the designated

platform. Moreover, no out-of-the-box implementation was found, thus moving this problem

out of the scope of this thesis.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

2.6. Tests on artificial data 55

2.6. Tests on artificial data

Along with data from KITTI and TUM datasets, some tests on generated data were per-

formed, mainly for the edge detector. That way difficult edges (circles or sharp angles shaped

like letters T, Y and L) could be examined – how they were thinned, joined, fragmented and

how gradient of such edges behaved.

2D transformations are a special case of 3D ones, so they were used for tests of edge tracker

and the mapper – 2D images were simply moved sideways or rotated. It was tested how these

transformations would be recovered, however lack of depth data induced a lot of false positives.

Rendering a full 3D sequence using e.g. a game engine was also considered, but due to

antialiasing, too simple lighting techniques, texturing simplifications (bump-mapping) and lack

of raytracing, obtained results could be unreliable. Therefore instead popular datasets with well-

defined ground truth data were chosen.

2.7. Trajectory fitting

In order to assess algorithm accuracy as it processes new frames, estimated camera trajectory

is systematically compared with ground truth data after each frame. An optimal isotropic scaling

and Euclidean transformation between two trajectories is searched for. Obtained parameters

do not influence future algorithm iterations, as in real world applications such data is simply

unavailable. They are calculated only for visualization purposes. These visualizations are used

throughout Chapter 3.

In [59] it is described how to find an optimal (in the least square sense) rotation and

translation between two trajectories 3D using SVD. Scaling factor can determined using

fminsearch, a black-box minimization routine available in the GNU Octave environment.

Usually first 5 trajectory samples are not taken into account, as they are very noisy because of

system being not yet initialized. Generally if system does converge at all, then some level of

conformance with ground truth is achieved only after just a few frames.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

56 2.7. Trajectory fitting

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

3. Discussion of results

This chapter focuses on discussing overall algorithm results obtained from longer se-

quences. Tested sequences come from TUM [45] and KITTI [46] public datasets. Results in-

clude comparison of x, y and z components of the estimated camera trajectory with ground

truth, as well as numeric quantities (Table 3.1). Some erroneous outcomes are also presented,

with brief commentary.

3.1. Experimental setup

All of the tested sequences include ground truth (either laser positioning system in case of

TUM, or Differential GPS in case of KITTI), which is essential for debugging and validation

purposes. Also, these datasets are commonly used for visual odometry systems evaluation, mak-

ing to possible to compare proposed algorthim with others. Intrinsic camera parameters were

reported by dataset authors.

As the main goal of the algorithm is to estimate transformation between images, most care

was put into making sure that the system correctly calculates position of the camera in respect to

ground truth. Obtained trajectory was fitted onto ground truth trajectory using method explained

in Section 2.7.

Algorithm itself was implemented in the GNU Octave environment. The OpenCV [11] li-

brary was also used; it was compiled to MEX files, that can be executed by Octave. Choice

of programming language enabled fast prototyping and easy visualization, but prevented the

algorithm from achieving real-time performance. Based on results in [1] it is estimated that

implementation in a compiled language such as C++ would accomplish such goal even on

a consumer-grade smartphone.

58 3.1. Experimental setup

In order to speed up computations, images were first scaled down. This removed some false

edges, while retaining only the strongest ones, thus greatly reducing the number of Keylines.

In [1] it was already shown that algorithm run time depends linearly on Keyline number. The

biggest downscaling factor was reduction of size by 80%, resulting in an 128 by 96 pixels wide

image. Although such images are too small to be easily interpreted by humans, algorithm results

were still satisfactory.

Comparison of time needed to process one frame with two different downscaling factors is

featured in Fig. 3.1. For these particular images and scales, larger scale resulted in 1.81 more

processing time per frame, on average. Measured time included creation of some visualization

files, but this factor was insignificant next to the most time-consuming step, i.e. the minimiza-

tion.

Fig. 3.1. Single frame processing time for TUM fr3_teddy sequence. Red line

corresponds to scale of 1
3 of original image; blue line – 1

5

A few system parameters had to be adjusted between TUM and KITTI datasets, but there

was no need of fine tuning the configuration for every sequence separately.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

3.2. Trajectory comparison 59

3.2. Trajectory comparison

Presented results consists mainly from the following sequences. Selected values have been

collected in Table 3.1 - first two were used only for visualization as discussed in Section 2.7, last

one was obtained from evaluation script evaluate_ate available in TUM evaluation benchmark

[45]. It should be noted that these numbers are scores for only parts of said sequences.

– TUM fr1_xyz - only translatory motions are present here, as stated by creators of this

dataset "it’s mainly for debugging purposes",

– TUM fr2_desk - slow sweep around an office desk,

– TUM fr2_desk_with_person - same as above, but present person moves the objects

around, creating outliers,

– TUM fr2_pioneer_SLAM - robot with a mounted camera is trying to self-localize and

map the room,

– TUM fr3_long_office_household - slow sweep around two desks,

– TUM fr3_teddy - slow sweep around a big plush teddy bear,

– KITTI 01 - video registered by cameras1 mounted in front of a car.

Overall, the algorithm performed well in scenarios where camera underwent complex move-

ment, instead of simple linear translations. This is due to the fact that in the former case dis-

parities between frames generally make it easier to recover the egomotion, independently from

employed odometry algorithm. For example, a view from top of a trajectory is presented in

Fig. 3.2. Despite the low number of frame, complex motion has been recovered relatively

closely. Even in a dataset containing outliers (independently moving objects), odometry was

correct (see Fig. 3.3).

Sometimes frames did not contain enough Keylines and system had to be reinitialized. In

case of TUM fr3_teddy sequence there are 4 cases of reinitialization visible in Fig. 3.4: frames

271 & 272, 280, 386 & 387 and 394. System has recovered from three out of four of them, but

1Output from only one camera was used for algorithm evaluation, as it is a monocular system.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

60 3.2. Trajectory comparison

Table 3.1. Algorithm results for selected parts of sequences

Sequence Average drifta [ms] Scale ATEb [m]

TUM fr3_long_office_household 3.6 1.6 0.302

TUM fr3_teddy (long subsequence) 1.8 1.1 0.287

TUM fr3_teddy (short subsequence) 0.6 1.5 0.175

TUM fr2_desk_with_person 0.4 1.05 0.133

TUM fr2_desk_with_person 0.1 1.69 0.066

a RMSE between fitted trajectory points, multiplied by the frame rate (FPS)
b Absolute Trajectory Error – RMSE in meters after trajectory alignment

the third2 was fatal in a sense that scale and starting rototranslation were lost, and hence the

trajectory as a whole could not be well fitted with ground truth (Fig. 3.5). However, partitioned

sections can and are fitted quite well, as shown in Fig. 3.6 for the first part, and in Fig. 3.7 for

the second. Such points could be potentially detected in post-processing, as they are a sharp

spots on an otherwise smooth 3D curve.

This particular reinitialization is especially interesting, because of a depth estimation arti-

fact. Movement in this sequence is a circular, around the teddy bear – in every frame camera

moves and rotates a bit, so as to always have the teddy bear in the middle of the picture frame.

This causes the toy’s edges to be more or less in the same spot, while edges of the environment

are shifted a bit more. This in turn can lead to the system estimating that since the edges of

this object, actually lying the closest in 3D, don’t move a lot, they have to be very far away,

and the rest of picture is closer. Example of such bad initialization is presented in Fig 3.8. It is

worth mentioning that in such cases estimated trajectory, after being reinitialized, also did fit

the ground truth, despite having calculated wrong Keyline depths.

Places where rototranslation is lost due to reinitialization prevent usage of SLAM loop clo-

sure methods, as the curves are very far from closing. For instance, in Fig. 3.9, an expected loop

and obtained trajectory are compared.

2There were simply not enough edges (objects) present on the photo. Paired with motion blur, this resulted in

low Keyline number, no matter the image scale and gradient detection threshold.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

3.2. Trajectory comparison 61

Fig. 3.2. Example trajectory comparison between obtained results and ground

truth from dataset TUM fr2_desk_with_person, projected on the y = 0 plane,

as camera height was the least significant motion component.

The KITTI dataset was far more challenging than TUM. It very often happens that through

many consecutive frames, one half of images systematically lack Keylines, affecting the algo-

rithm. As camera was mounted on a car, individual displacements are more rapid. It is even

possible that rolling shutter problem is present, although this was not tested. Another issue is

that when car is moving forward, many Keylines are present in the middle of the field of view.

They undergo little to no displacement between frames, therefore they might bias the minimiza-

tion and prevent other Keylines from being matched (in the described scenario edges moderately

close to image border contain most information about motion of the camera, due to visible dis-

parity). A trajectory estimated for one of KITTI sequences in depicted in Fig 3.10. These results

are rather disheartening, as they show that algorithm needs to be improved before it can be used

in urban scenarios for which it was originally planned in this thesis.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

62 3.2. Trajectory comparison

Fig. 3.3. Example trajectory components comparison between obtained results

and ground truth from dataset TUM fr2_desk_with_person. Red line marks

estimated position; blue – ground truth

Fig. 3.4. Whole trajectory with denoted cases of reinitialization from dataset

TUM fr3_teddy. Red line marks estimated position; blue – ground truth; black

circles – reinitialization

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

3.2. Trajectory comparison 63

Fig. 3.5. Fitted trajectory showing fatal reinitialization problem from dataset

TUM fr3_teddy. Red line marks estimated position; blue – ground truth; black

circles – reinitialization

Fig. 3.6. First part of the sequence fitted to ground truth from dataset TUM

fr3_teddy. Red line marks estimated position; blue – ground truth; black cir-

cles – reinitialization

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

64 3.2. Trajectory comparison

Fig. 3.7. Second part of the sequence fitted to ground truth from dataset TUM

fr3_teddy. Red line marks estimated position; blue – ground truth; black cir-

cles – reinitialization

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

3.2. Trajectory comparison 65

(a) (b)

(c) (d)

(e) (f)

Fig. 3.8. An example of invalid depth estimation after system reinitialization.

Warm colors denote large edge distance from the camera. (a), (b) Well-esti-

mated depth, as background is warmer (cyan) and foreground is cooler (blue),

(c), (d) Depth is reset with random values due to motion blur, (e), (f) Invalid

depth after few frames – depth of the bear is estimated to be larger than the

objects that are situated behind it in reality

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

66 3.2. Trajectory comparison

Fig. 3.9. 3D trajectory obtained from TUM fr3_long_office_household, which

features a closed loop. Red points marks estimated position; blue – ground

truth

Fig. 3.10. Estimated trajectory of KITTI 01 sequence, fitted to ground truth.

Red line marks estimated position; blue – ground truth. Due to large distance

traveled, individual subplots have different scales

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

4. Conclusion

Overall, presented algorithm continues the novel take on lightweight and pure visual odome-

try from [1]. An easier way of implementing VO would have been the classic approach: extract-

ing feature points using one of available feature detectors, matching them and then estimating

the rototranslation; possibly including IMU and/or input from the other camera along the way.

However, a lot of research by the scientific community has already been performed in this area

(but of course existing solutions are still being perfected). This was covered in Chapter 1. Stud-

ies described in this thesis aimed to explore an approach that was off the beaten track and could

operate in real time on mobile devices, instead of high-end PCs.

Results are promising, especially in cases of complicated motion, which was primary prob-

lem on assumed designation of implementation of said algorithm. Trajectories fit nicely onto

the ground truth to some degree, which means that instantaneous azimuths are being estimated

adequately. They are crucial, because absolute camera position was originally supposed to be

acquired from a GPS unit, and camera orientation – from odometry. Algorithm needs to be

robustified against challenges of urban scenes, though. Presented implementation is publicly

available via a Git repository: https://github.com/kaszczesny/robustified-rototranslation, so that

it can be independently verified, or perhaps further developed.

Additions to the original implementation [1] that were described in Chapter 3 include:

– removal of aritifical border edges possibly created during image rectification (applied

before any edge detection substep),

– one more edge detection test, that removes the need of having to later handle division by

zero (or by numbers close to zero),

– simpler, but a little bit more effective edge detection threshold control mechanism (instead

of hysteresis),

https://github.com/kaszczesny/robustified-rototranslation

68

– depth initialization with normal-distributed random numbers in the first frame of the se-

quence, instead of a constant,

– creation of (marginally) more accurate lookup table for minimization,

– minor speed optimization – usage of Cholesky decomposition instead of SVD, based on

the observation that decomposed matrix is positive definite [53],

– optional median filter applied to edge depths before further regularization,

– proposition of estimated depth bounds that perform better.

A handful of possible ways to further improve presented solution have been addressed also

throughout the Chapter 3:

– incorporation of fuzzy logic into edge detection,

– feature-based depth initialization (deemed unnecessary),

– usage of full pinhole camera model in projection and back-projection functions,

– scale ambiguity resolution by using a priori knowledge of traffic signs and license plates

sizes.

Some more general enhancements can also be proposed:

1. Instead of direct Jacobian calculation like Tarrio and Pedre, a black-box approach can

be taken and Jacobians could be calculated numerically, e.g. using the Secant version

of Levenberg-Marquardt algothim [53]. Alternatively, an entirely different minimization

algorithm could be picked, but this might affect time performance.

2. Many algorithm steps are performed independently for each Keyline. This suggests that

they could be parallelized in the GPU (Graphics Processing Unit), taking performance

to a whole new level. Nowadays GPUs are present not only in PCs, but also in mobile

devices.

3. Algorithm is configured with roughly 30 parameters, that affect final outcomes in varying

degrees. Most of their values have been simply acquired from [1]. An extensive search

for their optimal values, performed over large datasets, could be undertaken.

4. As far as visualizations are concerned, another color map should be used. Many of the

figures presented in Chapter 2 (and all images that were created automatically by the

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

69

implementation) used the default jet colormap, or colors were chosen manually. Authors

are aware that jet should not be used to represent dense fields [60]. Figures did depict

only individual edges, but still their visual appeal could be enhanced.

5. Keyline matching criteria (especially during the minimization step) could be dynamically

changed, so that distant, but well-matched Keylines do not bias the outcome as it was

observed when KITTI [46] dataset was used.

6. Obtained trajectory can be Kalman-filtered, e.g. as in [61].

7. System could be transformed to a SLAM one. As long as only a few of best features

would be remembered, real time would not be hindered [25]. As it is not expected to

form closed loops in real life navigation scenarios, saved features could be instead used

to tackle occlusions.

8. GPS information could be incorporated, as it was originally intended; e.g. by taking ap-

proach similar to [23]. It could, over larger time scale, alleviate the problem of error ac-

cumulation when trajectory rapidly changes direction due to system reinitialization (and

error accumulation in general).

Finally, the algorithm should be reimplemented in a more efficient programming language,

such as C++. Time complexity, as well as behavior in real life scenarios, could be then verified.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

70

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

Bibliography

[1] Juan Jose Tarrio and Sol Pedre. “Realtime edge-based visual odometry for a monocular camera”.

In: Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 702–710.

[2] Pokémon GO. URL: https://pokemongolive.com/en (visited on 2017-08-29).

[3] ARCore. Augmented reality at Android scale. URL: https:// www.blog.google/ products/ google-

vr/arcore-augmented-reality-android-scale/ (visited on 2017-08-31).

[4] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge

university press, 2003.

[5] Krzysztof Szczesny. “Analysis of Algorithms for Geometric Distortion Correction of Camera

Lens”. Engineering Diploma Thesis. AGH University of Science and Technology, 2016.

[6] Thomas Stehle et al. “Camera calibration for fish-eye lenses in endoscopywith an application to

3d reconstruction”. In: Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE

International Symposium on. IEEE. 2007, pp. 1176–1179.

[7] Janne Heikkila and Olli Silven. “Calibration procedure for short focal length off-the-shelf CCD

cameras”. In: Pattern Recognition, 1996., Proceedings of the 13th International Conference on.

Vol. 1. IEEE. 1996, pp. 166–170.

[8] John G Fryer and Duane C Brown. “Lens distortion for close-range photogrammetry”. In: Pho-

togrammetric engineering and remote sensing 52.1 (1986), pp. 51–58.

[9] Zhengyou Zhang. “Flexible camera calibration by viewing a plane from unknown orientations”.

In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on.

Vol. 1. Ieee. 1999, pp. 666–673.

[10] Stephen DiVerdi and Jonathan T Barron. “Geometric calibration for mobile, stereo, autofocus

cameras”. In: Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on. IEEE.

2016, pp. 1–8.

https://pokemongolive.com/en
https://www.blog.google/products/google-vr/arcore-augmented-reality-android-scale/
https://www.blog.google/products/google-vr/arcore-augmented-reality-android-scale/

72 BIBLIOGRAPHY

[11] OpenCV. Program documentation. Version 3.1. URL: http:// docs.opencv.org/ 3.1.0/ (visited on

2017-08-29).

[12] Andrew W Fitzgibbon. “Simultaneous linear estimation of multiple view geometry and lens dis-

tortion”. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the

2001 IEEE Computer Society Conference on. Vol. 1. IEEE. 2001.

[13] R Grompone Von Gioi et al. “Towards high-precision lens distortion correction”. In: Image Pro-

cessing (ICIP), 2010 17th IEEE International Conference on. IEEE. 2010, pp. 4237–4240.

[14] Richard Hartley and Sing Bing Kang. “Parameter-free radial distortion correction with center of

distortion estimation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 29.8

(2007), pp. 1309–1321.

[15] Frederic Devernay and Olivier Faugeras. “Straight lines have to be straight”. In: Machine vision

and applications 13.1 (2001), pp. 14–24.

[16] Boguslaw Cyganek and J Paul Siebert. An introduction to 3D computer vision techniques and

algorithms. John Wiley & Sons, 2011.

[17] Zhengyou Zhang. “Determining the epipolar geometry and its uncertainty: A review”. In: Inter-

national journal of computer vision 27.2 (1998), pp. 161–195.

[18] Dan Pojar, Pangyu Jeong, and Sergiu Nedevschi. “Improving localization accuracy based on

lightweight visual odometry”. In: Intelligent Transportation Systems (ITSC), 2010 13th Inter-

national IEEE Conference on. IEEE. 2010, pp. 641–646.

[19] Richard Szeliski. Computer vision: algorithms and applications. Springer Science & Business

Media, 2010.

[20] Christian Dornhege and Alexander Kleiner. “Visual odometry for tracked vehicles”. In: (2006).

[21] Hongshan Yu et al. “An improved visual odometry optimization algorithm based on Kinect cam-

era”. In: Chinese Automation Congress (CAC), 2013. IEEE. 2013, pp. 691–696.

[22] Kourosh Khoshelham and Sander Oude Elberink. “Accuracy and resolution of kinect depth data

for indoor mapping applications”. In: Sensors 12.2 (2012), pp. 1437–1454.

[23] Ignacio Parra Alonso et al. “Accurate global localization using visual odometry and digital

maps on urban environments”. In: IEEE Transactions on Intelligent Transportation Systems 13.4

(2012), pp. 1535–1545.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

http://docs.opencv.org/3.1.0/

BIBLIOGRAPHY 73

[24] Maciej Polanczyk et al. “The application of Kalman filter in visual odometry for eliminating

direction drift”. In: Signals and Electronic Systems (ICSES), 2010 International Conference on.

IEEE. 2010, pp. 131–134.

[25] Andrew J Davison et al. “MonoSLAM: Real-time single camera SLAM”. In: IEEE transactions

on pattern analysis and machine intelligence 29.6 (2007), pp. 1052–1067.

[26] David Nistér, Oleg Naroditsky, and James Bergen. “Visual odometry”. In: Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Con-

ference on. Vol. 1. Ieee. 2004, pp. I–I.

[27] Yong Ren et al. “A stereo visual odometry based on SURF feature and three consecutive frames”.

In: Smart Cities Conference (ISC2), 2015 IEEE First International. IEEE. 2015, pp. 1–5.

[28] Felix Woelk and Reinhard Koch. “Fast monocular bayesian detection of independently moving

objects by a moving observer”. In: Joint Pattern Recognition Symposium. Springer. 2004, pp. 27–

35.

[29] João Paulo Costeira and Takeo Kanade. “A multibody factorization method for independently

moving objects”. In: International Journal of Computer Vision 29.3 (1998), pp. 159–179.

[30] Yanpeng Cao, Peter Cook, and Alasdair Renfrew. “Vehicle ego-motion estimation by using pulse-

coupled neural network”. In: Machine Vision and Image Processing Conference, 2007. IMVIP

2007. International. IEEE. 2007, pp. 185–191.

[31] Michal Irani, Benny Rousso, and Shmuel Peleg. Recovery of ego-motion using image stabiliza-

tion. Hebrew University of Jerusalem. Leibniz Center for Research in Computer Science. Depart-

ment of Computer Science, 1993.

[32] Jianbo Shi et al. “Good features to track”. In: Computer Vision and Pattern Recognition, 1994.

Proceedings CVPR’94., 1994 IEEE Computer Society Conference on. IEEE. 1994, pp. 593–600.

[33] Christoph Feichtenhofer and Axel Pinz. “Spatio-temporal Good Features to Track”. In: Proceed-

ings of the IEEE International Conference on Computer Vision Workshops. 2013, pp. 246–253.

[34] Johannes Gräter, Tobias Schwarze, and Martin Lauer. “Robust scale estimation for monocular

visual odometry using structure from motion and vanishing points”. In: Intelligent Vehicles Sym-

posium (IV), 2015 IEEE. IEEE. 2015, pp. 475–480.

[35] Xiaojing Song, Lakmal D Seneviratne, and Kaspar Althoefer. “A Kalman filter-integrated optical

flow method for velocity sensing of mobile robots”. In: IEEE/ASME Transactions on Mechatron-

ics 16.3 (2011), pp. 551–563.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

74 BIBLIOGRAPHY

[36] Chen Xiao et al. “A novel approach to improve the precision of monocular visual odometry”. In:

Information and Automation, 2015 IEEE International Conference on. IEEE. 2015, pp. 392–397.

[37] Etienne Mouragnon et al. “Real time localization and 3d reconstruction”. In: Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Conference on. Vol. 1. IEEE. 2006, pp. 363–

370.

[38] Jianjun Gui, Dongbing Gu, and Huosheng Hu. “Robust direct visual inertial odometry via

entropy-based relative pose estimation”. In: Mechatronics and Automation (ICMA), 2015 IEEE

International Conference on. IEEE. 2015, pp. 887–892.

[39] Rafid Siddiqui and Siamak Khatibi. “Robust visual odometry estimation of road vehicle from

dominant surfaces for large-scale mapping”. In: IET Intelligent Transport Systems 9.3 (2014),

pp. 314–322.

[40] Jakob Engel, Jurgen Sturm, and Daniel Cremers. “Semi-dense visual odometry for a monocu-

lar camera”. In: Proceedings of the IEEE international conference on computer vision. 2013,

pp. 1449–1456.

[41] Chris Harris and Mike Stephens. “A combined corner and edge detector.” In: Alvey vision confer-

ence. Vol. 15. 50. Manchester, UK. 1988, pp. 10–5244.

[42] Javier Civera, Andrew J Davison, and JM Martinez Montiel. “Inverse depth parametrization for

monocular SLAM”. In: IEEE transactions on robotics 24.5 (2008), pp. 932–945.

[43] Joao P Barreto, Rahul Swaminathan, and Jose Roquette. “Non parametric distortion correction in

endoscopic medical images”. In: 3DTV Conference, 2007. IEEE. 2007, pp. 1–4.

[44] Shichao Yang and Sebastian Scherer. “Direct Monocular Odometry Using Points and Lines”. In:

arXiv preprint arXiv:1703.06380 (2017).

[45] J. Sturm et al. “A Benchmark for the Evaluation of RGB-D SLAM Systems”. In: Proc. of the

International Conference on Intelligent Robot Systems (IROS). Oct. 2012.

[46] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous Driving? The

KITTI Vision Benchmark Suite”. In: Conference on Computer Vision and Pattern Recognition

(CVPR). 2012.

[47] Richard I Hartley. “In defense of the eight-point algorithm”. In: IEEE Transactions on pattern

analysis and machine intelligence 19.6 (1997), pp. 580–593.

[48] John Canny. “A computational approach to edge detection”. In: IEEE Transactions on pattern

analysis and machine intelligence 6 (1986), pp. 679–698.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

BIBLIOGRAPHY 75

[49] Ramesh Jain, Rangachar Kasturi, and Brian G Schunck. “Machine vision, vol. 5”. In: McGrawHill

New York (1995).

[50] Anna Fabijańska. “Subpixel Edge Detection in Blurry and Noisy Images”. In: International Jour-

nal of Computer Science and Applications 12.2 (2015), pp. 1–19.

[51] Frédéric Devernay. “A non-maxima suppression method for edge detection with sub-pixel accu-

racy”. PhD thesis. INRIA, 1995.

[52] David G Lowe. “Object recognition from local scale-invariant features”. In: Computer vision,

1999. The proceedings of the seventh IEEE international conference on. Vol. 2. Ieee. 1999,

pp. 1150–1157.

[53] Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. “Methods for non-linear least squares prob-

lems”. In: (2004).

[54] Jose-Luis Blanco. “A tutorial on se (3) transformation parameterizations and on-manifold opti-

mization”. In: University of Malaga, Tech. Rep 3 (2010).

[55] Peter J Huber et al. “Robust estimation of a location parameter”. In: The Annals of Mathematical

Statistics 35.1 (1964), pp. 73–101.

[56] William H Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge uni-

versity press, 2007.

[57] Ignacio Parra, Miguel Angel Sotelo, and Ljubo Vlacic. “Robust visual odometry for complex

urban environments”. In: Intelligent Vehicles Symposium, 2008 IEEE. IEEE. 2008, pp. 440–445.

[58] Kai-Hsiang Lin, Hao Tang, and Thomas S Huang. “Robust license plate detection using im-

age saliency”. In: Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE.

2010, pp. 3945–3948.

[59] K Somani Arun, Thomas S Huang, and Steven D Blostein. “Least-squares fitting of two 3-D point

sets”. In: IEEE Transactions on pattern analysis and machine intelligence 5 (1987), pp. 698–700.

[60] David Borland and Russell M Taylor Ii. “Rainbow color map (still) considered harmful”. In: IEEE

computer graphics and applications 27.2 (2007).

[61] Hai-Gen Min et al. “Visual odometry for on-road vehicles based on trifocal tensor”. In: Smart

Cities Conference (ISC2), 2015 IEEE First International. IEEE. 2015, pp. 1–5.

K. Szczęsny, J. Twardowski Algorithm for Visual Odometry.

	Abstract
	Introduction
	Theoretical background and state-of-the-art
	Pinhole camera model
	Stereo vision
	Monocular visual odometry
	Literature
	The Rebvo algorithm outline

	Analysis and improvements of Rebvo algorithm
	Notation (Keyline structure) and main loop
	Algorithm outline
	Edge extraction
	Edge detection algorithm choice
	Data preprocessing
	Difference of Gaussians strength tests
	Depth initialization
	Keyline joining

	Edge tracking
	Warping function
	Auxiliary image
	Keyline matching criteria
	Energy minimization
	Initial conditions

	Mapping
	Forward matching
	Directed matching
	Regularization
	Depth reestimation
	Scale correction

	Tests on artificial data
	Trajectory fitting

	Discussion of results
	Experimental setup
	Trajectory comparison

	Conclusion

