
AGH University of Science and
Technology

Faculty of Electrical Engineering, Automatics, Computer
Science and Electronics

Master of Science Thesis

Bartłomiej Dudek

Development of software anti-shake filter
for video stream

Supervisor:

Jarosław Bułat Ph.D

Kraków 2011

OŚWIADCZENIE AUTORA PRACY

Oświadczam, świadomy odpowiedzialności karnej za
poświadczenie nieprawdy, że niniejszą pracę dyplomową
wykonałem osobiście i samodzielnie i że nie korzystałem
ze źródeł innych niż wymienione w pracy.

. .

Table of Contents 3

TABLE OF CONTENTS

Introduction 5

1 Camera Vision and Image Transforming 7
1.1 Projective geometry and 2D transformations 7

1.1.1 Homogenous coordinates . 8
1.1.2 Camera projection . 8
1.1.3 A hierarchy of 2D transformations 11

1.2 Camera moves . 12
1.2.1 Camera movement techniques 14
1.2.2 Camera holding techniques . 16
1.2.3 Undirected random shakes . 16

1.3 Transformation matrix estimation . 19
1.3.1 Linear algorithms . 19
1.3.2 Over-determined case and different cost functions 20
1.3.3 Iterative minimization methods 20
1.3.4 Robust estimation – RANSAC 21

2 Motion Vectors in Video Compression 25
2.1 Still image compression – the M-JPEG encoder 25

2.1.1 Discrete Cosine Transform (DCT) based coding 26
2.2 Color planes subsampling . 26
2.3 Motion compensation . 27
2.4 Motion vectors estimation . 30

2.4.1 Gradient techniques . 30
2.4.2 Pixel recursive techniques . 31
2.4.3 Block-matching method . 31
2.4.4 Frequency domain techniques 31

2.5 Block-matching motion estimation algorithms 31
2.5.1 The Full-Search Method (FSM) 32
2.5.2 The Logarithmic Search Algorithm (LSA) 33
2.5.3 The Parallel Hierarchical One-Dimensional Search (PHODS) . 34
2.5.4 The Hierarchical Motion Estimation (HME) 35

2.6 Matching criteria . 36
2.7 Sub-pixel accurate motion estimation 39

Table of Contents 4

3 Stabilization Filter Development 41
3.1 Block diagram of anti-shake chain . 41
3.2 Real camera shakes measurement . 42
3.3 Rolling shutter distortions . 43
3.4 Artificial 3D environment created in Anim8tor 47
3.5 Preliminary MATLAB implementation 47

3.5.1 Existing motion vectors utilization 47
3.5.2 Comparison of different matching criterion 48
3.5.3 Comparison of different motion searching algorithms 48
3.5.4 Edges detection . 50
3.5.5 Transformation estimation . 50
3.5.6 Moving average motion filtering 55
3.5.7 Image transformation . 55
3.5.8 Bilinear interpolation . 57

3.6 FFmpeg implementation . 57
3.6.1 Data structures . 57
3.6.2 Motion estimation . 59
3.6.3 Transformation estimation and correction 61
3.6.4 Display styles . 62

4 Evaluation of Stabilization Quality 63
4.1 Test video sequences stabilization . 63
4.2 Review of other existing solutions . 66

Conclusions 67

References 69

Appendix A – vf_stabilize.c file reference 70

Appendix B – vf_stabilize filter users manual 72

Appendix C – CD-ROM 74

Introduction 5

INTRODUCTION

Visual inspection has an irreplaceable meaning in the quality control and the data
analysis processes. An eyesight is probably the most important of human senses,
so the video documentation is so meaningful. Images sequence encapsulates huge
amount of information but the distortions may make them useless. Nowadays, the
video analysis, which is a branch of signal processing, is very advanced. There are
two main variants of its operation: real-time and off-line analysis. Both of them
have to achieve different requirements. The off-line video processing must provide
very good efficiency but it can be achieved by taking some time. The real-time video
processing at first must be fast and as far as the results are transient, the accuracy
is not the most important thing.

Cameras’ evolution and miniaturization made from them a very powerful in-
spection tool. The camera can be mounted on a moving or flying robot and used
for research or operation in hazardous environment. Micro cameras have also very
important role in endoscopy and visual inspection in hard to reach areas. In each
of these applications, good eye-hand coordination is critical. Image shakes are a se-
rious problem in case of micro cameras and can make teleoperation very hard and
slow. The hardware stabilization can not be applied in each instance and it has
also limited capability. The solution seems to be the real-time software stabilization
usage.

The goal of this work was a development of such an anti-shake filter. As an ap-
plication’s environment the FFmpeg libraries set was used. The stabilization had
taken place in a post processing what made it independent of processed video’s
format. The resultant application should have handle the real-time operation on
an average PC machine. The stabilization was assumed as shakes suppression with
preservation of the intentional camera move. Any time delay was not acceptable to
not disturb the eye-hand feedback.

This paper contains three main parts: the theoretical introduction which covers
all knowledge needed for the filter’s development, a report from its proceedings and
the evaluation of working application’s performance. The development itself was

Introduction 6

accomplished in two steps: a preliminary implementation of each part separately
and the final implementation of the whole system. To achieve the real-time perfor-
mance, some accuracy has to be dropped. However, the application was designed
in such a way, that it still can use more accurate but slower algorithms which were
implemented as optional ones.

Chapter 1 - Camera Vision and Image Transforming 7

CHAPTER 1

CAMERA VISION AND IMAGE TRANSFORMING

This chapter includes some basic knowledge about a projection of 3D world on
the 2D plane, which takes place in a camera. It names basic kinds of camera moves
and describe sources of camera shakes. There were also presented some informations
about the image transformation process, main types of transformations and methods
of estimation the transformation matrix.

1.1 Projective geometry and 2D transformations

In [1] the projective geometry was defined as the study of the projective plane P2.
Each point of P2 is represented by a ray in Euclidean space R3, also each line in P2

is represented by a plane in R3 (figure 1.1). All of them intersect in the origin of R3.

O

l

π

x

x
1

x
2

x
3

Figure 1.1. A model of projective plane – points from P2 are represented by
rays in R3 (as for example the point x is), lines are represented
by planes (the line l is an example). Their real shapes can be
obtained by intersecting the set of rays and planes by the plane
x3 = 1 in the picture denoted as π.

Each point x of P2 is represented by the vector k(x1, x2, x3)
T in R3, where k

varies along the ray.

1.1 Projective geometry and 2D transformations 8

1.1.1 Homogenous coordinates

Every single point of Euclidean plane is represented by a pair of real numbers (x, y).
In consequence of addition an extra coordinate, a triple (x, y, 1) is obtained. That
triple is called the homogenous coordinate of the point [1]. The rules for converting
point coordinates between plane and homogenous coordinates are following [3]:

• To convert a point (x, y) to homogenous coordinates, it is enought to add
a third component equal to 1.

(
x

y

)
→

xy
1

• To convert a homogenous coordinates triplet (a, b, c) to the pair of 2D plane
coordinates, first two components have to be divided by the third one.ab

c

→ (
a
c
b
c

)

An individual point of plane, defined by a pair (x, y), has an infinite number
of representations in homogenous coordinates. In fact, points are represented by
equivalence classes of homogenous coordinate triplets, where two triplets define the
same point if they differ by a common multiple [1].kxky

k

 ≡
lxly
l

1.1.2 Camera projection

To describe camera’s operation, a pinhole camera model was used (figure 1.2). That
model describes a real image acquisition system very well. It takes into consideration
the central projection of points in a space on the plane called focal plane or image
plane [2].

The camera centre (called also the optical centre) C is the origin of Euclidean
coordinate system. The image plane is placed parallel to XY plane, in Z = f . Each

1.1 Projective geometry and 2D transformations 9

C
x

Y

Z

X

Xy

x

p

camera
centre image

plane

principal
axis

Figure 1.2. Pinhole camera geometry – C is the camera centre, p is the prin-
cipal point.

point X from R3 space is mapped to the point x onto the image plane like in (1).
This relation was graphically illustrated in the figure 1.3.

XY
Z

→
f

X
Z

f Y
Z

f

 (1)

C

p

Y

Zf

fY/Z

Figure 1.3. Pinhole camera geometry – the projection on Y Z plane.

In homogenous coordinates, (1) can be rewritten as (2) or as the matrix equation
(3), where P is called the camera projection matrix [1].

f 0 0 0

0 f 0 0

0 0 1 0

X

Y

Z

1

 =

fXfY
Z

 =

fX
Z
fY
Z

1

 =

xy
1

 (2)

x = PX (3)

1.1 Projective geometry and 2D transformations 10

In practice, it may happen that the origin of coordinates is not placed in the
principal point. In that case, the camera projection with an offset correction can be
expressed as

xy
1

 =

f 0 px 0

0 f py 0

0 0 1 0

X

Y

Z

1

 . (4)

Introducing the camera calibration matrix K that

K =

f 0 px

0 f py

0 0 1

 , (5)

the camera projection matrix can be expressed as

P = K [I | 0] . (6)

Until now, points were placed in the camera coordinate frame in which the origin
of coordinate system is the camera centre. In general, it is often necessary to use
the world coordinate frame (e.g. to distinguish between the point and the camera
move). That two coordinate systems are related by the rotation matrix R3×3 and
the translation vector, which is equal to the camera centre placement in the world
coordinates C̃. Therefore, the formula that converts the camera coordinates into
the world ones has a form

XCAM =

[
R −RC̃

0 1

]
X

Y

Z

1

 =

[
R −RC̃

0 1

]
XWORLD. (7)

From (7), the final form of the pinhole camera projection matrix can be expressed
as [1]

P = KR
[
I | −C̃

]
. (8)

That matrix, and as result the general pinhole camera itself, has nine degrees of
freedom:

• 3 for elements of matrix K – f , px and py,

• 3 for rotation matrix R,

• 3 for camera center position (translation) C̃.

1.1 Projective geometry and 2D transformations 11

1.1.3 A hierarchy of 2D transformations

In [3] a geometric transformation was defined as:

”A function that is both onto and one-to-one, and whose range and
domain are points.”

Onto (suriective) is a function whose every point in range has a corresponding point
in the domain. One-to-one (injective) function must fulfill the condition x 6= y =⇒
f(x) 6= f(y).

Basic 2D transformation of point x into the point x′ can be writen in the matrix
form as (

x′

y′

)
= T2×2

(
x

y

)
. (9)

A 2 × 2 transformation matrix allows only for ”reflect”, ”flip”, ”zoom”, ”rotate” or
”shear” operations. To perform translation or more complex projective transforma-
tion, the point coordinates have to be transformed into the homogenous ones and
the 3× 3 transformation matrix have to be used. In that case (9) becomes (10).x′y′

1

 = T3×3

xy
1

 (10)

In [1] transformations are grouped in four classes of a hierarchy of transformations.

Class I: Isometries

Isometries are transformations that preserve Euclidean distance. That class of trans-
formations is described by an equationx′y′

1

 =

cos θ − sin θ tx

sin θ cos θ ty

0 0 1

xy

1

 . (11)

That transformations have three degrees of freedom: one for the rotation angle θ
and two for the translation (tx, ty). It can be computed from two corresponding
points.

Class II: Similarity transformations

That transformations are combined from an isometry and scaling and can be de-
scribed by an equationx′y′

1

 =

s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1

xy

1

 . (12)

1.2 Camera moves 12

That transformations have four degrees of freedom: one for the rotation angle θ,
two for the translation (tx, ty) and one for the scaling factor s. It can be computed
from two corresponding points.

Class III: Affine transformations

Affinities are linear transformations described by an equationx′y′
1

 =

a11 a12 tx

a21 a22 ty

0 0 1

xy

1

 . (13)

That transformations have six degrees of freedom – one for each element in first two
rows of the transformation matrix. It can be computed from three corresponding
points.

Class IV: Projective transformations

Projective transformation is a general non-singular linear transformation of homoge-
nous coordinates x′y′

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

xy

1

 . (14)

That transformation matrix has nine elements, but only their ratio matters. That
implies that the transformation is defined by eight parameters and has eight degrees
of freedom. It can be computed from four corresponding points with no collienarity
of three of them on either plane.

A short description of all of transformation classes was contained in the table
1.1, basing on [1]. The figure 1.4 shows examples of transformation matrices and
results of transformations accomplished by them.

1.2 Camera moves

As was mentioned in the subsection 1.1.2, a general pinhole camera model has nine
degrees of freedom. In most cases, only seven of them can be directly controlled by
the operator: camera moves along three axes, camera turns around three axes and
the focal length changes. Combination of these simple moves allows to create more
complex effects.

1.2 Camera moves 13

T =

[
1 0 0
0 1 0
0 0 1

]

(a) Original image.

T =

[
1 0 0
0 −1 0
0 0 1

]

(b) Vertically reflected image.

T =

[
0.7 0 0
0 0.7 0
0 0 1

]

(c) Image scaled by factor of 0.7.

T =

[
1 0 150
0 1 0
0 0 1

]

(d) Horizontally translated image.

T =

[
1 0 0
0 1 150
0 0 1

]

(e) Vertically translated image.

T =

[
1 0.5 0
0 1 0
0 0 1

]

(f) Sheared image.

T =

[
0.87 0.5 0
−0.5 0.87 0
0 0 1

]

(g) Rotated image.

T =

[
2 2 0
0 6 0
0 0.01 1

]

(h) Example of projective transformation.

Figure 1.4. Examples of basic 2D image transformations and used transfor-
mation matrices.∗

∗Original image source: http://www.gnu.org/graphics/heckert_gnu.html

1.2 Camera moves 14

Table 1.1. A hierarchy of 2D transformations – (tx, ty) is a 2D translation vec-
tor, R = [rij] is a 2D rotation matrix and A = [aij] is an invertible
2× 2 matrix.

Group DOF Transformation matrix Invariant properties

Euclidean 3

r11 r12 tx
r21 r22 ty
0 0 1

 length, area

Similarity 4

sr11 sr12 tx
sr21 sr22 ty
0 0 1

 ratio of lengths, angle

Affine 6

a11 a12 tx
a21 a22 ty
0 0 1

 parallelism, ratio of areas, ratio
of length on collinear or parallel
lines, linear combinations of vec-
tors

Projective 8

h11 h12 h13
h21 h22 h23
h31 h32 h33

 concurrency, collinearity, order of
contact (intersection, tangency,
inflections), cross ratio (ratio of
ratio of lengths)

1.2.1 Camera movement techniques

In [4] and [5] following camera moves were named:

Pan – a horizontal pivot of the camera while it stays otherwise stationary. This
technique can be used to look across wide landscapes, to follow characters or
vehicles or to introduce a new element into the scene;

Tilt – a vertical pivot of the camera. This technique can be used to look over tall
objects or to follow falling or raising objects;

Tilted horizon – a move in which the camera is tipped slightly to the side. Used
to attract the viewer’s attention or to increase the tension in a scene;

Pedestal – changes of the camera altitude without any pivot;

Track – a sideways camera move, often with keeping a certain distance from the
tracked object;

Dolly – a physical camera move toward or away from an object without changing
the focal length;

1.2 Camera moves 15

Zoom – changes of the camera focal length. Zooming allows to transition from
wide scene to the close-up without any changes of the camera position.

Examples of them were shown in the figure 1.5.

(a) Pan. (b) Tilt.

(c) Pedestal. (d) Truck.

(e) Dolly.

Figure 1.5. Simple camera moves illustration.∗

∗Source: http://www.tv-handbook.com/Composition and Camera Movement.html

1.2 Camera moves 16

1.2.2 Camera holding techniques

There are several ways of supporting the camera [6]:

• holding it in hand,

• resting it on a shoulder,

• using a body support,

• using a mounting.

Some examples of body supporting camera were shown in the figure 1.6. To stabilize
the camera shoot some equipment can be also used. The more stable solutions are
a tripod or a dolly, but they limit the flexibility of camera movement. Typical
ways of stabilize a hand-held camera were shown in the figure 1.7. The revolution
in steadying the hand-held camera take was an invention of Steadicam made by
Garrett Brown in 1970s. Steadicam is an elaborate harmess which separates camera
and operator moves. A lightweight version of Steadicam (the Steadicam Junior)
was developed in 1980s. The Steadicam is still in use, especially in professional
applications.

Figure 1.6. Exemplary methods of taking steady hand-held camera shoots –
with stable body positions and with nearby supports usage.∗

∗Source: G. Millerson. Video camera techniques.

1.2.3 Undirected random shakes

Besides intended camera moves, when a camera is hand-helded there are always
some shakes (caused by steps, breathing or muscle contractions). Sometimes that

1.2 Camera moves 17

(a) Simple camera stabilization with a string,
chain or monopod support.

(b) Schoulder support.

(c) Steadicam – an elaborate harmess with the
spring suspension.

(d) Steadicam Jr. – a compact bal-
lanced support, the hand-held version of
a Steadicam.

Figure 1.7. Exemplary devices for camera stabilization.∗

∗Source: G. Millerson. Video camera techniques.

1.2 Camera moves 18

phenomenon is used to make the take more dynamic, but in most cases shakes are
not welcome. The best way to diminish undirected camera moves is to use a steady
camera support but it is not always possible (e.g. inspection cameras or endoscope).
A good solution of the camera image stabilization issue is usage of an electronic
image stabilization. Examples of that approach may be systems developed by SONY
or Canon. The principle of theirs operation is to move the lens, the image sensor
or both of them (hybrid stabilization) in way to compensate the camera shakes and
keep the image still – figures 1.9 and 1.8. The main drawback of these solutions are
big dimensions and complexity of whole system.

Figure 1.8. Types of camera shakes.∗

∗Source: http://www.usa.canon.com/cusa/consumer/standard_display/Lens_Advantage_IS

Figure 1.9. Operation modes of the electronic image stabilization.∗

∗Source: http://www.sony.net/SonyInfo/technology/technology/theme/alpha_01.html

1.3 Transformation matrix estimation 19

1.3 Transformation matrix estimation

With a set of points X and the corresponding one X′, it is possible to recover the
transformation which maps each xi to x′i. This section focuses only on the 2D
transformations matrix estimation case.

1.3.1 Linear algorithms

The Direct Linear Transformation is an example of linear algorithm which allows to
evaluate a transformation (homogeneity) matrix H of transformation described by
the equation

x′i = Hxi. (15)

According to [1], four corresponding points are necessary to compute that transfor-
mation matrix coefficients. Sought transformation (15) can be expressed in terms
of the vector cross product as

x′i ×Hxi = 0. (16)

Denoting the jth row of the matrix H as a vector hjT, the right-hand side of (15)
may be written as

Hx′i =

h1Txi

h2Txi

h3Txi

 . (17)

In homogenous coordinates x′i = (xi, yi, 1)T, so (16) becomes

x′i ×Hxi =

 y′ih
3Txi − h2Txi

h1Txi − x′ih
3Txi

x′ih
2Txi − y′ih

1Txi

 = 0. (18)

Since hjTxi = xT
i h

j, (18) can be expressed as 0T −xT
i y′TxT

i

xT
i 0T −x′TxT

i

−y′ixT
i x′ix

T
i 0T

h1

h2

h3

 = 0. (19)

The equation set (19) can be represented in a matrix form as Aih = 0, where
Ai is a 3× 9 matrix. One of its rows can be omitted, because only two of equations
in (19) are linearly independent. Each pair of corresponding points introduces two
independent equations in the entries of transformation matrix H. When there are

1.3 Transformation matrix estimation 20

four known correspondences, the set of equations

Ah = 0 (20)

is obtained, where A is the matrix of equation coefficient build from rows Ai con-
tributed from each correspondence and h is the vector made from the entries of
estimated matrix H.

A has rank 8, so it is enough to use only two equations from (19) for each points’
correspondence. Due to its rank, A has 1-dimmensional null-space (a set of many
solutions). Because H is only determined up to a scale, the solution h is sufficient.
This scale may be arbitrarily chosen by a requirement on its norm such as ‖h‖ = 1

[1].

1.3.2 Over-determined case and different cost functions

If more than four corresponding points pairs xi ↔ x′i are given, then the set of
equations (20) is over-determined and the matrix A has more linearly independent
rows than 8. If the position of all points is exact, then the rank of the matrixA is still
8 and there is a single exact solution for h. If points position is uncertain (e.g. due
to a noise), there is no exact solution for h. Instead of that, an approximate solution
which minimizes a suitable cost function can be found. An additional constrain has
to be formulated to avoid the solution h = 0. Generally, the condition ‖h‖ = 1 is
used, but it is also possible to minimize the norm ‖Ah‖ instead. As was shown in
[1], the solution is the eigenvector of ATA with the least eigenvalue. In numerical
computations, the singular value decomposition (SVD) can be applied. In that case

A = UDVT (21)

where the last column of the matrix V is the solution of (20).

1.3.3 Iterative minimization methods

Iterative methods minimize various geometric cost functions to obtain the estimate
of transformation. The most popular of them are the Newton’s method and the
Lovenberg-Marquardt algorithm. According to [1], iterative approach have certain
disadvantages with regard to linear algorithms:

• they are slower,

• they need an initial approximate estimation as starting conditions,

• they may not converge or converge to a local instead of the global minimum,

• termination criteria are not always easy to define.

1.3 Transformation matrix estimation 21

In consequence of that, iterative techniques must be implemented very carefully.
The iterative minimization process, in general case, consist of five steps:

1. Choice of the cost function – there are many possibilities, some of them was
described in details in [1].

2. Parametrization – a choice of estimated entries in the matrix H.

3. Function specification – expression of the cost in term of the set of sought
parameters.

4. Initialization – an initial estimate of starting point, usually using some kind
of linear algorithm.

5. Iteration – an iterative improvement of the estimation parameters with the
goal of minimizing the cost function.

1.3.4 Robust estimation – RANSAC

Up to this point, it had beed assumed that only uncertainty of corresponding points
position is the measurement noise, which follows a Gaussian distributions. In prac-
tice, this assumption is almost never applicable, because of some amount of mis-
matched points. That mismatched points are outliers to the Gaussian error distri-
bution. These outliers have a significant influence on the estimation process and can
obviously disturb its result – figure 1.10(a). The goal of the robust estimation is to
distinguish inliers from outliers and base the estimation only on inliers.

Random Sample Consensus (RANSAC) algorithm was developed by Fischler and
Bolles in 1981 [7]. It can handle even a large proportion of outliers. The steps of
RANSAC estimation are following:

1. A random selection of a subset of s from S samples. The number of selected
samples is a minimal number of points necessary to determine the model.

2. The pick of the support Si of the ith model as a colection of points within
a distance threshold t from it – inliners (figure 1.10(b)).

3. If the size of Si is greater than some threshold T , the output model is re-
estimated basing on points from Si and the algorithm terminates.

4. If the size of Si is less than T , the new subset s is selected and points 2–4 are
repeated.

5. After N iterations, the largest subset Si is selected, the model is re-estimated
basing on points within it and the algorithm terminates.

1.3 Transformation matrix estimation 22

(a) A Maximum Likehood estimation (line) of the
set of points affected by two outliers.

a

b

c

d

(b) Two lines defined by randomly selected
points: the line c − d with a support of
2, and the line a− b with a support of 10
points.

Figure 1.10. Robust line estimation.

Table 1.2. Threshold values t for classifying a point as an inlier with the prob-
ability α = 0.95 [1].

Codimension m Model t2

1 line, fundamental matrix 3.84 σ2

2 homography, camera matrix 5.99 σ2

3 trifocal tensor 3.84 σ2

The distance t is choose in a such way that the point is an inliner with a proba-
bility α. Usually, that value is picked empirically, but if the measurement of points’
position error is Gaussian with zero mean value and standard deviation σ, t can be
analytically computed. Values of threshold t for α = 0.95 were shown in the table
1.2.

It is often unnecessary to try every possible subset of samples. There can be
choose a number of samples N efficiently high to ensure with a probability p that
at least one random subset s is free from outliers. Usually p = 0.99. Assuming
a probability of selection an outlier ε, equal to the proportion of outliers, at least N
selections of s points are required. Therefore

N =
log(1− p)

log(1− (1− ε)s)
. (22)

The table 1.3 shows exemplary numbers of selections under different conditions.

One of RANSAC algorithm termination conditions is a size T of the model sup-
port, which is sufficient to find a solution good enough to stop searching. A general
rule to pick that value is [1]

T = (i− ε)n (23)

where n is number of all samples.

1.3 Transformation matrix estimation 23

Table 1.3. The number of N selections required to ensure at least one sub-
sample of s samples free from outliers with a probability p = 0.99
[1].

Subset size s Proportion of outliers ε

s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Determining the number of samples adaptively

In case, when a proportion of outliers ε in the data set is unknown, the idea of adap-
tively determination of maximal number of trials N can be applied. This approach
works well in practice and solves a problem of setting a number of required samples
and condition of terminating the RANSAC estimation at once. An algorithm of
adaptive computation of N is [1]:

1. Assume N =∞ and sample count i = 0.

2. While N > i, repeat:

• choose a subset of s samples and count the support of the model,

• set a new proportion of outliers ε = 1− number of inliners
total number of samples

,

• set N from ε and (22),

• increment i by 1.

3. Terminate.

The block diagram of
A good way to improve the RANSAC estimation efficiency is to perform a two

stage estimation:

1. Preliminary choice of a model with the greatest support.

2. Precise re-estimation using support of RANSAC model as an input and mini-
mization of some kind of cost function.

An example of that operation was shown in the figure 1.11.

1.3 Transformation matrix estimation 24

a b

c d

(a) A Line defined by b and c with the support of
four {a,b, c,d} found by the RANSAC algo-
rithm.

a
b

c d

(b) The ML line fit to points {a,b, c,d} –
much improved fit with the support of 10
points.

Figure 1.11. Two stages of the robust Maximum Likelihood estimation.

Chapter 2 - Motion Vectors in Video Compression 25

CHAPTER 2

MOTION VECTORS IN VIDEO COMPRESSION

A raw video stream is a huge amount of data (even above 1 Gbps). The video
compression allows to reduce storage space needed to store it or required bitrate of
the video transmission stream. There are two main types of compression: the lossless
and the lossy one. The lossless compression algorithms reach at most compression
ratio 6:1. Because of the video features (short display time of a particular frame,
continuous tones) and human’s eyesight limitations, even the quality loss in the lossy
video compression can be imperceptible. Moreover, even if the change is visible, it
often does not reduce the image utility, if there are no additional distortions. A lossy
video compression can achieve even 50:1 compression ratio, still holding a very good
image quality.

In general, the video compression reduces the amount of data which are stored
or sent. To achieve this, three operations are mainstream:
• single frame compression,

• color planes subsampling,

• motion compensation.

2.1 Still image compression – the M-JPEG encoder

The simplest approach to the video compression is to compress each frame separately.
This idea is a background of Motion JPEG (M-JPEG) video coding standard based
on the JPEG compression. In this technique frames are non-related, so random
access, fast forward, fast rewind and other operations can be performed very fast.
Therefore, the M-JPEG is a good choice for video editing. It is also used because
of its low complexity in terms of space and time and simplicity of implementation
in both hardware and software. The main drawback of M-JPEG compression is low
compression ratio, the same as for still images coded by JPEG – from 10:1 to 15:1,
without significant distortions.

2.2 Color planes subsampling 26

2.1.1 Discrete Cosine Transform (DCT) based coding

DCT-based coding is a basis of JPEG and MPEG encoders. As it was described in
[8], the DCT decomposes every macroblock of a frame into a series of waveforms,
each with a particular spatial frequency. A macroblock’s size 8 × 8 pixels is the
balance between good image quality and acceptable computational and memory
requirements. The DCT of 8× 8 macroblock is expressed as

y(k, l) =
c(k)c(l)

4

7∑
i=0

7∑
j=0

xij cos

(
(2i+ 1)kπ

16

)
cos

(
(2j + 1)lπ

16

)
, (24)

where k, l = 0, 1, . . . , 7 and

c(x) =

{
1√
2

if x = 0

1 otherwise
. (25)

The Inverse Discrete Cosine Transform in case of 8× 8 pixel macroblock has a form

x(i, j) =
7∑

K=0

7∑
L=0

ykl
c(k)c(l)

4
cos

(
(2i+ 1)kπ

16

)
cos

(
(2j + 1)lπ

16

)
. (26)

The graphical representation of 64 basis function of 8 × 8 block decomposition
was shown in the figure 2.1. Every image macroblock is described as a sum of these
functions, multiplied by a 8 × 8 table of coefficients. Higher order coefficients in
most cases can be neglected, so there is a possibility to reduce amount of data in
the frequency domain, without corrupting data in the image domain.

2.2 Color planes subsampling

The most natural manner of processing colors is the RGB plane usage, in which
each pixel is described by three parameters – one for red, green and blue component.
However, in the video compression luminance-chrominance color planes are mostly
used. There are many proposed transformations between color planes. One of them,
the conversion from RGB to YUV color coordinate systems has a form [3]

Y = 0.299(R−G) +G+ 0.114(B −G),

U = 0.493(B − Y),

V = 0.877(R− Y).

(27)

Human eyesight is much more sensitive to changes of luminance than for changes
of colour. This property can be used to increase a compression ratio by reducing
the resolution in chroma planes. In a very commonly used 4:2:0 format for each
four pixels of luminance plane come only two pixels of chrominance planes. Such

2.3 Motion compensation 27

Figure 2.1. 64 basis function of 8× 8 macroblock DCT.

approach allows to reduce the data volume required for store or send a single frame
by a half.

2.3 Motion compensation

For achieve the better video compression ratio than in case of a still image com-
pression, the motion compensation is used. Usually, consecutive frames are close to
each other, so there is a possibility to use an existing frame’s pieces to build a new
one. A block diagram of such compression system was shown in the figure 2.2. The
idea of motion compensation is following [8]:

1. Choice of a macroblock M in the reference frame on position (x, y).

2. Calculation of a motion vector (u, v) between frames.

3. Calculation of a prediction error e between frames.

4. Transmission of the motion vector’s coordinates and the prediction error.

The prediction error can be compressed much more than the regular image, with an
assumption that it is very small. For reconstruction of macroblock M in the current
frame, the reference frame must be stored in the memory. There are three main
types of frames (images) [8]:

2.3 Motion compensation 28

motion
estimation

motion
compensation

motion
compensation

DCT coding

DCT decoding

frame
memory

M(x, y, t-1)

M(x, y, t)

motion vector (u, v)

e(x, y, t) = M(x, y, t) - M(x, y, t-1)

e(x, y, t)

M(x-u, y-v, t-1)

ENCODER

DECODER

M(x, y, t)

Figure 2.2. A generic video motion compensation system.

I-pictures – intra-pictures which does not refer to any other ones and must be sent
or store as a still image.

P-pictures – predicted pictures which are coded using motion-compensated pre-
diction from past I-type or P-type picture. Intermediate compression level and
possibility to be used as a reference in the future.

B-pictures – bidirectional predicted pictures coded using motion-compensated
prediction from past and future I or P-type pictures. The highest degree
of compression.

Techniques of uni- and bidirectional motion compensation and a prediction error
calculation were illustrated in the figure 2.3. Example of inter-dependencies between
I, P and B-pictures was shown in the figure 2.4.

The motion compensation is a basis of many video encoders like MPEG-1,
MPEG-2, MPEG-4, H.261, H.263 and H.264 [9]. The motion vectors must be calcu-
lated fast (especially in case of live streaming the video) and precisely (to decrease
the prediction error and avoid image distortions).

2.3 Motion compensation 29

current frame

(x, y, t)
macroblock

motion vector

+

prediction error

(x, y, t+1)

-

future frame

(a) The forward motion compensation.

current frame

(x, y, t)

forward
prediction error

macroblock

past frame

(x, y, t-1)

future frame

(x, y, t+1)

motion vector

+- + -

+ +

1/2

backward
prediction error

interpolative
prediction error

(b) The bidirectional motion compensation.

Figure 2.3. Uni- and bidirectional motion compensation techniques.

2.4 Motion vectors estimation 30

I

time

B B P B B P I

Figure 2.4. A generic video motion compensation system. Arrows represent
dependencies between frames. Only I-pictures can be accessed
independently.

2.4 Motion vectors estimation

There are four main groups of motion estimation techniques [10]. All of them rely
on a hypothesis that the image intensity I on the position ~r is constant in the time
period between two frames ∆t and changes only due to displacement ~d. Therefore

I(~r, t) = I(~r − ~d, t−∆t). (28)

The displacement frame difference (DFD) is defined as

DFD(~r, t, ~d) = I(~r, t)− I(~r − ~d, t−∆t). (29)

2.4.1 Gradient techniques

Gradiet techniques solve the optical flow constrain equation [10]

~v · ~∇I(~r, t) +
∂I(~r, t)

∂t
= 0 (30)

for finding a motion vector ~v on the position ~r. For solving that, some additional
constrains must be introduced. For example, a Horn-Schunck method minimizes the
square of the optical flow gradient magnitude(

∂vx
∂x

)2

+

(
∂vx
∂y

)2

and
(
∂vy
∂x

)2

+

(
∂vy
∂y

)2

. (31)

The drawback of all methods from this group are a big prediction error on moving
objects boundaries caused by smoothness constrains and good accuracy only in case
of dense motion field.

2.5 Block-matching motion estimation algorithms 31

2.4.2 Pixel recursive techniques

This a group of recursively gradient techniques of prediction error minimization as
DFD2 (29). An example of pixel recursive method is the Netravali-Robbins method
[10], which iteratively updates the displacement vector according to the formula

~d(k+1) = ~d(k) − εDFD(~r, t, ~d(k)) · ∇~rI(~r − ~d, t−∆t) (32)

with a constant gain ε > 0. The main drawbacks of this group of motion estimation
techniques are a propensity to converge to the local instead of the global minimum
and incapability to handle large displacements and motion field’s discontinuities.

2.4.3 Block-matching method

Block-matching technique (described in details in the section 2.5) minimizes a dis-
parity between macroblocks in two frames

~d = arg min
~d∈S

∑
~r∈S

||I(~r, t)− I(~r − ~d, t−∆t)||. (33)

It uses different cost functions ||x|| and search algorithms, which was describe fur-
ther. Motion estimation in way of block-matching is easy to implement and gives
relatively good results, so it is widely used in a video coding.

2.4.4 Frequency domain techniques

That group of motion estimation techniques relies on the relationship between trans-
formed to the frequency domain images (e.g. Fourier or Gabor transform) and mea-
sures a correlation factor with different phase shift (which corresponds to a trans-
lation in the image domain). That methods are quite complex and they are rather
used in a signal analysis (e.g. in the synthetic aperture sonar) than in the image
processing.

2.5 Block-matching motion estimation algorithms

In [8] and [11] a several motion search methods based on block-matching were pre-
sented. Five of them were described in this section. The general idea of theirs
operation was shown in the figure 2.5. That motion estimation process has follow-
ing steps:

1. Choice of a motion vector search position (x, y).

2. Selection of a macroblock M ×N pixels.

2.5 Block-matching motion estimation algorithms 32

3. Choice of a search range p.

4. Search an offset (i, j) with the best matching between the macroblock of
a current frame and the corresponding macroblock of the reference frame.

current frame

reference frameTime

(a) Frames sequence.

macroblock

N

M

(x, y)

(b) A macroblock selected from the current frame.

p

p

p

p

searching region

(c) A search region in the reference frame.

(x, y)

(x+i, y+j)

(d) A motion vector (i, j) found in the best
matching position.

Figure 2.5. Block-matching based motion estimation.

Macroblock’s size and search range must be chose very carefully to keep a balance
between the calculation complexity and the estimation accuracy. Small macroblocks
(4–8 pixels) are prefered because of the smoothness constrains and the small amount
of needed calculations, but the price is a reduction of the reliability of motion es-
timation. Large macroblock’s size increases efficiency of fast motion estimation
algorithms, but also the calculation intensity. Moreover, often it is impossible to
match well large macroblocks in two frames. In a typical case, for video coding
M = N = 16. Search range in video coding is usually set at p = 6, but in case of
sport events (large-scale motion), it can be necessary to enlarge p even up to 64.

2.5.1 The Full-Search Method (FSM)

Full-search is the simplest to implementation, the most accurate, the most robust
but also the most time-consuming way of finding the cost function’s minimum. This

2.5 Block-matching motion estimation algorithms 33

is a simple two-dimensional search done in a signle step. The figure 2.6 shows
a graphical interpretation of example of such operation.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 B 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 A 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.6. Full-Search Method – an exhausive search of the least cost function
value. Only one step needed but colossal complexity. Numbers
represent points processed in each step.

2.5.2 The Logarithmic Search Algorithm (LSA)

This is the first from fast search methods. The speedup is achieved by reduce
a number of considered points. A basis of all logarithmic algorithms is to start in
the centre of search region with a step size of 2blog2pc pixels and move along the cost
function’s gradient with variable step. An example of two-dimensional logarithmic
search was presented in the figure 2.7. It contains following stages:

Step 1 – Set a step size as s = 2blog2pc and calculate the cost function in the center
of search region and four neighbor points: on the top, bottom, left and right.

Step 2 – Pick a point with the least cost function value and, if it is not a center,
calculate the cost functions in two corresponding diagonal points.

Step 3 – Move (or stay) to the point with the least cost function’s value from steps
1 and 2, divide the step size by 2 and calculate the cost function in four selected
points neighbors, like previously.

Step 4 – Repeat step 2, but in the new starting position.

2.5 Block-matching motion estimation algorithms 34

Step 5 and further – Continue division of step size by 2 and proceed until the
step size is minimal or the point with cost below a threshold value is found.

5

5 4 B 3 4

5

1 3 2 3

3

1 A 1

1 2

Figure 2.7. The Two-Dimensional Logarithmic Search – start in the center of
search region with a step size of 2blog2pc pixels and divide the step
size by 2 after each turn. Numbers represent points processed in
each step.

A special kind of logarithmic search is the 3-step search presented in the figure
2.8. A range of this algorithm is limited to ±7 pixels, but in video coding is sufficient
for good performance. The main difference between its operation and the classical
logarithmic method is calculation of cost function’s values in all eight neighbor points
in one step.

2.5.3 The Parallel Hierarchical One-Dimensional Search
(PHODS)

That algorithm reduces a number of search location to what is probably the absolute
minimum. It bases on a logarithmic method, but the search is done independently
along the two directions as follows:

Step 1 – Set a step size as s = 2blog2pc, move to the center of searching region and
denote the position as (i0, j0).

Step 2 – In parallel, compute:

2.5 Block-matching motion estimation algorithms 35

3 3 3

3 2 B 2 2

3 3 3

1 1 2 1 2

2 2 2

1 A 1

1 1 1

Figure 2.8. The Three-Step Logarithmic Search – start in the center of search
region with a step size of 4 pixels and divide the step size by 2
after each turn. Numbers represent points processed in each step.

• i-axis local minimum – pick the best location (the least cost function’s
value) from (i0, j0), (i0 − s, j0) and (i0 + s, j0), then move i0 to this
coordinate,

• j-axis local minimum – pick the best location (the least cost function’s
value) from (i0, j0), (i0, j0 − s) and (i0, j0 + s), then move j0 to this
coordinate.

Step 3 – Divide s by 2 and repeat step 2 until the step size is minimal. The final
(i0, j0) is the motion vector with the best matching between two frames.

The figure 2.9 ilustrates the idea of such operation. In fact, the cost function value
of found motion vector is not checked, so PHODS provide very poor efficiency when
the cost function is not a perfect ”bowl”.

2.5.4 The Hierarchical Motion Estimation (HME)

This method, besides a reduction of number of searching locations, allows also reduce
a number of compared pixels. There are many variation of the hierarchical search,
but the generic idea was presenter in the figure 2.10. It has following stages:

Step 1 – Prepare several of subsampled copies of the current and the reference
pictures.

2.6 Matching criteria 36

3

2 B

3

1

2

1 A 3 2 3 1 2

1

Figure 2.9. The Parallel Hierarchical One-Dimensional Search – start in the
center of search region with a step size of 2blog2pc pixels and pro-
ceed in two dimensions independently. Numbers represent points
processed in each step.

Step 2 – Begin search at the lowest level with some fast method or even the full-
search. Point (i, j) is the best match position.

Step 3 – Continue search at next level, with the searching region ±1 pixel, starting
from the point (2i, 2j). Denote the new best match position as (i, j).

Step 4 and further – Repeat step 3 until the top level is reached. Final (i, j) is
the found motion vector.

2.6 Matching criteria

Each search algorithm requires a cost function which allows to rate the macroblocks
matching level. In [8] and [11] several examples of cost function was described. In
this section, the most important and the most widely used of them were presented.
There had been assumed that R was the reference frame, C was the current frame,
(x, y) were coordinates of search position, M and N were macroblock’s dimen-
sions and (i, j) were coordinates of the evaluated offset between frames. The best
matching took place in the cost function’s extreme.

2.6 Matching criteria 37

image size: 640 x 480
macroblock size: 16 x 16
search range: 8 x 8

low-pass flter

downsample by 2

image size: 320 x 240
macroblock size: 8 x 8
search range: 4 x 4

low-pass flter

downsample by 2

image size: 160 x 120
macroblock size: 4 x 4
search range: 2 x 2

motion estimationmotion estimation
level 2

motion estimationmotion estimation
level 1

motion estimationmotion estimation
level 0

PICTURE MOTION VECTOR

Figure 2.10. An example of hierarchical search – it starts with a rough motion
estimation, but the accuracy increases with each step.

2.6 Matching criteria 38

The Mean-Squared Difference (MSD)

This function produces a superior results. However, the main drawback of it is
its high complexity. The result of that cost function may be interpreted as the
Euclidean distance between macroblocks. The MSD function is defined as

MSD(i, j) =
1

MN

M
2∑

k=−M
2

N
2∑

l=−N
2

[
C(x+ k, y + l)−R(x+ k + i, y + l + j)

]2
. (34)

The Mean Absolute Difference (MAD)

MAD cost function is a very popular one because of its simplicity and easy imple-
mentation. The main disadvantage is less accuracy and tendency to overemphasize
small differences, which may slow convergence of fast search methods or even pro-
duce a wrong result. The formula describing this cost function is

MAE(i, j) =
1

MN

M
2∑

k=−M
2

N
2∑

l=−N
2

∣∣∣ C(x+ k, y + l)−R(x+ k + i, y + l + j)
∣∣∣. (35)

The Cross-Correlation Function (CCF)

The cross-correllation cost function uses a statistical instruments. With assump-
tion that macroblocks in both frames are sets of random variables, the dependency
between macroblocks in two frames is equal to

CCF (i, j) =
Cov(Cx,y, Rx+i,y+j)

V ar(Cx,y)V ar(Rx+i,y+j)
. (36)

The Pixel Difference Classification (PDC)

To reduce the computational complexity of cost’s calculation, one plain block match-
ing criterion was proposed by Gharavi and Mills in 1990. The Pixel Difference Clas-
sification simple counts matching pixel between two macroblocks. The function is
defined as

PDC(i, j) =

M
2∑

k=−M
2

N
2∑

l=−N
2

Ti,j(k, l) (37)

where

Ti,j(k , l) =

{
1 if

∣∣∣C(x+ k, y + l)−R(x+ k + i, y + l + j)
∣∣∣ ≤ t

0 otherwise
. (38)

2.7 Sub-pixel accurate motion estimation 39

The Binary Level Matching Criterion (BPROP)

The difference between two pixels can be expressed not only by an aritmetical def-
ference, but also by exclusive disjunction of corresponding bits. Such approach is
a background of BPROP cost function. This matching criterion is defined as

BPROP (i, j) =

M
2∑

k=−M
2

N
2∑

l=−N
2

xor
[
C(x+ k, y + l), R(x+ k + i, y + l + j)

]
. (39)

This function can be modified by preliminary tresholding compared values. In
that way, only the most significant bits are compared and small differences between
macroblocks are neglected. Experimental results showed that the threshold of 16
gives the lowest error in motion search [8]. It can be easily realized by shifting
compared values right by 4 bits.

2.7 Sub-pixel accurate motion estimation

A block matching based methods of motion search allows only for integer-pixel
accuracy. To obtain sub-pixel resolution, one of compared images could be translated
by less that one pixel and interpolated. After that, each of classical block matching
methods can be applied and the result is a sum of the integer accuracy detected
motion and the sub-pixel translation. That approach is very computation and time
consuming. For a fast sub-pixel motion estimation, without the interpolation, one
of dedicated algorithms can be applied. An example was presented in [8]:

1. At first, any regular method must be applied to find the best matching point
with integer-pixel accuracy.

2. Then the MAD function in the found points neighborhood must be calculated.
The figure 2.11 shows points with MAD values denoted as m0 to m4.

3. The MAD function in the found points neighborhood is approximated by
a function of the form p(i) = a|i − b| + c in both directions. Coefficients
a, b and c can be calculated using three points: p(x) = m0, p(x − 1) = m3

and p(x + 1) = m4 in the horizontal axis and p(y) = m0, p(y − 1) = m1 and
p(y + 1) = m2 in the vertical one.

4. To yield the smallest MAD value on the half-pixel grid in the i direction, one
of following conditions must be fulfilled:

• if 2(p(i−1)−p(i)) < (p(i+1)−p(i)), the i coordinate should be decreased
by 0.5,

2.7 Sub-pixel accurate motion estimation 40

Integer-pixel grid Half-pixel grid

m
0

m
2

m
4

m
3

m
1

Figure 2.11. Fast method for half-pixel accurate motion vector estimation –
MAD function values m0 to m4 in integer-grid points allows to
find the best matching vectors position on integer and half-pixel
grid, resulting the half-pixel accuracy.

• if (p(i−1)−p(i)) > 2(p(i+1)−p(i)), the i coordinate should be increased
by 0.5.

This method requires some extra calculations, but is still much faster than ones
based on the image interpolation. The main drawback is limited accuracy, but in
many cases the half-pixel precision is sufficient.

Chapter 3 - Stabilization Filter Development 41

CHAPTER 3

STABILIZATION FILTER DEVELOPMENT

The goal of a video stabilization filter’s operation was to make image changes
smooth, without any shakes or jerks. To simplify the stabilization algorithm, some
assumptions was made:

1. The difference between two consecutive frames can be expressed as the 2D
transformation.

2. The transformation between two frames can be expressed as an isometry (only
rotation and translation coefficients).

T =

cosα − sinα tx

sinα cosα ty

0 0 1

 (40)

3. Shakes are transient, much faster than directed camera moves.

A preliminary implementation of required functions took place in MATLAB
because of simplicity of debugging and a large set of in-bulid signal processing func-
tions, that can be used as a reference. A final implementation was made as a video
post-processing filter in FFmpeg, because of fast operation and easy access to de-
coded video frames as pointers to the image buffers. The FFmpeg library was chosen
also because of its popularity (e.g. MPlayer and VLC video players incorporate the
FFmpeg) and multi-platform implementation. Therefore, the developed anti-shake
filter had very wide usage area and could be easily used as a part of more complex
projects.

3.1 Block diagram of anti-shake chain

The video stabilization chain was shown in the figure 3.1. At first, the motion field
had to be calculated. The next step was a transformation matrix estimation. That

3.2 Real camera shakes measurement 42

matrix describes the displacement between two consecutive frames. In way of low-
pass transformation filtering, the directed camera move was separated from random
shakes. Undirected moves had been removed and the current frame was transformed
for the best fitting to a previous one, preserving the smooth camera move.

frame n

frame n-1
(in memory)

motion
estimation

transformation
estimation

transformation
low-pass flter
(with memory)

new
 transformation

calculation

frame
transformation

corrected
frame n

Figure 3.1. A block diagram of the stabilization chain.

3.2 Real camera shakes measurement

The first step in the stabilization filter development process was an investigation of
real shakes properties. Two video sequences was taken into a consideration:

• a take of three-points constellation,

• a video from the sledge ride.

Both videos were made by Sony WX-1 camera. Measurement results were illus-
trated in figures 3.2 and 3.3. In the first case, measurements were done by points’
position detection in the image coordinates domain. That approach provides very
accurate results, but is not always applicable. The observation time was equal to 30
seconds (900 frames). The image’s center position and the camera’s horizon angle
were measured. In the second video case, the measurement was done by estimate
the global transformation between consecutive frames. Only 90 frames was taken
into a consideration due to very time consuming data processing in the MATLAB
environment, where this calculations took place. In this case coefficients of matrix
(40) were estimated. The sine and the cosine of the rotation angle had been affected
by the scaling factor, what made the angle calculation impossible. Due to this, the
sine and the cosine values were processed independently.

3.3 Rolling shutter distortions 43

Table 3.1. Real shakes measurement results for the three-points constellation
– only muscle and breathing shakes.

SteadyShot enable

Maximal change of the rotation angle 0.17◦
Maximal change of the horizontal displacement 3.82 px
Maximal change of the vertical displacement 1.03 px

SteadyShot disable

Maximal change of the rotation angle 0.44◦
Maximal change of the horizontal displacement 5.82 px
Maximal change of the vertical displacement 3.11 px

Table 3.2. Real shakes measurement results for the sledge ride sequence.

Maximal change of the horizontal placement 23.16 px
Maximal change of the vertical placement 16.06 px
Maximal change of a sine of the rotation angle 0.0253
Maximal change of a cosine of the rotation angle 0.0035

The only source of shakes in the first sequence were muscles contraction and
the breathing. Measurement results were collected in the table 3.1. The shakes’
amplitude was not big (up to 6 pixels). It was easy to notice that the optical
stabilization SteadyShot avalible in the camera damped very fast shakes but it could
not handle the slower ones. The camera move was still not smooth.

Shakes in the second video were much larger – the shakes amplitude reached
even 23 pixels (results in the table 3.2). To achieve a good performance, video
stabilization filter had to deal with such distortions.

3.3 Rolling shutter distortions

Large part of cameras is equipped with CMOS instead of CCD sensors to reduce
cost. Most CMOS sensors use a rolling shutter. Lines are scan sequentially in the
top-to-bottom or bottom-to-top order. Due to this, when an object or the camera
itself are moving, some distortions can appear. Ones caused by a the camera move
along horizontal and vertical axes can be easily identified and described as a affine
transformation (examples are shown in the figure 3.4). The distortion caused by an
object motion or the camera tipping to the side can be very complicated [12].

In this project the rolling shutter distortions were not considered, which may
have introduce some wobbles in the output picture. However, even small inaccuracy

3.3 Rolling shutter distortions 44

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o

n
 [

p
x

]

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a) Real frame of the movie.

0 100 200 300 400 500 600

0

100

200

300

400

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o

n
 [

p
x

]

point A

point B

point C

(b) Detected points layout.

0 5 10 15 20 25 30
200

220

240

260

280

300

320

340

360

380

Time [s]

P
o

si
ti

o
n

 [
p

x
]

Horizontal position

Vertical position

(c) Horizontal and vertical position of an
image center in function of time –
SteadyShot disable.

0 5 10 15 20 25 30
220

240

260

280

300

320

340

360

Time [s]

P
o

si
ti

o
n

 [
p

x
]

Horizontal position

Vertical position

(d) Horizontal and vertical position of an
image center in function of time –
SteadyShot enable.

330 340 350 360 370
215

220

225

230

235

240

245

250

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o

n
 [

p
x

]

(e) Image center’s move on a XY plane –
SteadyShot disable.

315 320 325 330 335 340 345
235

240

245

250

255

260

265

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o

n
 [

p
x

]

(f) Image center’s move on a XY plane –
SteadyShot enable.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

R
o

ta
ti

o
n

 a
n

g
le

 [
°
]

(g) Constellation rotation in function of
time – SteadyShot disable.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

R
o

ta
ti

o
n

 a
n

g
le

 [
°
]

(h) Constellation rotation in function of
time – SteadyShot enable.

Figure 3.2. Real hand-held camera shakes measurement – three-points con-
stellation.

3.3 Rolling shutter distortions 45

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o

n
 [

p
x

]

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(a) Real frame of the movie.

−100 −80 −60 −40 −20 0 20
−60

−50

−40

−30

−20

−10

0

10

20

30

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o

n
 [

p
x

]

(b) Frame’s center move on a XY plane.

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

Frame number

H
o

ri
zo

n
ta

l
tr

an
sl

at
io

n
 [

p
x

]

(c) Horizontal translation in function of
time.

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

20

Frame number

V
er

ti
ca

l
tr

an
sl

at
io

n
 [

p
x

]

(d) Vertical translation in function of
time.

0 20 40 60 80 100
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Frame number

S
in

e
o

f
th

e
ro

ta
ti

o
n

 a
n

g
le

(e) Rotation angle sine value in function
of time.

0 20 40 60 80 100

1

1.005

1.01

Frame number

C
o

si
n

e
o

f
th

e
ro

ta
ti

o
n

 a
n

g
le

(f) Rotation angle cosine value in function
of time.

Figure 3.3. Real hand-held camera shakes measurement – ”sledge” test video
sequence.

3.3 Rolling shutter distortions 46

(a) Skew caused by fast camera pan or truck moves.

(b) Variable vertical scaling factor caused by camera tilt or pedestal moves.

Figure 3.4. Rolling shutter distortions caused by camera moves.

3.4 Artificial 3D environment created in Anim8tor 47

in affine transformation’s coefficients estimation may have cause large image defor-
mation, so a simpler similarity transformation was more robust and, all in all, gave
better results.

3.4 Artificial 3D environment created in Anim8tor

The best way to achieve fully controlled camera moves without any sophisticated
equipment was to create an artificial 3D environment. One had been created basing
on free city buildings models from http://www.daz3d.com/, with usage of a free
program for 3D models edition, animation and rendering – Anim8tor. The created
environment was quite complex in order to emulate the real world as good as it
was possible. An overview of it was shown in the figure 3.5. Rendered scenes ware
included in the attached CD-ROM.

(a) Isometric projection. (b) First person look.

Figure 3.5. The 3D environment for fully controlled camera takes.

3.5 Preliminary MATLAB implementation

The preliminary implementation of chosen algorithms was made in MATLAB be-
cause of easy debugging and data access. The performance of developed functions
was far form real-time operation, but they were a good background for the final
implementation in the C language.

3.5.1 Existing motion vectors utilization

In some videos there are included motion vectors, but it is not a general rule – for
example, in the M-JPEG video encoded there are no any. Moreover, even in case of
motion compensation based encoders, some frames (I-pictures) does not have any
information about motion vectors or refers either to the next, not only the previous

3.5 Preliminary MATLAB implementation 48

frame (B-pictures). So the motion vectors should have been estimated anew. In
this project the block-matching method was used because its of implementation
simplicity and accurate results for large displacements.

3.5.2 Comparison of different matching criterion

The cost functions are macroblocks matching criterion. Four of them were imple-
mented:

• The Mean-Squared Difference (MSD),

• The Mean Absolute Difference (MAD),

• The Modified Pixel Difference Classification (PDC),

• The Binary Level Matching Criterion (BPROP).

The Pixel Difference Classification in a classical form has its maximum when the
matching is the best. For the cost functions’ unification (a minimum search), fol-
lowing modification was made

PDC(i, j) =

M
2∑

k=−M
2

N
2∑

l=−N
2

Ti,j(k, l) (41)

where

Ti,j(k , l) =

{
0 if

∣∣∣C(x+ k, y + l)−R(x+ k + i, y + l + j)
∣∣∣ ≤ t

1 otherwise
. (42)

Different cost functions’ shapes for the real video were shown in the figure 3.6.
The MSD function had the best marked minimum, but its calculation was also the
most exhaustive. The fastest was the BPROP function and it also had provided
a sufficient accuracy, so that one was used for motion vectors estimation in a final
stabilization filter implementation.

3.5.3 Comparison of different motion searching algorithms

Four of the motion searching algorithms were implemented:

• The Full-Search Method (FSM),

• The Logarithmic Search Algorithm (LSA),

• The Parallel Hierarchical One-Dimensional Search (PHODS),

• The Hierarchical Motion Estimation (HME).

3.5 Preliminary MATLAB implementation 49

Horizontal offset [px]

V
er

ti
ca

l
o

ff
se

t
[p

x
]

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(a) The Mean-Squared Difference (MSD).

Horizontal offset [px]

V
er

ti
ca

l
o

ff
se

t
[p

x
]

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(b) The Mean Absolute Difference (MAD).

Horizontal offset [px]

V
er

ti
ca

l
o

ff
se

t
[p

x
]

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(c) The Modified Pixel Difference Classification (PDC).

Horizontal offset [px]

V
er

ti
ca

l
o

ff
se

t
[p

x
]

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(d) The Binary Level Matching Criterion (BPROP).

Figure 3.6. Exemplary shapes of different cost functions – search point
(170, 120) in first two frames of ”sledge” video sequence (× is the
known best matching position).

3.5 Preliminary MATLAB implementation 50

The comparison of estimation results for a real image was shown in figures 3.7 and
3.8. The image was transformed with known transformation parameters for the
noise and distortions elimination.

The best results were provided by the full-search but it were also the most time
consuming. The PHODS method was very inaccurate in case of large displacments.
LSA and HME had provided very good results and had operated fast, so this two
were taken into a consideration in a real-time implementation.

3.5.4 Edges detection

For search points’ preselection an edge detection filter (43) described in [13] was
used. Points with contrast lower than 20% were omitted, because it had beed very
probable that the result in this locations may have been inaccurate. Also motion
vectors on the edge of search region were not taken into a consideration. Examples
of image’s contrast thresholding were shown in the figure 3.9.

−1 −1 −1 −1 −1

−1 −1 −1 −1 −1

−1 −1 24 −1 −1

−1 −1 −1 −1 −1

−1 −1 −1 −1 −1

 (43)

3.5.5 Transformation estimation

The first step of a robust transformation estimation was the RANSAC algorithm.
The transformation (40) was expressed as a set of linear equations

x′ = x cosα− y sinα + tx

y′ = x sinα + y cosα + ty
(44)

so the transformation’s parameters could be evaluated from two motion vectors
(x1, y1, x

′
1, y

′
1) and (x2, y2, x

′
2, y

′
2) with the formula

sinα =
(x′1−x′2)(y1−y2)−(x1−x2)(y′1−y′2)

(y2−y1)2−(x1−x2)2

cosα =
(y′1−y′2)−(x1−x2) sinα

(y1−y2)

tx =
x′1+x

′
2−cosα(x1+x2)+sinα(y1+y2)

2

ty =
y′1+y

′
2−sinα(x1”x2)−cosα(y1+y2

2

(45)

For re-estimation the transformation, based only on inliners, the Newton’s
method [1] was used. For the transformation matrix (40) and the inliners set

3.5 Preliminary MATLAB implementation 51

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(a) The Full-Search Method (FSM).

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(b) The Logarithmic Search Algorithm (LSA).

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(c) The Parallel Hierarchical One-Dimensional Search (PHODS).

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(d) The Hierarchical Motion Estimation (HME).

Figure 3.7. Motion vectors field and vectors’ historgams for the real image’s
translation tx = 5, ty = −5.

3.5 Preliminary MATLAB implementation 52

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(a) The Full-Search Method (FSM).

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(b) The Logarithmic Search Algorithm (LSA).

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(c) The Parallel Hierarchical One-Dimensional Search (PHODS).

−7−6−5−4−3−2−10 1 2 3 4 5 6 7
−7−6−5−4−3−2−101234567

0

5

10

Horizontal offset [px]Vertical offset [px]

N
u

m
b

er
 o

f
m

o
ti

o
n

 v
ec

to
rs

(d) The Hierarchical Motion Estimation (HME).

Figure 3.8. Motion vectors field and vectors’ historgams for the real image’s
rotation by an angle α = 1◦.

3.5 Preliminary MATLAB implementation 53

(a) Original frames.

(b) Edge detection with the treshold value 20%.

(c) Edge detection with the treshold value 50%.

(d) Edge detection with the treshold value 80%.

Figure 3.9. Edges detection results for real pictures.

3.5 Preliminary MATLAB implementation 54

(xi, yi, x
′
i, y

′
i), the total error could been expressed as

Q =
1

2

∑
i

[
(x′i − xi cosα + yi sinα− tx)2 + (y′i − xi sinα− yi cosα− ty)2

]
(46)

The total error was minimal, when all derivatives ∂Q
∂xi

were equal to zero. Therefore,
function

∂Q
∂ sinα
∂Q

∂ cosα
∂Q
∂tx
∂Q
∂ty

 = f

sinα

cosα

tx

ty

 = f(x) (47)

could be iteratively minimized. The Jacobian matrix had a form

J =

∂2Q

∂ sinα2
∂2Q

∂ sinα∂ cosα
∂2Q

∂ sinα∂tx

∂2Q
∂ sinα∂ty

∂2Q
∂ sinα∂ cosα

∂2Q
∂ cosα2

∂2Q
∂ cosα∂tx

∂2Q
∂ cosα∂ty

∂2Q
∂ sinα∂tx

∂2Q
∂ cosα∂tx

∂2Q
∂t2x

∂2Q
∂tx∂ty

∂2Q
∂ sinα∂ty

∂2Q
∂ cosα∂ty

∂2Q
∂tx∂ty

∂2Q
∂t2y

 . (48)

The parameters’ correction in the ith iteration was equal to

∆i = −J−1f(xi) (49)

and the parameters vector x in the ith iteration was expressed as

xi = xi−1 + ∆i. (50)

An illustration of Newton’s estimation results, in presence of a random noise,
was shown on the figure 3.10.

20 40 60 80 100
20

30

40

50

60

70

80

90

100

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o
n

 [
p
x

]

True points

Measured points

(a) Measurement results.

20 40 60 80 100
20

30

40

50

60

70

80

90

100

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o
n

 [
p
x

]

True points

Estimated points

(b) Newton’s estimation.

Figure 3.10. Results of Newton’s transformation estimation – total error re-
duction from 29.97 to 2.13 (in case of 9 points).

3.5 Preliminary MATLAB implementation 55

3.5.6 Moving average motion filtering

The moving average (rectangular) filter is an optimal filter for reducing the random
noise with preserving sharp step response. It has the best properties in the time
domain, but the worst in the frequency domain [14]. It is also very easy to im-
plement, so it seems to be a good choice for camera motion smoothing. Several of
moving average filters was implemented. All of them was based on one-side filtering,
because in the real-time operation samples from the future are not available. Some
phase shift in the camera motion during stabilization was acceptable, in opposite to
the time delay. As an input data the horizontal displacement of frame’s center in
the ”sledge” video sequence was used. The filter had a length of 8 frames.

The figure 3.11 shows filtering results. A filter with decreasing samples’ weights
(figure 3.11(b)) is not a classical moving average filter, but it was shown as a refer-
ence. Filtration had provided better results for two-pass filtering, so that technique
was implemented in the final stabilization filter. The motion estimation gave infor-
mations only about the displacement between frames and the subject of stabilization
is the absolute camera position. Experiments had shown that differences filtration
gave almost the same results as the possition filtration (figure 3.11(f)), so that ap-
proach could be successfully used.

3.5.7 Image transformation

Image transformation was implemented in two ways:

1. Based on the equation (10) – the source image had been scanned and each
pixel (x, y) was moved on its new position (x′, y′). That approach caused
artifacts in the shape of empty ”holes” due to rounding errors. That effect was
shown in the figure 3.12(b).

2. Based on the inverted transformation matrix (51) – the outcome image had
been scanned and each pixel (x′, y′) was filled with the one from the position
(x, y) in the source image. Then, there was no possibility to miss any point.xy

1

 = T−13×3

x′y′
1

 . (51)

To deal with points with noninteger coordinates, some kind of interpolation
technique had to be applied. Two of them were implemented:

nearest – rounding points’ coordinates and get a value of the nearest neighbor,

bilinear – computing the point’s value using all neighbors’ values and the inter-
polation function.

3.5 Preliminary MATLAB implementation 56

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Sample number (n−i)

S
am

p
le

 w
ei

g
h

t

(a) Uniform samples’ weights.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Sample number (n−i)

S
am

p
le

 w
ei

g
h

t

(b) Decreasing samples’ weights.

0 20 40 60 80 100

−20

−10

0

10

20

Number of frame

C
am

er
a

m
o

ti
o
n
 i

n
 c

u
rr

en
t

fr
am

e
[p

x
]

Measured data

1−pass filtering

2−pass filtering

(c) Filtering with uniform weights.

0 20 40 60 80 100

−20

−10

0

10

20

Number of frame

C
am

er
a

m
o

ti
o
n
 i

n
 c

u
rr

en
t

fr
am

e
[p

x
]

Measured data

1−pass filtering

2−pass filtering

(d) Filtering with decreasing weights.

0 20 40 60 80 100

−20

−10

0

10

20

Number of frame

C
am

er
a

p
o
si

ti
o
n

 i
n
 c

u
rr

en
t

fr
am

e
[p

x
]

Measured data

Uniform weights

Decreasing weights

(e) Comparison of results for different sample’s
weights.

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

Number of frame

C
am

er
a

p
o
si

ti
o
n

 i
n
 c

u
rr

en
t

fr
am

e
[p

x
]

Measured data

Position based filter

Motion based filter

(f) Comparison of results for differences and an
absolute position filtering.

Figure 3.11. Moving average low-pass filtering results.

3.6 FFmpeg implementation 57

The bilinear interpolation was described in some details in the section 3.5.8.

3.5.8 Bilinear interpolation

The bilinear interpolation is one of ways to compute the discrete function’s value in
the point between known values [3]. It was used because of its simplicity in imple-
mentation and results sufficient for video processing – the frames’ changing speed
is large, so minor imperfections were imperceptible. In case of a two-dimmensional
deiscete function, each point had four neighbors (figure 3.13). The assumption was
that the function changed its values linearly for small argument’s changes. Therefore

P (m, 0) = P00 + (P10 − P00)m

P (m, 1) = P01 + (P11 − P01)m

P (m, n) = P (m, 0) + [P (m, 1)− P (m, 0)]n.

(52)

Then, the final form of the bilinear interpolation function in that case was

P (m, n) = P00(1−m)(1− n) + P01(1−m)n+ P10(1− n)m+ P11mn. (53)

Effects of a bilinear interpolation usage in the image transformation were shown
in the figure 3.12.

3.6 FFmpeg implementation

FFmpeg is a complete, cross-platform set of tools for recording, playing, converting,
processing and streaming audio and video. It includes a large set of useful libraries.
The FFmpeg provides four command line interfaces:

ffmpeg – fast and flexible audio and video converter and grabber,

ffplay – simple and portable video player based on the SDL library,

ffprobe – tool for extraction informations about multimedia streams and files,

ffserver – server for streaming both audio and video.

Each of them use a common set of libraries, including libavfilter module [15].

3.6.1 Data structures

The main filter’s structure StabContext included information about the filters set-
tings, but also played the role of a filter’s memory. There were stored pointers to
the current and the reference frame buffers, motion vectors and inliners tables and
transformation filters’ histories. One primary data structure was necessary, because

3.6 FFmpeg implementation 58

(a) Original image.

(b) Illustration of ”holes” caused by rounding the pixels position. Black
pixels were missed and they have the background color.

(c) Transformation with the nearest interpolation.

(d) Transformation with the bilinear interpolation.

Figure 3.12. An exemplary image transformation and its results for different
transformation techniques – full image view and enlarged detail.

3.6 FFmpeg implementation 59

P
11

P
00

P
10

P(m, 0)

P
01

P(m, 1)

P(m, n)

m

n

Figure 3.13. Illustration of a two-dimmensional discrete function’s values grid
and the point with noninteger coodrinates.

of filter’s operation manner. The filter consisted of set of functions (entry points)
which were called by the player or the video converter. Filter’s context data structure
allowed to share some region of memory between them. To made the filter’s code
more legible, two additional data structures were introduced: Point and MotVector.
They encapsulated coordinates (x, y) for point type objects and (x, y, x′, y′) for
motion vector type objects.

3.6.2 Motion estimation

As could be seen in (45), processed points could not have the same y coordinate.
To avoid such a situation, not every points pair could be considered, and as result
some points had to be omitted. Author had proposed a 10× 8 motion search points
grid, which was not a rectangular one, but slightly sheared in both directions due to
ensure an unique x and y coordinate of each point. The goal of that approach was
to avoid a division by the zero and to eliminate points’ lost as well. Some margins
had been also added to ensure the best matching point occurrence, even when the
displacement between two frames were large. The example of such grid shape was
shown in the figure 3.14.

For the motion estimation two techniques were implemented:

full search – search in each point in a search region with integer-pixel accuracy
and the final estimation with a half-pixel accuracy,

fast search – a two-step hierarchical search – search in whole search region with
a step of 3 pixels, then integer-pixel search in the best matching location in
a region 3 × 3 pixels (figure 3.15) and the final estimation with a half-pixel
accuracy.

The search region was set as ±24 pixels from the starting location. That large
range of possible motion vector placement was required to handle shakes with a large

3.6 FFmpeg implementation 60

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Horizontal position [px]

V
er

ti
ca

l
p

o
si

ti
o

n
 [

p
x

]

Figure 3.14. Motion search points grid in a VGA frame (640× 480 pixels).

2 2 2

1 1 1 2 B 2 1

2 2 2

1 1 1 1 1

1 1 A 1 1

1 1 1 1 1

1 1 1 1 1

Figure 3.15. Motion search technique used in the stabilization filter. Numbers
represent points processed in each step.

3.6 FFmpeg implementation 61

amplitude. Compared macroblocks had a dimmension of 16 × 16 pixels, but for
a computational complexity reduction, they were subsampled by factor of two. As
a result of that, only 64 points of each frame were used in the cost function’s value
calculation. As macroblocks’ matching measure, the Binary Level Matching Crite-
rion was used.

3.6.3 Transformation estimation and correction

The transformation between a current and the reference frame estimation, based on
found motion vectors, was performed in two steps:

1. preliminary estimation with the RANSAC algorithm,

2. re-estimation with the Newton’s method.

In the first step, from many motion vectors only inliners were selected. The second
step was a minimization of total inliners displacement error for finding the best
match.

In general, there is only one transformation which describes the difference be-
tween two frames. But in case of video stabilization, much more complex model
had to be used. All of relations between two consecutive frames before and after
transformation were illustrated in the figure 3.16. Only two of them were known:

• the reference frame’s transformation TREF (stored in the memory),

• the backward transformation between a current and the reference frame before
its transformation TBACKW .

frame n-1 frame n
corrected
frame n-1

corrected
frame n-1

T
REF

T
CORR

T
BACKW

T
FORW

T
LPF

T
RES

Figure 3.16. Relations between two frames transformations.

The reference frame had been also transformed for fit to a previous one, so to fit
the current frame to the reference one, the correction transformation TCORR had to
be calculated

TCORR = TBACKW · TREF . (54)

3.6 FFmpeg implementation 62

To preserve the directed camera move TLPF , the forward transformation TFORW

between the current and the reference frame was filtered by a low-pass moving
average filter

TFORW = TBACKW
−1

TLPF = LPF(TFORW).
(55)

Therefore, the resultant transformation for stabilize the current frame in respect to
the previous one TRES could be expressed as

TRES = TBACKW · TREF · TLPF . (56)

3.6.4 Display styles

After an image transformation there were always some blank spaces. The image
frame on the filter’s output had been cropped to made a space for frame’s transfor-
mation. The transformation coefficients were limited to avoid memory leaks. That
approach had required the least computing effort which allowed to yield a real-time
performance. There had been implemented three display styles:

full frame – despite of an original image, the stabilized one was displayed in the
screen,

split – on the left half of the screen an original image was displayed and on the
right half the stabilized one,

motion vectors – similar to the full frame display but with additional motion
vectors plot.

The default one was the full frame stabilization. A different display style could be
chosen by calling the filter with an appropriate parameter.

Chapter 4 - Evaluation of Stabilization Quality 63

CHAPTER 4

EVALUATION OF STABILIZATION QUALITY

Results’ analysis was the last step of video stabilization filter development. It had
been hard to specify strict criteria, so the evaluation was based rather on subjective
author’s observations and feelings.

Main tests were run under MAC OS X 10.5.8 on the MacBook with Core 2 Duo
2.4 GHz CPU and 2 GB of RAM memory. All videos were played fluently with the
CPU usage up to about 60%, so the real-time operation was fully achieved, even for
HD ready videos.

Application was also run on the virtual machine with a single core CPU, RAM
memory limited to 512 MB and Ubuntu 10.4 LTS operating system. In this case,
the real-time performance was achieved only for VGA and SVGA videos.

4.1 Test video sequences stabilization

Filter’s performance was evaluated in case of several different video sequences, all
of them are included in the attached CD.

”earth” sequence:

• artificially rendered video,

• no shakes, but large moving objects in the frame,

• still camera,

• SVGA frame (800× 600) pixels.

The original video was perfectly still. Filter’s operation introduced small dither-
ing (sub-pixel image shakes) which may have been annoying. The output video had
had worse quality after than before filtering, but it was still acceptable.

4.1 Test video sequences stabilization 64

”flight” sequence:

• artificially rendered video,

• large, short shakes but without any horizon tilt,

• complex camera move combined mostly from dolly and truck,

• SVGA frame (800× 600) pixels.

In this case the improvement of video’s quality was clear. There were still some
tiny shakes, but overall result was very good. The shakes were significantly suppress
and the camera move was preserved.

”sledge” sequence:

• real video,

• large but short shakes,

• advantage of dolly camera move,

• VGA frame (640× 480) pixels.

That sequence was very hard to stabilize because of large area with low contrast,
which decreased the number of usefull motion vectors. In this video the shakes were
huge and some of them caused image strokes. The filter could not handle such large
distortions. In general, the image quality was improved, but the result could have
been better.

”funicular” sequence:

• real video,

• large but short shakes,

• still camera,

• HD ready frame (1280× 720) pixels.

This was a good example of filters capability limitations. Shakes up to a certain
amplitude were suppressed perfectly, but ones biggest caused image strokes.

4.1 Test video sequences stabilization 65

”walk1” sequence:

• real video,

• large and slow shakes caused by walking,

• advantage of dolly camera move,

• HD ready frame (1280× 720) pixels.

In this case the image stabilization worked well. Camera swings were removed
with preservation of the directed camera dolly move. Some blur was present in the
output video but it had not been introduced by filter’s operation.

”walk2” sequence:

• real video,

• large and slow shakes caused by walking,

• advantage of truck camera move,

• HD ready frame (1280× 720) pixels.

Stabilization results for this video were not perfect, however the output image
had much better quality than the input. Camera pan move had been preserved and
swings had been removed but there were still some dithers.

”walk3” sequence:

• real video,

• large and slow shakes caused by walking,

• advantage of truck camera move,

• HD ready frame (1280× 720) pixels.

Developed filter barely handled this video. There were few motion vectors and
the transformation estimation tended to be inaccurate. This resulted in many image
strokes and swings. In some parts the image was steady, but the overall performance
was rather poor.

4.2 Review of other existing solutions 66

4.2 Review of other existing solutions

When this work had been written, there were a few existing video stabilization
applications or plugins. Some of them were free of charge like:

• deshaker plugin for VirtualDub,

• plugin for translate developed by Georg Martius,

• video stabilization in YouTube Video Editor,

• vReveal (with output limited to 480 pixel width),

• Video Stabilizer.

There were also some commercial ones:

• Digital Video Stabilizer plugin for Adobe PremiereThis ($49.99),

• piStabilize plugin for iMovie ($39),

• full version of vReveal ($39).

All of them were video converters without a real-time operation option, and some
of them require even two-pass processing. The image stabilization provided by
YouTube was tested with the ”sledge” sequence. The output video (included in the
attached CD) was almost perfectly steady, but the camera moves were suppose to
be piecewise linear what looked slightly abnormal.

The only example of existing real-time video stabilization was vf_deshake filter
for FFmpeg developed by Georg Martius and Daniel G. Taylor. Unfortunately, it
had been developed within some elder version of FFmpeg library which was not
compatible with the current one and the author was unable to compile and run that
application.

Conclusions 67

CONCLUSIONS

The overall stabilization filter’s performance was good. In most cases, shakes had
been diminished what improved the image quality. An application ran in the real-
time even for videos in HD ready resolution. Some improvement may have been
implemented, but the goal was achieved.

Real-time operation requirement caused the computational complexity limita-
tion. The most exhaustive step in shakes elimination was the motion estimation.
There was a necessary to keep the balance between required accuracy and available
execution time. The number of motion vectors, the search range and the compared
macroblocks size was experimentally selected.

The largest impact on the stabilization performance had the motion estimation.
It was worth to put more attention to accurate motion estimation that to deal-
ing with outliers. In case of large displacements, fast motion estimation algorithms
tended to converge to the local instead of the global cost function’s minimum. a large
number of outliers caused transformation estimation very inaccurate and time con-
suming and that abolished the profit from the fast motion vectors’ search.

The two-step transformation estimation had seemed to work perfectly in a pre-
liminary implementation, but due to inaccurate motion vectors’ values and their
small number in the final application, transformation estimation results was also
imprecise. The developed filter handled better with the translation than with the
rotation estimation. That was caused by much greater impact of rotation’s inac-
curacy on the output image. Due to this, it was impossible to stabilize the scaling
factor and it had to been equalized to one. As far as the distortions made by im-
precise rotation’s compensation had been acceptable, the inaccuracy in the scaling
factor made the output image unusable.

Stabilization filter’s capability was limited. The output frame was cropped to
keep transformed image inside it without any blank areas. That bounded the trans-
formation range. In case of very strong shakes, the transformation had been to
extensive and had to be clipped. That caused a mismatch between subsequent
frames and visible image stroke.

Conclusions 68

Is some cases the output image quality was worst that the input one. Due to
limited to half-pixel motion estimation accuracy, some dithering may have be intro-
duced. When video shakes was small or none, this distortions could have override
the stabilization profit.

When the shakes were slow, there distinction between directed and undirected
camera moves was difficult. It may have been solved by implementation one more
advanced motion filtering algorithm. Usage of motion’s prediction may have al-
lowed to use a two-side despite of the one-side filtering and decrease the introduced
camera’s move phase shift.

Stabilization result strongly depended on processed video sequence. Areas with
low contrast were useless in motion estimation. Small number of motion vectors
caused inaccurate transformation estimation and bad frames fitting as a result. In
general, about 25% of motion vectors were discarded in the preliminary stage and
similar part of them was classified as outliers and discounted. When the portion
of lost because of too low contrast motion vectors had been more than 50%, the
stabilization’s result worsened.

For further work, one might attempt to use the higher class of estimated trans-
formation. However, it can be impossible with current motion estimation accuracy.
The motion vectors estimation accuracy might be increased up to quarter-pixel or
even more, but it requires some additional computational effort. The other remedy
is an increment of motion vectors’ number, but it also will be very exhaustive. An-
other possible improvement field is the video display style. Image cropping is the
simplest method, but it causes lost of field of view. There exist better solutions, but
all of them are quite exhaustive, so they was not took into a consideration in this
work. Development of GPU usage may solves the problem of complexity limitation
and bring superior performance.

References 69

REFERENCES

[1] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-
bridge University Press, 2003.

[2] M. I. Sezan and R. L. Lagendijk, editors. Motion analysis and image sequence
procesing. Kluwert Academy Publishers, 1993.

[3] D. Salomon. Computer graphics and geometry modeling. Springer-Verlang New
York Inc., 1999.

[4] J. Vineyard and J. Cruz. Setting up your shots: great camera moves every
filmmaker should know. Michael Wiese Productions, 2008.

[5] http://www.indie-film-making.com/types-of-camera-movement, May 2011.

[6] G. Millerson. Video camera techniques. Focal Press, 1994.

[7] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with application to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[8] V. Bhaskaran and K. Konstantinides. Image and video compression standards:
algorithms and architectures. Kluwert Academy Publishers, 1997.

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra. Overview of the
H.264/AVC video coding standard. IEEE transactions on circuits and systems
for video technology, 13(7):560–576, 2003.

[10] F. Dufaux, F. Moscheni. Motion estimation techniques for digital TV: a review
and a new contribution. Proceedings of the IEEE, 83(6):858–876, 1995.

[11] B. Furht, J. Greenberg and R. Westwater. Motion estimation algorithms for
video compression. Kluwert Academy Publishers, 1997.

[12] W. Hong, D. Wei, A. U. Batur. Video stabilization and rolling shutter distor-
tion reduction. 17th IEEE International Conference on Image Processing, pages
3501–3504, 2010.

[13] T. P. Zieliński. Cyfrowe przetwarzanie sygnałów : od teorii do zastosowań.
Wydawnictwa Komunikacji Łączności, 2005.

[14] S. W. Smith The scientist and engineer’s guide to digital signal processing.
California Technical Publications, 1997.

[15] FFmpeg documentation, http://www.ffmpeg.org/documentation.html, May
2011.

Appendix A – vf_stabilize.c file reference

#include <math.h>
#include ”avfilter.h”
#include ”libavutil/lfg.h”
#include ”libavutil/pixdesc.h”
#include ”libavutil/timer.h”

Data Structures

struct MotVector
Motion vector parameters structure.

struct Point
Point coordinates structure.

struct StabContext
Filter structure.

Enumerations

enum InterpMethod { NEAREST, BILINEAR_LUMA, BILINEAR }
Interpolation method.

enum SearchMethod { FAST, FULL }
Search algorithm.

enum DisplayStyle { FULL_FRAME, SPLIT, MOTION_VECTORS }
Display style.

Functions

static int edges (AVFilterBufferRef *img, int x, int y)
Edges detection.

static int bprop (AVFilterBufferRef *ref, AVFilterBufferRef
*curr, MotVector mv, int dx, int dy, int m)
BPROP cost function.

static int mad (AVFilterBufferRef *ref, AVFilterBufferRef *curr,
MotVector mv, int dx, int dy, int m)
MAD cost function.

static void full_search (AVFilterBufferRef *ref, AVFilterBuffer-
Ref *curr, StabContext *stab)
Full-searching of motion vectors.

static void fast_search (AVFilterBufferRef *ref, AVFilterBuffer-
Ref *curr, StabContext *stab)
Fast-searching of motion vectors.

static void tranest (MotVector mv1, MotVector mv2, StabContext
*stab)
Transformation estimation.

Appendix A – vf_stabilize.c file reference 71

static int nsamp (float eps)
RANSAC number of tries calculation.

static void ransac (StabContext *stab)
RANSAC transformation estimation.

static void newton (StabContext *stab)
Newton’s transformation re-estimation.

static void tranlpf (StabContext *stab)
Low-pass motion filtering.

static void tranmul (StabContext *stab)
Transformation multiplication.

static void traninv (StabContext *stab)
Transformation inversion.

static void transform (AVFilterBufferRef *in, AVFilterBufferRef
*out, StabContext *stab)
Frame transformation.

static void split (AVFilterBufferRef *in, AVFilterBufferRef *out,
StabContext *stab)
Split the screen between stabilized and original images.

static void putpixel (AVFilterBufferRef *out, int x, int y, Stab-
Context *stab)
Draw a pixel on the screen.

static void drawmv (AVFilterBufferRef *out, StabContext *stab)
Draw motion vectors.

static av_cold int init (AVFilterContext *ctx, const char *args, void
*opaque)
Initialization entry.

static av_cold void uninit (AVFilterContext *ctx)
Termination entry.

static int query_formats (AVFilterContext *ctx)
Set a list of supported formats.

static int config_props_input (AVFilterLink *link)
Configure filter parameters.

static int config_props_output (AVFilterLink *link)
Pass parameters to the next filter.

static void end_frame (AVFilterLink *link)
Process the frame - called when input data are sent.

Variables

AVFilter avfilter_vf_stabilize
Filter structure.

Appendix B – vf_stabilize filter users manual 72

Appendix B – vf_stabilize filter users manual

I - DEPENDENCIES

FFmpeg requires some additional libraries to be compiled and to operate.
In Ubuntu Linux all of them can be installed with a command:

$ sudo apt-get install yasm libsdl1.2-dev libsdl1.2debian x264
libx264-dev

II - INSTALLATION

There are two ways to install FFmpeg with vf_stabilize filter.
The first option is:

1) Download the newest version of FFmpeg sources.

2) Add the file vf_stabilize.c into the libaafilter directory.

3) Add a line:
REGISTER_FILTER (STABILIZE, stabilize, vf);

to the file libavfilter/allfilters.c

4) Add a line:
OBJS-$(CONFIG_STABILIZE_FILTER) += vf_stabilize.o

to the file libavfilter/Makefile

5) Compile the application in a standard manner.

The second option is to use binaries from an attached CD:

1) Unpack an archive with:

$ tar -pxzf ffmpeg.tar.gz

2) Enter the ffmpeg/build directory.

3) Run build.sh script which will configure, make and install
the appliction.

III - USAGE

Vf_stabilize filter can be used with ffplay video player or with ffmpeg
video converter. The syntax is similar in both cases:

Appendix B – vf_stabilize filter users manual 73

$ ffplay <input_file> -vf <filter>
$ ffmpeg -i <input_file> -vf <filter> -b <bitrate> <output_file>

The section <filter> can be just:

stabilize

for a default settings. There are also some configuration possibilities:

"stabilize=A:B:C:D:E"

where:

A - motion vectors searching method (default 0):
0 - fast search,
1 - full search.

B - interpolation method (default 0):
0 - nearest (no interpolation),
1 - bilinear in the luma plane, nearest in the chroma plane,
2 - bilinear in both planes.

C - display style (default 0):
0 - full frame stabilization,
1 - split the screen and stabilize only a half of it,
2 - stabilize whole frame and show motion vectors.

D - filter length in frames, limited in range 1-30 (default 12).
E - crop margin in percent, limited in range 0-30 (default 5).

Only first n parameters must be passed (n varies from 0 to 5). For example:

$ fflpay <input_file> -vf stabilize
$ fflpay <input_file> -vf "stabilize=0"
$ fflpay <input_file> -vf "stabilize=0:0"
$ fflpay <input_file> -vf "stabilize=0:0:0"
$ fflpay <input_file> -vf "stabilize=0:0:0:12"
$ fflpay <input_file> -vf "stabilize=0:0:0:12:5"

Default usage with ffplay are equal to:

$ ffplay <input_file> -vf stabilize

and:

$ ffplay <input_file> -vf "stabilize=0:0:0:12:5"

For the conversion, it is recommended to use more accurate motion search,
an interpolation and bitrate equat to 1.5 Mbps or above. For example:

$ ffmpeg -i <input_file> -vf "stabilize=1:2" -b 2M <output_file>

Appendix C – CD-ROM 74

Appendix C – CD-ROM

CD-ROM content:

/3d –3D scenes rendered in Anim8tor,

/doxygene –filter’s code documentation,

/ffmpeg – FFmpeg binaries with working stabilization filter included,

/matlab – m-files used in this work,

/video – test video sequences,

paper.pdf – electronic version of this paper.

	Introduction
	Camera Vision and Image Transforming
	Projective geometry and 2D transformations
	Homogenous coordinates
	Camera projection
	A hierarchy of 2D transformations

	Camera moves
	Camera movement techniques
	Camera holding techniques
	Undirected random shakes

	Transformation matrix estimation
	Linear algorithms
	Over-determined case and different cost functions
	Iterative minimization methods
	Robust estimation – RANSAC

	Motion Vectors in Video Compression
	Still image compression – the M-JPEG encoder
	Discrete Cosine Transform (DCT) based coding

	Color planes subsampling
	Motion compensation
	Motion vectors estimation
	Gradient techniques
	Pixel recursive techniques
	Block-matching method
	Frequency domain techniques

	Block-matching motion estimation algorithms
	The Full-Search Method (FSM)
	The Logarithmic Search Algorithm (LSA)
	The Parallel Hierarchical One-Dimensional Search (PHODS)
	The Hierarchical Motion Estimation (HME)

	Matching criteria
	Sub-pixel accurate motion estimation

	Stabilization Filter Development
	Block diagram of anti-shake chain
	Real camera shakes measurement
	Rolling shutter distortions
	Artificial 3D environment created in Anim8tor
	Preliminary MATLAB implementation
	Existing motion vectors utilization
	Comparison of different matching criterion
	Comparison of different motion searching algorithms
	Edges detection
	Transformation estimation
	Moving average motion filtering
	Image transformation
	Bilinear interpolation

	FFmpeg implementation
	Data structures
	Motion estimation
	Transformation estimation and correction
	Display styles

	Evaluation of Stabilization Quality
	Test video sequences stabilization
	Review of other existing solutions

	Conclusions
	References
	Appendix A – vf_stabilize.c file reference
	Appendix B – vf_stabilize filter users manual
	Appendix C – CD-ROM

