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LIP library

Overview
� Irregular and out-of-core problems

� lip design goals

� Basic approach: inspector/executor, i-section

� Optimizations

� lip overview

� Using lip in Java

� Performance tests

� Summary

� Future development
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Irregular Problems
� Access to data arrays through one or more levels of indirection arrays

� Indirection arrays not known until runtime - no possibility of
compile-time optimization

� Runtime optimization aimed at maximizing computation to
communication ratio

� Types

– static

– multiphase

– adaptive

– ...
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Static Irregular Problems

� Indirection arrays remain unchanged during computation

� Examples

– sparse matrix-vector multiplication

– explicit mesh solvers
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Example of Static Irregular Problem

int i, j, k1, k2;

int edge1[N], edge2[N]; /* indirection arrays */

double x[M], y[M]; /* data arrays */

/*...*/

for (j = 0; j < TIME_STEPS ; j++)

for (i = 0; i < N; i++)

{

k1 = edge1[i];

k2 = edge2[i];

y[k1] += x[k2]; /* indirect access

} to ‘x’ and ‘y’ */
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Adaptive Irregular Problems

� Many computational phases, data dependencies are modified between
consecutive phases, e.g.

– adaptive unstructured mesh solvers

– particle dynamics codes

– direct Monte-Carlo simulations
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Example of Adaptive Irregular Problem
int i, j, k;

int edge[N]; /* indirection array */

double x[M], y[M]; /* data arrays */

/*...*/

for (j = 0; j < TIME_STEPS ; j++)

{

for (i = 0; i < N; i++)

{

k = edge[i];

y[i] += x[k]; /* indirect access to ‘x’ */

}

/* modification of indirection array */

for (i = 0; i < N; i++)

edge[i] = refine( edge[i] );

}
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Multiphase Irregular Problems

� multiple phases with irregular loops (each phase like a single static
problem)

� indirection arrays used between phases are similar

� Examples: unstructured multigrid mesh solvers, sparse triangular
solvers
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Example of Multiphase Irregular Problem

int i, j, k;

/* indirection arrays */

int coarse_edge[N];

int fine_edge[N];

/* data arrays */

double x[M], y[M];

/* ... */

for (j = 0 ; j < TIME_STEPS ; j++){

/* iterations over coarse mesh */

for (i = 0 ; i < N_COARSE ; i++){

k = coarse_edge[i];

/* indirect access to ‘x’ */

y[i] += x[k];

}

/* iterations over fine mesh */

for (i = 0 ; i < N_FINE ; i++) {

k = fine_edge[i];

/* indirect access to ‘x’ */

y[i] += x[k];

}

}
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Parallelization Techniques for Irregular Problems
1. Fetch on demand

� data fetched when needed
� simple parallelization steps

� inefficient

2. Inspector/Executor

� Inspector
– data & work partitioning
– analysis of indices & their translation
– communication objects generation

� Executor
– communication (with use of created objects)
– computation (almost the same as in sequential code)

� Example tool: CHAOS library
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Out-of-Core (OOC) Problems
� Sizes of arrays are too large to fit in main memory

� Virtual Memory management provided by operating system does not
solve it because

– there are limitations on virtual memory size

– operating system cannot optimize I/O access pattern for a particular
problem

– no collective I/O is possible (all computing nodes perform I/O
operations concurrently)

� Additional tools for OOC problems are required

� MPI-IO emerges as a standard for parallel I/O after wide acceptance of
MPI
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Goals
� Requirements

– portability

– multilanguage support

– scalability

– efficiency

� load balancing with partitioner

� data caching

� Implementation

– according to ANSI C standard

– built on top of MPI and MPI–IO

� Tests

– synthetic benchmarks and scientific applications
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Inspector/Executor technique for IC computing

� during the inspector phase, data is localized (data items needed by the
node are fetched)

� during the executor phase, actual computations are performed
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Inspector/Executor technique for IC computing – cont’d
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Definition of Schedule
� what to send (export list)

� what to receive (import list)

� communication coalescing

� global communication pattern in-
formation

� use of collective routines

� duplicate entries removed
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OOC Support in lip

� Parallelization is based on the concept of i-sections

� Support for cases when indices array, data array or both are out-of-core

� multiple passes over parts of index array

� the same functions as in in-core version

� user defined i-section size
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OOC Support in lip - cont’d
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The lip Library Optimizations
� Data partitioning and remapping for better load balance.

– global method

– uses any number of processors

– in–core and out–of–core version

– coordinate-based – Hilbert’s curve

– uses bucket sort algorithm – complexity O(n)

� Data caching

– special structure IOBufmap to memorize data mapping between
memory and disk

– exchange only for the elements not residing in a memory buffer
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The lip Library Optimizations – cont’d

� Communications and I/O operations coalescing

– a single routine for reading all needed elements

– a single routine for writing all old elements

– a single routine for communication
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I/O Caching and Operations Coalescing
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Datamaps

� mapping of user data onto nodes

� major mappings supported (from data-parallel languages)

– BLOCK

– CYCLIC

– INDIRECT

– other

� distributed/local storage
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Irregular Distribution Creation
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LIP Library Overview

Six main groups of LIP library functions :

� Functions to create and manipulate data mapping objects which
describe how data array is partitioned among processors - involved
partintioner functions :

– LIP_create_hilbert_distribution_in_core() create
irregular distribution for in–core data

– LIP_create_hilbert_distribution_ooc() create
irregular distribution for out–of–core data

and remapping functions.

� Functions that create objects for mapping the memory buffer onto a file

� Functions for communication schedule generation and transformation
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LIP Library Overview – cont’d

� Two functions for index translation -

– LIP_Localize() translates globally numbered indices into
locally numbered counterparts

– LIP_OOC_localize() transforms indices which point to data
residing on a disk into indices to a memory data buffer

� Communication functions that perform collective communication
between nodes

� Miscellaneous - setup etc.
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In-core Inspector
LIP_LOCALIZE(datamap, flags, iglobal, igtype, ilocal, iltype, count, schedule,

info)

IN datamap data mapping handle (handle)

IN flags combines flags specified by user (integer)

IN iglobal index array with global indices (choice)

IN igtype layout description of global indices (handle)

OUT ilocal index array for local indices (choice)

IN iltype layout description for local indices (handle)

IN count number of indices (integer)

INOUT schedule communication schedule (handle)

INOUT info additional information about indices (handle)
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In-core Inspector – cont’d

� count indices from indirection array iglobal are transformed into ilocal
array

� communication schedule is created for data (which is distributed ac-
cording to datamap) exchange between nodes

� additional info is passed via flags and info
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Out-of-core Inspector
LIP_OOC_LOCALIZE(ilocal, iltype, itlocal, ittype, count, flags, buf,

bmap, schedule)

IN ilocal index array with local indices (choice)

IN iltype layout description for local indices (handle)

OUT itlocal index array for translated local indices (choice)

IN ittype layout description of translated indices (handle)

IN count number of indices (integer)

IN flags combines flags specified by user (integer)

INOUT buf memory data buffer (choice)

INOUT bmap mapping of memory buffer elements onto file (handle)

INOUT schedule communication schedule (handle)
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Out-of-core Inspector – cont’d

� Count indices from indirection array ilocal are transformed into itlocal
array

� memory-disk mapping bmap is created for data exchange between
in-memory data buffer buf and disk via MPI–IO routines

� communication schedule is modified to reflect new mapping

� additional info is passed via flags.
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Sample Code Using lip
MPI_Init( /* ... */ );

LIP_Setup( /* ... */ );

/* Generate index array describing

* relationships between user data */

/* Generate irregular distribution*/

LIP_create_hilbert_distribution(/* */);

/* Data remapping */

LIP_remap_ooc(/*...*/);

/* Perform irregular computation

* on the data */

for ( /* ... */ )

{

/* read i-section’s indices from a file */

/* Inspector Phase */

LIP_Localize( /* ... */ );

LIP_OOC_Localize(/* ... */);

/* Create MPI derived datatypes for moving

*data between the memory and the disk */

LIP_IObufmap_get_datatype(/*...*/);

/*Executor Phase (performs

communication and computation)*/

/* Exchange between disk and memory */

MPI_File_write( /* ... */ );

MPI_File_read( /* ... */ );

/* gather non-local irregular data */

LIP_Gather( /* ... */ );

/* perform computation on data */

for ( i = /* ... */ )

{

k = edge[i];

y[k] = f( x[k] );

}

/* scatterer non-local irregular data (results) */

LIP_Scatter( /* ... */ );

}

/* Get MPI datatypes for moving the data obtained

* in the last iteration from the memory to the disk */

LIP_IObufmap_get_datatype( /* ... */ );

/* Store the data on a disk */

MPI_File_write( /* ... */ );

LIP_Exit( /* ... */ );

MPI_Finalize( /* ... */ );
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Janet tool

� extension of the Java language

� allows inserting native (i.e. C) language statements directly into Java
source code files

� Janet translator creates automatically Java and native source files with
all the required JNI calls

� frees the programmer from calling low level JNI API

� makes interface creation more flexible and clearer
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Java Bindings to lip

� Using Janet tool to create Java bingings

� Implementation of Java-specific features

– Class-based library design instead of flat function set

– Objects instead of structures and handles

– Exceptions instead of error return values

� Performance evaluation
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Sample Java OOC code with lip

LIP.Localize(datamap_irr,
new LIP.ContIntIndexer(perm),
new LIP.ContIntIndexer(perm_l),
0, schedule);

LIP.OOC_Localize(new LIP.ContIntIndexer(perm_l),
new LIP.ContIntIndexer(tperm_l),
0, new VDouble(x_l), MPI.DOUBLE, bufm, schedule);

/* ... */

LIP.Gather(new VDouble(x_l), new VDouble(x_l).subArray(l_l),
MPI.DOUBLE, schedule );

/* irregular loops
...
*/

LIP.Scatter(new VDouble(x_l).subArray(l_l), new VDouble(x_l),
MPI.DOUBLE, schedule, LIP.OP_SUM);

schedule.free();
schedule = null;
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Kernel loop

for(i=0;i<edge_counter;i++)

{

x2[edge2[i]]+=x1[edge1[i]]/n_succ;

x2[edge1[i]]-=x1[edge1[i]];

}
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Advantage of lip Library over Virtual Memory
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Kernel loop

int perm[n];

double x[2*n];

double y[n];

for(i=0;i<n;i++)

{

y[i]--=x[perm[i]];

}

for(i=0;i<n;i++)

{

y[i]--=x[perm[i]];

}

for(i=0;i<n;i++)

{

x[perm[i]]+=y[i];

}
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Advantage of lip Library over Virtual Memory
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Comparison between C and Java Performance
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Kernel loop of the GCCG solver

double direc1[NNCELL];

double direc2[NNCELL];

int lcc[6*NNCELL];

for(nc=0;nc<nintcf;nc++) {

direc2[nc]=bp[nc]*direc1[nc]

-bs[nc]*direc1[lcc[6*nc]-1]

-bw[nc]*direc1[lcc[6*nc+3]-1]

-bl[nc]*direc1[lcc[6*nc+4]-1]

-bn[nc]*direc1[lcc[6*nc+2]-1]

-be[nc]*direc1[lcc[6*nc+1]-1]

-bh[nc]*direc1[lcc[6*nc+5]-1];

}
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Performance of AVL FIRE benchmark solver
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Kernel loop of partitioner test

for(i=0;i<edge_counter;i++)

{

x2[edge2[i]]+=x1[edge1[i]]/n_succ;

x2[edge1[i]]-=x1[edge1[i]];

}

� vertices of a graph distributed randomly on a plain square

� distance between adiacent vertices cannot be greater then fixed value
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Performance of inspector and executor phase for irregular
distribution
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Performance of communication phase
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Master-Worker scheme for Grid LIP (G-LIP)
� useful in Grid environment

� divides work between masters (inspectors) and wokers (executors)
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Summary
� Portability based on MPI and MPI-IO

� Scalability

� Advantages of data partitioning

� Multi-language support (C and Java)

� Available on:
http://galaxy.uci.agh.edu.pl/ � kzajac/

� Janet tool:
http://www.icsr.agh.edu.pl/janet/

� first attempt for porting to a Grid
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Future Development

� User defined operations

– used to customize lip to a particular problem

� More partitioners

– use edge information to obtain data distribution patterns

� Extend lip to the OGSA architecture
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