
LIP library

Advanced Library Support for Irregular Data Intensive
Scientific Computing on Clusters

Peter BREZANY � , Marian BUBAK � �� ,
Maciej MALAWSKI � and Katarzyna ZAJA̧C �

� Institute for Software Science,
University of Vienna, Austria

� Institute of Computer Science, AGH, Kraków, Poland

� ACC CYFRONET-AGH, Kraków, Poland

University of Mining and Metallurgy & ACC Cyfronet, Kraków (1)

LIP library

Overview
� Irregular and out-of-core problems

� lip design goals

� Basic approach: inspector/executor, i-section

� Optimizations

� lip overview

� Using lip in Java

� Performance tests

� Summary

� Future development

University of Mining and Metallurgy & ACC Cyfronet, Kraków (2)

LIP library

Irregular Problems
� Access to data arrays through one or more levels of indirection arrays

� Indirection arrays not known until runtime - no possibility of
compile-time optimization

� Runtime optimization aimed at maximizing computation to
communication ratio

� Types

– static

– multiphase

– adaptive

– ...

University of Mining and Metallurgy & ACC Cyfronet, Kraków (3)

LIP library

Static Irregular Problems

� Indirection arrays remain unchanged during computation

� Examples

– sparse matrix-vector multiplication

– explicit mesh solvers

University of Mining and Metallurgy & ACC Cyfronet, Kraków (4)

LIP library

Example of Static Irregular Problem

int i, j, k1, k2;

int edge1[N], edge2[N]; /* indirection arrays */

double x[M], y[M]; /* data arrays */

/*...*/

for (j = 0; j < TIME_STEPS ; j++)

for (i = 0; i < N; i++)

{

k1 = edge1[i];

k2 = edge2[i];

y[k1] += x[k2]; /* indirect access

} to ‘x’ and ‘y’ */

University of Mining and Metallurgy & ACC Cyfronet, Kraków (5)

LIP library

Adaptive Irregular Problems

� Many computational phases, data dependencies are modified between
consecutive phases, e.g.

– adaptive unstructured mesh solvers

– particle dynamics codes

– direct Monte-Carlo simulations

University of Mining and Metallurgy & ACC Cyfronet, Kraków (6)

LIP library

Example of Adaptive Irregular Problem
int i, j, k;

int edge[N]; /* indirection array */

double x[M], y[M]; /* data arrays */

/*...*/

for (j = 0; j < TIME_STEPS ; j++)

{

for (i = 0; i < N; i++)

{

k = edge[i];

y[i] += x[k]; /* indirect access to ‘x’ */

}

/* modification of indirection array */

for (i = 0; i < N; i++)

edge[i] = refine(edge[i]);

}

University of Mining and Metallurgy & ACC Cyfronet, Kraków (7)

LIP library

Multiphase Irregular Problems

� multiple phases with irregular loops (each phase like a single static
problem)

� indirection arrays used between phases are similar

� Examples: unstructured multigrid mesh solvers, sparse triangular
solvers

University of Mining and Metallurgy & ACC Cyfronet, Kraków (8)

LIP library

Example of Multiphase Irregular Problem

int i, j, k;

/* indirection arrays */

int coarse_edge[N];

int fine_edge[N];

/* data arrays */

double x[M], y[M];

/* ... */

for (j = 0 ; j < TIME_STEPS ; j++){

/* iterations over coarse mesh */

for (i = 0 ; i < N_COARSE ; i++){

k = coarse_edge[i];

/* indirect access to ‘x’ */

y[i] += x[k];

}

/* iterations over fine mesh */

for (i = 0 ; i < N_FINE ; i++) {

k = fine_edge[i];

/* indirect access to ‘x’ */

y[i] += x[k];

}

}

University of Mining and Metallurgy & ACC Cyfronet, Kraków (9)

LIP library

Parallelization Techniques for Irregular Problems
1. Fetch on demand

� data fetched when needed
� simple parallelization steps

� inefficient

2. Inspector/Executor

� Inspector
– data & work partitioning
– analysis of indices & their translation
– communication objects generation

� Executor
– communication (with use of created objects)
– computation (almost the same as in sequential code)

� Example tool: CHAOS library

University of Mining and Metallurgy & ACC Cyfronet, Kraków (10)

LIP library

Out-of-Core (OOC) Problems
� Sizes of arrays are too large to fit in main memory

� Virtual Memory management provided by operating system does not
solve it because

– there are limitations on virtual memory size

– operating system cannot optimize I/O access pattern for a particular
problem

– no collective I/O is possible (all computing nodes perform I/O
operations concurrently)

� Additional tools for OOC problems are required

� MPI-IO emerges as a standard for parallel I/O after wide acceptance of
MPI

University of Mining and Metallurgy & ACC Cyfronet, Kraków (11)

LIP library

Goals
� Requirements

– portability

– multilanguage support

– scalability

– efficiency

� load balancing with partitioner

� data caching

� Implementation

– according to ANSI C standard

– built on top of MPI and MPI–IO

� Tests

– synthetic benchmarks and scientific applications

University of Mining and Metallurgy & ACC Cyfronet, Kraków (12)

LIP library

Inspector/Executor technique for IC computing

� during the inspector phase, data is localized (data items needed by the
node are fetched)

� during the executor phase, actual computations are performed

University of Mining and Metallurgy & ACC Cyfronet, Kraków (13)

LIP library

Inspector/Executor technique for IC computing – cont’d
array

indirection data
arrayarray

indirection data
array

non-local
references

area
ghost

localize()

University of Mining and Metallurgy & ACC Cyfronet, Kraków (14)

LIP library

Definition of Schedule
� what to send (export list)

� what to receive (import list)

� communication coalescing

� global communication pattern in-
formation

� use of collective routines

� duplicate entries removed

ar
ra

y
lo

ca
l

exported data
gh

os
t

ar
ea

node 0
data

node 1
data data

node 2

imported data

University of Mining and Metallurgy & ACC Cyfronet, Kraków (15)

LIP library

OOC Support in lip

� Parallelization is based on the concept of i-sections

� Support for cases when indices array, data array or both are out-of-core

� multiple passes over parts of index array

� the same functions as in in-core version

� user defined i-section size

University of Mining and Metallurgy & ACC Cyfronet, Kraków (16)

LIP library

OOC Support in lip - cont’d

data
sieving
during

I/O
operation

OOC local (node) view

Area
Ghost

in file
data

indices
local

i−section

in memory
data
local

non−local reference
local reference

University of Mining and Metallurgy & ACC Cyfronet, Kraków (17)

LIP library

The lip Library Optimizations
� Data partitioning and remapping for better load balance.

– global method

– uses any number of processors

– in–core and out–of–core version

– coordinate-based – Hilbert’s curve

– uses bucket sort algorithm – complexity O(n)

� Data caching

– special structure IOBufmap to memorize data mapping between
memory and disk

– exchange only for the elements not residing in a memory buffer

University of Mining and Metallurgy & ACC Cyfronet, Kraków (18)

LIP library

The lip Library Optimizations – cont’d

� Communications and I/O operations coalescing

– a single routine for reading all needed elements

– a single routine for writing all old elements

– a single routine for communication

University of Mining and Metallurgy & ACC Cyfronet, Kraków (19)

LIP library

I/O Caching and Operations Coalescing

P Q R S TA B C D E F G O

PROCESSOR M PROCESSOR L

Index array

A B C D E F G Q

gather data
from other nodes

global view 2 3 17 1 1

2 3 8 1 1

A B C D E

B C A B C A Q

F G
disk view -> memory view

LIP_ooc_localize()

1 2 5 3 3

5 4 2 16 3

A B C D E F G P A B C D E F G

B C E D PB C
gather data

from other nodes

 (E and D)

global view

LIP_ooc_localize()
disk view -> memory view

3 4 1 2 5

5 4 2 8 3

 First i-section of processor L

Second i-section of processor L

2 3 17 1 1 5 4 2 16 3

Data array

disk array

local disk view

LIP_localize()
global view -> local view

 area
hypothetical ghost

ghost arealocal memory view

memory array

reading data from local disk

disk array

local disk view

disk array

hypothetical ghost
 area

local memory view

memory array

disk array

writing old data (A)

ghost area

reading data from local disk

(elements B and C are already in memory)

LIP_localize()
global view -> local view

University of Mining and Metallurgy & ACC Cyfronet, Kraków (20)

LIP library

Datamaps

� mapping of user data onto nodes

� major mappings supported (from data-parallel languages)

– BLOCK

– CYCLIC

– INDIRECT

– other

� distributed/local storage

University of Mining and Metallurgy & ACC Cyfronet, Kraków (21)

LIP library

Irregular Distribution Creation

node 0 node 1 node 0 node 1

disc array

LIP_create_hilbert_distribution()

LIP_remap()

node2 node2

belongs to node3
belongs to node2
belongs to node1

A F

I

A F
IG H E

G H E

B D
C B

D
C

A A

array of new owners

array of indices

translation table stored in LIP_Datamap

1

1

B C D E F G H I F I B C D E H G

2 2

2 2

33 32 1 1

1321 3 3

 A B C D E F G H I

University of Mining and Metallurgy & ACC Cyfronet, Kraków (22)

LIP library

LIP Library Overview

Six main groups of LIP library functions :

� Functions to create and manipulate data mapping objects which
describe how data array is partitioned among processors - involved
partintioner functions :

– LIP_create_hilbert_distribution_in_core() create
irregular distribution for in–core data

– LIP_create_hilbert_distribution_ooc() create
irregular distribution for out–of–core data

and remapping functions.

� Functions that create objects for mapping the memory buffer onto a file

� Functions for communication schedule generation and transformation

University of Mining and Metallurgy & ACC Cyfronet, Kraków (23)

LIP library

LIP Library Overview – cont’d

� Two functions for index translation -

– LIP_Localize() translates globally numbered indices into
locally numbered counterparts

– LIP_OOC_localize() transforms indices which point to data
residing on a disk into indices to a memory data buffer

� Communication functions that perform collective communication
between nodes

� Miscellaneous - setup etc.

University of Mining and Metallurgy & ACC Cyfronet, Kraków (24)

LIP library

In-core Inspector
LIP_LOCALIZE(datamap, flags, iglobal, igtype, ilocal, iltype, count, schedule,

info)

IN datamap data mapping handle (handle)

IN flags combines flags specified by user (integer)

IN iglobal index array with global indices (choice)

IN igtype layout description of global indices (handle)

OUT ilocal index array for local indices (choice)

IN iltype layout description for local indices (handle)

IN count number of indices (integer)

INOUT schedule communication schedule (handle)

INOUT info additional information about indices (handle)

University of Mining and Metallurgy & ACC Cyfronet, Kraków (25)

LIP library

In-core Inspector – cont’d

� count indices from indirection array iglobal are transformed into ilocal
array

� communication schedule is created for data (which is distributed ac-
cording to datamap) exchange between nodes

� additional info is passed via flags and info

University of Mining and Metallurgy & ACC Cyfronet, Kraków (26)

LIP library

Out-of-core Inspector
LIP_OOC_LOCALIZE(ilocal, iltype, itlocal, ittype, count, flags, buf,

bmap, schedule)

IN ilocal index array with local indices (choice)

IN iltype layout description for local indices (handle)

OUT itlocal index array for translated local indices (choice)

IN ittype layout description of translated indices (handle)

IN count number of indices (integer)

IN flags combines flags specified by user (integer)

INOUT buf memory data buffer (choice)

INOUT bmap mapping of memory buffer elements onto file (handle)

INOUT schedule communication schedule (handle)

University of Mining and Metallurgy & ACC Cyfronet, Kraków (27)

LIP library

Out-of-core Inspector – cont’d

� Count indices from indirection array ilocal are transformed into itlocal
array

� memory-disk mapping bmap is created for data exchange between
in-memory data buffer buf and disk via MPI–IO routines

� communication schedule is modified to reflect new mapping

� additional info is passed via flags.

University of Mining and Metallurgy & ACC Cyfronet, Kraków (28)

LIP library

Sample Code Using lip
MPI_Init(/* ... */);

LIP_Setup(/* ... */);

/* Generate index array describing

* relationships between user data */

/* Generate irregular distribution*/

LIP_create_hilbert_distribution(/* */);

/* Data remapping */

LIP_remap_ooc(/*...*/);

/* Perform irregular computation

* on the data */

for (/* ... */)

{

/* read i-section’s indices from a file */

/* Inspector Phase */

LIP_Localize(/* ... */);

LIP_OOC_Localize(/* ... */);

/* Create MPI derived datatypes for moving

*data between the memory and the disk */

LIP_IObufmap_get_datatype(/*...*/);

/*Executor Phase (performs

communication and computation)*/

/* Exchange between disk and memory */

MPI_File_write(/* ... */);

MPI_File_read(/* ... */);

/* gather non-local irregular data */

LIP_Gather(/* ... */);

/* perform computation on data */

for (i = /* ... */)

{

k = edge[i];

y[k] = f(x[k]);

}

/* scatterer non-local irregular data (results) */

LIP_Scatter(/* ... */);

}

/* Get MPI datatypes for moving the data obtained

* in the last iteration from the memory to the disk */

LIP_IObufmap_get_datatype(/* ... */);

/* Store the data on a disk */

MPI_File_write(/* ... */);

LIP_Exit(/* ... */);

MPI_Finalize(/* ... */);

University of Mining and Metallurgy & ACC Cyfronet, Kraków (29)

LIP library

Janet tool

� extension of the Java language

� allows inserting native (i.e. C) language statements directly into Java
source code files

� Janet translator creates automatically Java and native source files with
all the required JNI calls

� frees the programmer from calling low level JNI API

� makes interface creation more flexible and clearer

University of Mining and Metallurgy & ACC Cyfronet, Kraków (30)

LIP library

Java Bindings to lip

� Using Janet tool to create Java bingings

� Implementation of Java-specific features

– Class-based library design instead of flat function set

– Objects instead of structures and handles

– Exceptions instead of error return values

� Performance evaluation

University of Mining and Metallurgy & ACC Cyfronet, Kraków (31)

LIP library

Sample Java OOC code with lip

LIP.Localize(datamap_irr,
new LIP.ContIntIndexer(perm),
new LIP.ContIntIndexer(perm_l),
0, schedule);

LIP.OOC_Localize(new LIP.ContIntIndexer(perm_l),
new LIP.ContIntIndexer(tperm_l),
0, new VDouble(x_l), MPI.DOUBLE, bufm, schedule);

/* ... */

LIP.Gather(new VDouble(x_l), new VDouble(x_l).subArray(l_l),
MPI.DOUBLE, schedule);

/* irregular loops
...
*/

LIP.Scatter(new VDouble(x_l).subArray(l_l), new VDouble(x_l),
MPI.DOUBLE, schedule, LIP.OP_SUM);

schedule.free();
schedule = null;

University of Mining and Metallurgy & ACC Cyfronet, Kraków (32)

LIP library

Kernel loop

for(i=0;i<edge_counter;i++)

{

x2[edge2[i]]+=x1[edge1[i]]/n_succ;

x2[edge1[i]]-=x1[edge1[i]];

}

University of Mining and Metallurgy & ACC Cyfronet, Kraków (33)

LIP library

Advantage of lip Library over Virtual Memory

1 2 3 4 5 6 7 8

number of processors
0

500

1000

1500

2000

2500

3000

3500

4000

ex
ec

ut
io

n
tim

e,
s

lip OOC
virtual memory

102 loop iterations

University of Mining and Metallurgy & ACC Cyfronet, Kraków (34)

LIP library

Kernel loop

int perm[n];

double x[2*n];

double y[n];

for(i=0;i<n;i++)

{

y[i]--=x[perm[i]];

}

for(i=0;i<n;i++)

{

y[i]--=x[perm[i]];

}

for(i=0;i<n;i++)

{

x[perm[i]]+=y[i];

}

University of Mining and Metallurgy & ACC Cyfronet, Kraków (35)

LIP library

Advantage of lip Library over Virtual Memory

1 2 3 4 5 6 7 8

number of processors

500

1000

1500

2000

2500

3000

3500

4000

4500

ex
ec

ut
io

n
tim

e
in

se
cs lip out-of-core

virtual memory

University of Mining and Metallurgy & ACC Cyfronet, Kraków (36)

LIP library

Comparison between C and Java Performance

1 2 3 4 5 6

number of processors

1

2

3

4

5

6

7

ex
ec

ut
io

n
tim

e
in

se
cs C

Java

University of Mining and Metallurgy & ACC Cyfronet, Kraków (37)

LIP library

Kernel loop of the GCCG solver

double direc1[NNCELL];

double direc2[NNCELL];

int lcc[6*NNCELL];

for(nc=0;nc<nintcf;nc++) {

direc2[nc]=bp[nc]*direc1[nc]

-bs[nc]*direc1[lcc[6*nc]-1]

-bw[nc]*direc1[lcc[6*nc+3]-1]

-bl[nc]*direc1[lcc[6*nc+4]-1]

-bn[nc]*direc1[lcc[6*nc+2]-1]

-be[nc]*direc1[lcc[6*nc+1]-1]

-bh[nc]*direc1[lcc[6*nc+5]-1];

}

University of Mining and Metallurgy & ACC Cyfronet, Kraków (38)

LIP library

Performance of AVL FIRE benchmark solver

2 3 4 5 6

number of processors
18

20

22

24

26

28

30

32

34

36

38

ex
ec

ut
io

n
tim

e
in

se
cs

AVL FIRE

University of Mining and Metallurgy & ACC Cyfronet, Kraków (39)

LIP library

Kernel loop of partitioner test

for(i=0;i<edge_counter;i++)

{

x2[edge2[i]]+=x1[edge1[i]]/n_succ;

x2[edge1[i]]-=x1[edge1[i]];

}

� vertices of a graph distributed randomly on a plain square

� distance between adiacent vertices cannot be greater then fixed value

University of Mining and Metallurgy & ACC Cyfronet, Kraków (40)

LIP library

Performance of inspector and executor phase for irregular
distribution

2 3 4 5 6

number of processors

400

500

600

700

800

900

1000

1100

ex
ec

ut
io

n
tim

e
in

se
cs

comm irregular distribution

105 calculation loop iterations

University of Mining and Metallurgy & ACC Cyfronet, Kraków (41)

LIP library

Performance of communication phase

2 3 4 5 6

number of processors

1000

2000

3000

ex
ec

ut
io

n
tim

e
in

se
cs

comm irregular distribution
comm block distribution

104 executor loop iterations

University of Mining and Metallurgy & ACC Cyfronet, Kraków (42)

LIP library

Master-Worker scheme for Grid LIP (G-LIP)
� useful in Grid environment

� divides work between masters (inspectors) and wokers (executors)

University of Mining and Metallurgy & ACC Cyfronet, Kraków (43)

LIP library

Summary
� Portability based on MPI and MPI-IO

� Scalability

� Advantages of data partitioning

� Multi-language support (C and Java)

� Available on:
http://galaxy.uci.agh.edu.pl/ � kzajac/

� Janet tool:
http://www.icsr.agh.edu.pl/janet/

� first attempt for porting to a Grid

University of Mining and Metallurgy & ACC Cyfronet, Kraków (44)

LIP library

Future Development

� User defined operations

– used to customize lip to a particular problem

� More partitioners

– use edge information to obtain data distribution patterns

� Extend lip to the OGSA architecture

University of Mining and Metallurgy & ACC Cyfronet, Kraków (45)

