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We measured the angular dependence of the energies of 661.6 keV photons scattered from free
electrons and verified the Compton scattering formula. We determined the rest energy of the electron
to be mec

2 = 507.9± 20.6keV , which is 1% less than the accepted value mec
2 = 511keV. The total

scattering cross-section per electron was determined to be σtotal = (2.4483 ± .04893) × 10−25cm2.
The classically determined cross section is 6.662 × 10−25cm2 and the cross-section determined by
the relativistic and quantum-mechanical Klein-Nishina formula is 2.4483×10−25cm2. The excellent
agreement of the experimentally determined cross section and the cross-section predicted by the
Klein-Nishina formula confirms that a quantum mechanical description of the Compton effect is
necessary.

INTRODUCTION

In 1920 A.H. Compton investigated the scattering of
monochromatic x-rays from various materials and ob-
served that after scattering, the frequency of the x-rays
decreased. This frequency shift cannot be explained
by classical electro-magnetic theory since frequency is
a property of the incoming electro-magnetic field and
cannot be altered by scattering, which produces only
a change in direction of the electro-magnetic field. It
was also observed that the cross-section for scattering
depends on the frequency of the incident photon, which
is in contradiction with the classically derived Thompson
cross-section which is independent of the frequency of the
incident photon. To understand these two experimental
results, a relativistic and quantum-mechanical descrip-
tion of Compton scattering is necessary.

THEORY

The phenomenon of Compton scattering may be an-
alyzed as an elastic collision of a photon with a free
electron using relativistic kinematics (as shown in figure
1). Since the energy of the photons (661.6keV ) is much
greater than the binding energy of electrons (the most
tightly bound electrons have a binding energy less than
1 keV), the electrons which scatter the photons may be
considered free electrons. Because energy and momen-
tum must be conserved in an elastic collision, we obtain
the formula for the energy of the scattered photon, E ′γ
as a function of scattering angle θ: E ′γ =

Eγ

1+
Eγ

mec
2
(1−cosθ)

,

where Eγ is the energy of the incident photon and mec
2

is the rest energy an electron. This result predicts that
the scattered photon will have energy E = hν ′, which is
less than the energy of the incident photon (E = hν),
and that the frequency shift will depend on the angle of
scattering.

Scattered radiation which is not shifted in frequency

is observed in addition to the frequency shifted gamma
rays. The unshifted rays are due to scattering from elec-
trons that remain bound in the atom. In this situation
the recoiling system is the entire atom rather than a sin-
gle electron (mA ≈ 2000 ×me), which produces a negli-
gible wavelength shift.

The cross-section for scattering is the effective area
provided by the target for collisions. The cross sec-
tion, σ, for scattering from a single particle is defined
as: σ = scattered flux

incident flux per unit area , which has dimensions of
area and can be visualized as the area of the scattering
center projected on a plane normal to the incoming beam
of particles.

The classically derived Thompson cross-section is σT =
8πr2

0

3 = 6.6622 × 10−25cm2 (ro is the “classical electron
radius”). The Thompson cross section is independent
of the frequency of the incident photon, which contra-
dicts experimental observations. The true cross section
is described by the relativistic and quantum mechanical
Klein-Nishina formula. (Heiter, p. 221) The ratio be-
tween the classically determined Thompson cross-section
and the Klein-Nishina formula for different values of γ is
illustrated in figure 2. The most important aspect of the
Klein-Nishina formula is that the size of the cross-section
depends on the energy of the incident photon.

Compton Scattering Experiments

The experimental setup for the Compton scattering
experiment is illustrated in figure 3. The target scin-
tillation detector is irradiated by a beam of 661.6 keV
photons emitted by 137Cs. When a photon scatters off
a free electron in the target counter, the resulting recoil
electron may lose all its energy through coulomb inter-
actions with the scintillation material, producing a pulse
with amplitude proportional to the energy of the recoil
electron. If the scattered photon emerges from the tar-
get scintillator without further interaction and it passes
through the scatter detector, it will have a large probabil-
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ity of depositing all its energy in the scintillator through
photoelectric interactions or a sequence of Compton scat-
terings. The counter signals are amplified and the ener-
gies of the scattered photon and recoil electron are each
registered using a coincidence technique on a multichan-
nel analyzer (MCA) in a PC.

The counter signals were calibrated using three
gamma-ray sources with known photo-peaks: 137Cs
(661.6keV ), 22 Na (511keV ), and 133Ba (356 and 81 keV)
as shown in figure 4.

The experimental setup for the cross-section measure-
ment is the same as in the previous experiment except the
scatter counter is removed and the target MCA and the
coincidence circuit are not used. The scatter counter is
positioned directly across from the Howitzer (θ = 0) and
the counting rates registered by the MCA in the 661.6
keV peak is determined when no absorber and three dif-
ferent thicknesses of plastic are placed in front of the exit
hole of the Howitzer.

The Compton Scattering Formula

The energies of the scattered photon and
recoil electron for seven scattering angles
(0, π/6, π/4, π/3, π/2, 2π/3, 5π/6) , were determined
by fitting Gaussians to the peaks registered on the
MCA. In figure 5 the experimentally determined en-
ergies of the scattered photon and recoil electron are
plotted for each of the seven angles. For the scattered
photon energies, the theoretical prediction is within
the 2σ error bars for all angles. The experimentally
determined energies of the recoil electron do not as
closely match the theoretical predictions. For the
majority of the angles measured the experimentally
determined value was lower than the value predicted by
the Compton formula by approximately 30 keV. This
discrepancy is due to K-shell excitation. Rather than
losing all its energy through coulomb interactions, the
recoil electron may excite a K shell electron in an atom
of the scintillation material. When the excited electron
falls back to its ground state, it emits an x-ray. Because
our scintillator is transparent to x-rays, this energy
escapes without being registered on the MCA. The
energy needed to excite the K-shell for sodium iodide
(the scintilator used in this experiment) is approximately
30 keV, which is exactly the enrgy discrepancy observed
between the experimental results and the theoretical
predictions of the Compton scattering formula.

A manipulation of the Compton formula yields: 1
E′

γ
=

1
mec2

(1 − cos(θ)) + 1
Eγ
. This formula demonstrates

that there is a linear relationship between 1/E ′γ and
(1 − cos(θ)), as depicted in figure 6. The recipricol of
the slope of this line is the rest energy of an electron in
keV. The rest energy of an electron was determined to

be mec
2 = 507.9 ± 20.6keV , which is less than 1% less

than the accepted value mec
2 = 511keV.

Determination of the Total Scattering Cross-Section

The attenuation of a collimated beam of particles by
interactions in a slab of material of thickness x (cm) is

described by the formula I(x)
I0
= exp(−µx), where I0 is

the initial intensity, I(x) is the intensity after interac-
tion, and µ is the linear attenuation coefficient (cm−1).

The ratio I(x)
I0
for each of the three different thicknesses

of plastic was determined by dividing the counts per
second (weighted average of five measurements) by the
counts per second with no plastic block. Fitting a de-
caying exponential to the data (see figure 7), yields
µ = .0800 ± .0016cm−1. Because the attenuation is due
almost entirely to Compton scattering for 661.6 keV pho-
tons, the total scattering cross-section per electron is re-
lated to the linear attenuation coefficient µ by the equa-
tion σtotal =

µ
ne
, where ne is the number of electrons

per cm3 in the material. The total number of electrons
was determined by the equation ne =

ρN0Z
A

where ρ is the
density of the material (g/cm3), Z is the atomic number,
A is the atomic weight, and N0 is Avogadro’s number.
The number of electrons per unit volume in the plastic
scintillator was determined to be ne = 3.266×10

23cm−3.
The total cross-section per electron was determined to be
σtotal = (2.4483 ± .04893) × 10−25cm2. The classically
determined cross section is 6.662 × 10−25cm2 and the
cross-section determined by the relativistic and quantum-
mechanical Klein-Nishina formula is 2.4483× 10−25cm2.
Note the excellent agreement between the experimentally
determined cross-section and the Klein-Nishina formula.

CONCLUSIONS

The experimentally determined energies of the scat-
tered photon very closely matched the theoretical pre-
dictions of the Compton formula. However, the experi-
mentally determined energies of the recoil electron were
consistently about 30 keV less than the energy predicted
by the Compton formula. We attribute this discrepancy
to K-shell excitation. We determined the rest energy of
the electron to be mec

2 = 507.9± 20.6keV , which is 1%
less than the accepted value mec

2 = 511keV. The to-
tal scattering cross-section per electron was determined
to be σtotal = (2.4483± .04893)× 10−25cm2. The classi-
cally determined cross section is 6.662×10−25cm2 and the
cross-section determined by the relativistic and quantum-
mechanical Klein-Nishina formula is 2.4483× 10−25cm2,
which exactly matches our experimentally determined
cross section. Our experimental verification of Compton
scattering formula and the Klein-Nishina formula demon-
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strate that relativity and quantum mechanics are neces-
sary to describe the phenomenon of Compton scattering.
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FIG. 1: Compton Scattering: A Relativistic Collision
Apply conservation of energy and momentum to find relationship between energy of incident photon Eγ , energy of scattered

photon E′γ , and energy of recoil electron Ee. Energy: Eγ +mec
2 = E′γ +

√

(pc)2 + (mec2)2 mec
2 = rest energy of an electron

= 511 keV

Momentum: x direction
Eγ
c
=

E′

γcos(θ)

c
+ pcos(φ)

Momentum: y direction 0 =
E′

γsin(θ)

c
+ psin(φ)

p = momentum of recoil electron θ angle of scattered photon with respect to incident photon φ angle of recoil with respect to
incident photon
Conservation of energy and momentum yields E ′γ , as a function of scattering angle, θ:

E′γ =
Eγ

1+
Eγ

mec
2

(1−cosθ)
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FIG. 2: This figure depicts the ratio of the classically determined Thompson cross-section per electron (Melissinos, p 167):

σT =
8πr2

0

3
= 6.6622×10−25cm2 to the Klein-Nishina formula σK = σT ×

3
4

1+γ
γ3 [

2γ(1+γ)
1+2γ

− ln(1 + 2γ)] + 1
2γ
ln(1 + 2γ)− 1+3γ

(1+2γ)2
,

where γ = hν

mec2
, where ν is the frequency of the incident photon. The most important aspect of the Klein-Nishina formula

is that the size of the cross-section depends on the energy of the incident photon. Note that for 662 keV photons, the ration
between the Thompson cross-section and the Klein-Nishina formula is approximately .4.
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FIG. 3: The experimental setup for the Compton scattering experiment. The counter signal registered from the target and
scatter counters amplified and each fed into a separate multichannel analyzer (MCA) in a PC. However, because we are
interested in determining only the scintillation pulses due to the Compton effect in the target detector in which the scattered
electron passes through the scatter detector, a logic pulse created by feeding each signal into the coincidence circuit is used for
gating on the MCA. When the two signals are coincident within approximately 1µs, the gating of the MCA is turned on and
the target MCA acquires the energies of the recoil electron and the scatter MCA acquires the energies of the scattered photon.
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FIG. 4: This figure depicts the calibration of the signal from the scatter counter. The counter signals were calibrated using
three gamma-ray sources with known photo-peaks: Cs (661.6 keV), Na (511 keV), and Ba (356 and 81 keV). The relationship
between MCA bins (b) and energy (E) is very close to linear. A linear fit to the data yields: E = an+ b, a = .382± .061 and
b = −9.96± 8.13.
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FIG. 5: The energies of the scattered photon and recoil electron for seven scattering angles (0, π/6, π/4, π/3, π/2, 2π/3, 5π/6).
The dashed curves show the theoretical predictions of the energies of the scattered photon (E ′γ) and recoil electron (Ee) in

terms of the scattering angle θ for an initial photon energy Eγ = 661.6keV . E
′
γ =

Eγ

1+
Eγ

mec
2

(1−cosθ)
and Ee = Eγ − E′γ . The

green line indicates the energy of the incident photon, 661.6 keV, and the +’s show the sum of the energies of the scattered
photon and recoil electron, demonstrating the conservation of energy.
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FIG. 6: The Determination of the Rest Energy of an Electron:
1
E′

γ
= 1

mec2
(1− cos(θ)) + 1

Eγ

Apply Linear Fit:
mec

2 = 507.9± 20.6keV
Eγ = 674.3± 37.7
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FIG. 7: Determination of the attenuation coefficient of plastic scintillator:
The attenuation of a collimated beam of particles by interactions in a slab of material of thickness x:
I(x)
I0
= exp(−µx), where I0 is the initial intensity, I(x) is the intensity after interaction, and µ is the linear attenuation coefficient

(cm−1). Fitting a decaying exponential to the data yields µ = .0800± .0016cm−1.


