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Chapter 1

Introduction to fluidization

1.1 Goal of this course

The aim of this course is to provide basic knowledge about fluidization and aerodynamics

of gas-solid systems as well as mathematical tools that enable to simulate basic fluidized

systems.

1.2 The phenomenon of fluidization

To simply decribe the idea behind fludization process one can say that it is the operation

that can change a system a solid particles into fluidlike suspension in gas or liquid. This

method of contacting of this two phase mixture have some unusual characteristics that

are widely used in many fields of chemical industry. Simplified diagram showing the idea

of fluidization is presented in Fig. 1.1. Gas is delivered from the bottom of the reactor,

goes through a gas distributor to provide inform distribution through whole profile of

bed and flows through packed bed of solids.

At low gas velocities the drag force is to small to lift the bed, which remains fixed.

Increasing gas velocity causes solids to move upward and create fluid bed. Depending

on the velocity of gas we can distinguish different modes of fluidization (Fig. 1.2) from

bubbling fluidization, through turbulent and fast fluidization modes up to pneumatic

transport of solids.

Another important issue concerning the fluidization proces is pressure drop through a

fixed bed. Fig. 1.3 presents changes in pressure drop with changing gas velocity. At first

one can observe increasing pressure drop, up to some level where it becomes constant,

despite increasing gas velocity. This change in pressure drop trend can be connected
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Figure 1.1: Schematic diagram of fluidization

with the creation of dense phase of fluidized bed and that is the moment when the

fluidization occurs. The velocity at which the pressure is stabilized is called minimum

fludization velocity. Pressure drop is stable in a certain range of velocities, then a slight

increase can be observed which precede a drastic decrease in pressure drop. This is due

to the entrainment of smaller particles which are suspended in the section over the dense

fluidized bed. Further increase in gas velocity will cause more fractions to be carried

over which leads to disappearance of dense phase and start of pneumatic transport.

Although, as it will be shown later in some cases gas velocities exceeding the terminal

velocity can be applied for the so called fast fluidization.
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Figure 1.2: Fluidization type depending on gas velocity

Figure 1.3: Pressure drop vs. gas velocity.

1.3 Discussion points

1. Definition of fluidization phenomenon.

2. Various types of beds with gas flowing through a bed of fine particles.

3. Circulating fluid bed characteristics.

4. Liquidlike features of fluid beds

5. Advantages and disadvantages of fluidized beds.

6. Heat transport phenomenon in fluidized bed.
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7. Drying process in fluid bed - basic process configuration.

8. Catalytic cracking in fluid bed.

9. Fluid bed boilers for energy generation.

10. Fluid bed pyrolysis and gasification.



Chapter 2

Fluidization velocities

2.1 Characterization of particles

Usually the bed contains particles with a wide range of size and shapes, which causes the

necessity to provide a proper and uniform description of size of material forming a bed.

If the particles are spherical the bed can be described by means of their diameter distri-

bution, but in real application most particles are nonspherical which yields a question

about the way to decribe this kind of beds. There exists a wide range of nonsphericity

measures [? ]. However, the most wildly used is the one called sphericity (φs) defined

as the ratio of the surface of sphere to the surface of particle with the same volume.

For spherical particles φs = 1 and for other shapes 0 ≤ φs ≤ 1. Sphericity values for

some popular particles can be found in [? ]. Other important parameter describing

nonspherical particles is their specific surface, given as the ratio between surface and

volume of the particle:

a
′
=

6

φsdsph
(2.1)

where dsph is a diameter of the sphere having the same volume as the considered particle.

The same concept can be applied to the whole bed of particles:

a =
6(1− εm)

φsdsph
(2.2)

where εm is the fractional voidage, which usually can be found experimentally for each

specific system.
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2.2 Particle size distribution

Variety in shapes of particles is not an only problem in describing the bed, because in

most cases one also has a bed of particles with different sizes. For this description we

can define two functions of size distribution p and P. Assuming that we have a bed of

solids with diameters dpi, for i ∈ (1, 2, . . . , N) then p gives the fraction (mass, volume,

number) of particles that are of the diameter d ∈ (dp1, dpi+1). The function P gives the

so called cumulative distribution, which means the fraction of solids that are smaller

than the given value dp. Examples of such distributions are shown in Fig.2.1

Figure 2.1: Difference between P (left) and p (right)

Next issue is to provide an average size than can best describe properties of the system

and can be used in further calculations. This is done by harmonic diameter:

dp =
1∑N

i=1
xi
dpi

(2.3)

where xi is a fraction of solids with diameter (dpi, dpi+1 and dpi =
dpi+dpi+1

2 . Then mean

specific surface can be obtained using equation (2.1):

a′ =
6

φsdp
(2.4)

2.3 Fluidization velocities

First step in the process of description of fluidized bed is to calculate the velocity of gas

needed in the system. We can distinguish two basic velocities describing fluidization:

minimum and terminal. In this section we present the procedure used to calculate both
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of them. All calculations can be performed for a bed with single or multi size particles

(in case of multi size bed it is necessary to calculate its mean diameter).

2.3.1 Pressure drop

Pressure drop through fixed bed of solids of uniform size (dp) of the length L is given

by Ergun [XX] correlation:

ΔP

L
= 150

(1− εm)2

ε3m

μu0
(φsdp)2

+ 1.75
1− εm
ε3m

ρgu
2
o

φsdp
(2.5)

where μ is gas viscosity, dp is solid diameter, ρg is gas density, u0 is superficial gas

velocity.

2.3.2 Minimum fluidizing velocity

At the beginning of this section one has to revise definitions of two dimensionless num-

bers: Reynolds(2.6) and Archimedes (2.7)

Re =
dpumfρg

μ
(2.6)

Ar =
d3pρg(ρs − ρg)g

μ2
(2.7)

Now, remembering that the phenomenon of fludization occurs when drag force created

by the upward flow of gas is a least equal to the weight of particles in the bed. Mathe-

matically it can be presented with the following equation:

ΔPbedAt = AtLmf (1− εmf )[(ρs − ρg)g] (2.8)

Rearranging and combining with equation (2.5) gives a quadratic in umf which can

be presented in dimensionless form of the equation (2.9) (for the details see ”Problem

solving”, ex. 3)

1.75

ε3mfφs
Re2p,mf +

150(1− εmf )

ε3mfφ
2
s

Rep,mf = Ar (2.9)

Solving equation (2.9) can be laborious but gives reliable estimation of umf if spheric-

ity and voidage are known. For rough estimation without knowledge of voidage and

sphericity of the system some simplifications can be used. For fine particles expression

(2.10) proposed by Wen and Yu [xx] can be used to obtain reynolds number in minimum
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fludization conditions:

Rep,mf = (33.72 + 0.0494Ar)1/2 − 33.7 (2.10)

2.3.3 Terminal fluidization velocity

Terminal fluidization velocity can be calculated from the equation given in the dimen-

tionless form (2.11)

CDRe2t =
4

3
Ar (2.11)

where CD is drag coefficient, which can be obtained experimentally or calculated from

one of many empirical relationships, CD is a function of Reynolds number. One of

the correlation that enables to calculate drag coefficient for a wide range of Reynolds

numbers (10−1 ÷ 106) was proposed by Kaskas [xx] (2.12

CD(Re) =
24

Re
+

4√
Re

+ 0.4 (2.12)

Substituting (2.12) to (2.11) we obtain equation (2.13). Solving numerically for Ret we

can obtain terminal velocity for the system.

Re2(
24

Re
+

4√
Re

+ 0.4) =
4

3
Ar (2.13)

To avoid numerical calculations of equation (2.13) some simplification can be used,

depending on the type of low in the reactor. For laminar flow we obtain the only

analytical solution to the equation (2.13)

CD =
24

Re
for Re < 0.4 (2.14)

For larger Reynolds numbers we can use one of the following approximations:

Cd =
10√
Re

for 0.4 < Re < 500 (2.15)

Cd = 0.43 for 500 < Re < 2 ∗ 105 (2.16)

An example of minimum fluidization velocity and terminal velocity as a function of

particle diameter is presented in Fig. 2.2
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Figure 2.2: Minimum (red) and terminal (blue) velocity as a function of particle
diameter.

2.4 Gas distributor design

The design of fluid bed gas distributors may have a marked influence on the performance

of a fluid bed reactor. The primary physical reason for this influence is that the distribu-

tor design influences the hydrodynamics and thus the gas/solid contacting pattern in the

fluidized bed. Particle and gas properties play a key role in successful design together

with the critical pressure drop ratio, and hole size, geometry and spacing; these strongly

influence jet penetration, dead zones, particle sifting, attrition and mixing. [Geldart,

1985; Bauer, 1981].

This section deals with the simple algorithm that enables to design a perforated plate

distributor using just an orifice theory.

1. Calculate pressure drop across the distributor (??):

Δpd = (0.2÷ 0.4)Δpb (2.17)
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where Δpb can be calculated form (2.5) or (2.8).

2. Calculate the vessel Reynolds number(Ret =
dtu0ρg

μ , where dt is tube(reactor)

diameter) and select the corresponding drag coefficient from the table below

Ret 100 300 500 1000 2000 > 3000

CD,or 0.68 0.70 0.68 0.64 0.61 0.60

3. Calculate gas velocity through the orifice

uor = CD,or ∗ (2Δpd
ρg

)1/2 (2.18)

Check the ratio u0
uor

which gives the fraction of open area in the distributor and

should be less than 10%.

4. Assume orifice diameter (dor and calculate the number of orifices per unit area of

distributor using equation (2.19)

uo =
π

4
d2oruorNor. (2.19)

2.5 Discussion and problem solving

1. Dimensionless numbers - define Archimedes and Reynolds number.

2. Describe the procedure of calculating minimum and terminal velocity for a poly-

dispersed system.

3. Prove, that starting from combined equations (2.5) and (2.8) and using following

assumptions one can obtain equation (2.10).

1

φsε3mf

= 14
1− εmf

φ2
sε

3
mf

= 11

4. Prove that in steady state condition equation

Us
dUs

dz
=

3

4
CD

ρg
ρsdp

(Ug − Us)
2 − g

ρs − ρg
ρs

↔ (2.11). (2.20)

5. Calculate mean diameter for the system of particles presented below

(a)

di,mm 0.1− 0.2 0.2− 0.5 0.5− 0.8 0.8− 1.0 1.0− 1.5 1.5− 2.5

% 15 20 18 32 7 8
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(b)

di,mm 0.2− 0.4 0.4− 0.6 0.6− 1.0 1.0− 1.5 1.5− 2.0 2.0− 3.0

% 32 20 18 15 7 8

6. Calculate minimum fluidization velocity for presented system. Perform the cal-

culation on mean diameter. Check if applying calculated velocity wile cause any

fraction to be carried over?

7. Design gas distributor for the given system.

8. Describe Geldart’s powder classification.
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Bubbling fluidized bed

3.1 Bubbles in fluidized bed

Knowledge of the general behavior of a fluidized bed is insufficient for some purposes, for

example reaction kinetics and heat transfer depend on details of the gas-solids interaction

in the bed. Hence, a satisfactory treatment of these phenomena requires a reasonable

model representing the gas flow through the bed and its interaction with bed material.

As a consequence, the bubble size, rise velocity, shape, distribution, frequency and flow

patterns are of key interest. As it was presented in chapter one, increasing the velocity

of gas flowing through a bed o solids causes changes fluidization mode (see Fig. 1.2)

At relatively low gas velocities we can observe a so called dense bubbling fluidized bed,

which is characterized by the presence of regions with low solid concentration which are

called bubbles. The dense phase, with higher solid concentration is called emulsion.

3.1.1 Bubble formation

The following calculations are presented in CGS unit system!

Initial diameter of a bubble formed directly above the gas distributor can be calculated

form equation (3.1). Note that this equation is true for a gas flowing with higher

velocities, causing the bubbles to overlap when formed (db0 < lor).

db0 =
2.78

g
(U0 − Umf )

2 (3.1)

Bubbles moving upward change their size (grow with height over the distributor). To

describe the size of bubbles on the given height of bed we can use to different correlations

proposed by Mori and Wen (3.3) or Werther (3.4). Using Mori-Wen model also requires

12
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calculating of the bubble’s maximum diameter (3.2) which occurs at the end of dense

part of fluid bed.

Mori-Wen model:

dbmax = 0.65[
π

4
D2

t (U0 − Umf )]
0.4 (3.2)

db(h) = dbmax − (dbmax − db0)exp(−0.3
h

Dt
) (3.3)

Werther model

db(h) = 0.853[1 + 0.272(U0 − Umf )]
0.333(1 + 0.0684h)1.21 (3.4)

Figure 3.1: Changes of bubble’s diameter[cm] with height of bed [cm] according to
Mori-Wen (blue) and Werther (red)

Finally we can calculate the velocity of a single bubble flowing upward:

Ubr(h) = 0.711[g ∗ db(h)]0.5 (3.5)

where db(h) is bubble velocity calculated according to Werther.
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3.2 Bubbling fluidization

As it was previously mentioned bubbling bed must be treated as a two phase system,

with solids in dense phase and gas bubbles in lean phase. From previous paragraph we

already know how to asses change of bubbles size in bed and the following part deals

with the problem of two phase approach to a bubbling fluid bed. One should remember

that bubbles contain very small amounts of solids and are not necessarily spherical. The

schematic figure showing elements of such system can be seen in Fig. 3.2.

Figure 3.2: Schematic bubble in bubbling bed

As can be seen the bubbles are approximately hemispherical, with pushed-in bottom.

The part directly under the bubble is called a wake, containing significant amount of

solids. Moreover every bubble is surrounded by cloud - a part of the emulsion that was

penetrated by gas from a rising bubble. Concentration of solid in the cloud is higher

than that inside the bubble, but lower than the one in emulsion.

3.2.1 Kuni-Levenspiel model

Kuni-Levenspiel model (later simply called K-L) is based on following assumptions:

[http://www.umich.edu/ elements/12chap/html/FluidizedBed.pdf, page 9]

1. All bubbles are of the same size.

2. The solids forming emulsion phase flow downward.

3. Emulsion phase exists at minimum fludizing velocity. The gas occupies the same

void fraction in this phase as it had in the entire bed at the minimum fluidization
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point. Minimum fluidizing velocity refers to the gas velocity relative to moving

solids.

4. In the wake, concentration of solid is said to be the same as in the emulsion phase.

However, the wake is turbulent and the average velocities of solids and gas are

equal to the upward velocity of a rising bubble.

Fig. 3.3 shows the KL model with its assumptions.

Figure 3.3: K-L bed model

Following algorithm of calculation K-L model will use Werther model to obtain size of

of bubbles.

1. Calculate bubbles velocity based on single bubble velocity (3.5:

Ub(h) = U0 − Umf + Ubr(h) (3.6)

2. Calculate average diameter of bubbles (3.7), using mean value theorem for inte-

gration on function db(h) (3.4) and average velocity of bubbles (3.8). In this point

we have to assume some value of Lf (height of bed).

dbs(h) =
1

Lf

∫ Lf

0
db(h)dh (3.7)

Ubs(h) = U0 − Umf + 0.711[g ∗ dbs(h)]0.5 (3.8)
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Figure 3.4: Wake volume to bubble volume (Kuni, Levenspiel; 1991

3. The downflow velocity of solids, can be calculated based on material balance of

solid particles present in the system.

Total solids = Solids flowing downward in emulsion + solids flowing

upward in wakes

us ==
fwδUb

1− δ − fwδ
(3.9)

where fw is the ratio of wake volume to bubble volume and can be found from the

Fig. 3.4

4. Velocity of gas in the emulsion phase comes from the material balance of gas:

Total gas = Gas in bubbles + gas in wakes + gas in emulsion

Ue =
Umf

εmf
− Us (3.10)

5. Volume fraction of bubbles in bed

δ =
U0 − Umf

Ubs − Umf
(3.11)

6. Calculate porosities:
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(a) in emulsion phase is assumed to be constant εe = εmf

(b) average bed porosity:

εf = δ + (1− δ)εe (3.12)

7. Calculate height of bed (checkpoint if the assumption in (3.7)) was correct.

Lf = Lmf
1− εmf

1− εf
(3.13)

3.2.2 Extended K-L model

1. Volume fraction of clouds in bed

fc =
3

Ubrs
εmf

Umf
− 1

(3.14)

where Ubrs is a velocity of single bubble (3.5) calculated for average bubble diam-

eter (3.7)

2. Volume fraction of wake is assumed to be constant fw = 0.33.

3. Volume fraction of emulsion

fe = 1− δ − fwδ − fc (3.15)

4. Fraction of solids in bubbles was specified experimentally γb = 0.005

5. Fraction of solids in clouds and wakes

γc = (1− εmf )(fc + fw) (3.16)

6. Fraction of solids in emulsion

γe =
1− εmf )(1− δ)

δ
− γb − γc (3.17)

7. Wake velocity is constatnt and equal to the velocity of bubbles (3.8 Uw = Ubs.

8. Emulsion downflow velocity

Ue =
fwδUbs

1− δ − fwδ
(3.18)

9. Relative gas velocity in emulsion

Uge =
Umf

εmf
− Ue (3.19)
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3.3 Entrainment and elutriation

Fluidized reactor can be divided into two parts, the bottom one called the dense phase

which was described in previous sections and dispersed phase, where the concentration

of solid decreases. We showed that by using equation (3.13) we can find the height of

fluidized bed or to be more specific its dense part. That’s were more or less distinct

border between the two phases occurs and the bubbles present in the dense phase disap-

pear. The ”disappearance” is a reason for the presence of the lean phase in the reactor.

This is shown in Fig. 3.5. Spraying of solids into lean phase can have threee different

mechanisms (Kuni, Levenspiel):

• bubbles have higher pressure than the surface of bed, so by reaching the top of

dense phase they spray solids form its roof into lean phase;

• reaching the surface, bubbles can explode, and then the arising forces cause the

solids present in the wake to be sprayed to lean phase;

• two bubbles can coalesce at the surface and create energetic ejection of solids from

under the bottom bubble.

The aim of this section is to provide some insight to what happens over the dense part of

the bed. Let us first define number of terms necessary to understand the problem. The

flux of solids suspended in gas over the dense phase is called an entrainment (Gs). The

zone of fluidization vessel above the border between the previously mentioned phases

is called a freeboard. The region close to the border between the phases is called the

splash zone and that is where the spraying of solids occurs. The entrainment of solids

decreases with the increasing height of the freeboard until it reaches some constant

level. The height at which it happens is called TDH - transport disengaging height. By

saturation carrying capacity we understand the largest flux of solids that can entrained

by gas above the TDH. Finally elutriation which refers to removal of fine particles from

a mixture of solids with different sizes. Larger particles fall back to bed, because they

are to heavy to be carried up, but smaller ones are flowing upward with the gas.

Below we present the algorithm that enables to describe the amounts of material in

different zones of fluidization vessel.

1. We start with the assumption that the initial velocity of solids Ubf sprayed out

of the dense phase of the bed is equal to the velocity of bubbles at this height.

We use equation (3.6) with the previously calculated height Lf . Here one has to

remember that all the velocities were calculated in CGS unit system and from

now on we have to go back to the SI units!
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Figure 3.5: Mechanism of ejection of solids from dense bed

2. The flux of entrained solids kg
m2s

is calculated by equation:

Gs = 0.1ρs(1− εmf )Ubf − Umf (3.20)

3. Now we calculate saturation carrying capacity for gas present in the system.

Esat = 0.096U0ρgFrt(Ut)
0.633Ar0.121(

ρs
ρg

)0.013(
Dt

D0
)−0.05 (3.21)

where Frt(Ut) is given by (3.22) (Froude number), Dt is reactor diameter and

D0 = 5.9cm and it is reference diameter of experimental fludization vessel

Frt(Ut) =
U2
t

g ∗ dp (3.22)

4. The distribution of solid flux is given by exponential function of height (3.23) and

is presented in Fig. 3.6.

E(h) = Esat + (Gs − Esat)exp(−ah) (3.23)

where a = 4 is an experimentally obtained coefficient. As it can be observed in

Fig. 3.6 freeboard zone is about 1m high, because that is where we start to observe

constant flux of solids.

5. Porosity in lean phase.

We start from calculating the porosity at the height where the freeboard zone ends

(3.24) and then we calculate the distribution of porosity with height, assuming that

it is related to the flux of solids (3.25). Example of changes in porosity and solid
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Figure 3.6: Change of solid flux in freeboard zone

concntration is presented in Fig. 3.7

εsat = 1− Esat

(U0 − Ut)ρs
(3.24)

ε(h) = εsat + (εf − εsat)exp(−ah) (3.25)

Figure 3.7: Porosity( red) and solid concentration (blue) in freeboard zone

6. Average concentration above the dense phase is calculated with mean value theo-

rem for integrals according to equation (3.26)

εes = 1− 1

L

∫ L

0
εsat + (εf − εsat)exp(−ah)dh (3.26)
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7. Finally we find mass of solids in dense phase (3.27) and mass of solid above the

dense phase (3.28)

md = Lmf (1− εmf )ρs
πD2

t

4
(3.27)

md = Lmfεesρs
πD2

t

4
(3.28)

3.4 Fluid bed dimensions

To complete the description of bubbling fluidized bed one needs to be able to calculate

its dimensions: height and diameter (Fig. 3.8).

Figure 3.8: Dimensions ob fluidized bed
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Heights of the two zones, dense and lean, featured in figure 3.8 are calculated from Kuni-

Levenspiel model (Lf )and entrainment model (TDH) presented in previous paragraph.

TDH can be connected with the height at which the outlet to cyclone is mounted. That

leaves only diameters of the reactor to be calculated according to the following procedure.

To complete this calculation the flow of gas (Vgas) MUST be known!

1. Determine the maximum amount of fines that can be carried over from the reactor:

p %. Knowing size distribution of the particles in the system, determine the max-

imum diameter of particles that can be carried over and calculate minimum(umfp)

and terminal (utp)fluidization velocities for this diameter. Choose operation ve-

locity (uop for the bed such that: umfp < uop < uutp).

2. Find the minimum fluidization velocity (umax) for the biggest particles present in

the system.

3. Check if umax < uop. If the answer is yes, the reactor can have a shape of a simple

cylinder and one can calculate tube dimension from eq. (3.29)

Vgas

uop
=

Πd2t
4

(3.29)

If the answer is no one need to narrow the bottom part of the reactor in order to

increase the initial velocity of gas flowing through reactor. In such case the shape

of the reactor will be like the one presented in fig. 3.8. In that case one needs to

calculate two different diameters d1 and d2.

d2 is equal to dt calculated from eq. (3.29) and d1 comes from the eq. (3.30).

Vgas

umax
=

Πd21
4

(3.30)

4. The height of the narrowing is determined based on the difference d2 − d1 and

the assumptions that the slope of the walls of the reactor (α < 15 deg). Than the

height h is calculated from the eq. 3.31

(d2 − d1)/2

h
= tanα (3.31)
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3.5 Problems and discussions

1. Using extended K-L model describe the bed of solids with a wide size distribution.

The conditions of the bed are presented below.

di,mm 0.2− 0.4 0.4− 0.6 0.6− 1.0 1.0− 1.5 1.5− 2.0 2.0− 3.0

% 32 20 18 15 7 8

ρs = 1350kg/m3; ρg = 1.5kg/m3; U0 = 50cm/s; ν = 30 ∗ 10−6Pa ∗ s; εmf = 0.45

Estimated height of bed h = 1.75m

2. Using extended K-L model describe the bed of solids with a wide size distribution.

The conditions of the bed are presented below.

di,mm 0.1− 0.2 0.2− 0.5 0.5− 0.8 0.8− 1.0 1.0− 1.5 1.5− 2.5

% 15 20 18 32 7 8

ρs = 1050kg/m3; ρg = 1.1kg/m3; U0 = 200cm/s; ν = 20 ∗ 10−6Pa ∗ s; εmf =

0.5; εf = 0.796 Estimated height of bed h = 1.95m Drag coefficient for average

diameter of particles: Cd = 1.53.

3. Knowing that to obtain the best conversion rate the ration of gas to solid is equal

1.23m3/kg and the flow of solid material is ms = 1200kg/h find the dimensions of

the reactor for this process:

(a) assuming solid distribution from ex. 2 adn maximum of 15% carryover from

dense zone.

(b) assuming that the particle size fits in a range between 0.1mm - 5mm and only

particles smaller than 0.25mm can be carried over from the bubbling zone.


