
Challenges for Scheduling Scientific Workflows on Cloud Functions

Joanna Kijak, Piotr Martyna, Maciej Pawlik, Bartosz Balis, Maciej Malawski
AGH University of Science and Technology

Department of Computer Science
Krakow, Poland

Email: malawski@agh.edu.pl

Abstract—Serverless computing, also known as Function-as-
a-Service (FaaS) or Cloud Functions, is a new method of
running distributed applications by executing functions on
the infrastructure of cloud providers. Although it frees the
developers from managing servers, there are still decisions to
be made regarding selection of function configurations based
on the desired performance and cost. The billing model of
this approach considers time of execution, measured in 100ms
units, as well as the size of the memory allocated per function.
In this paper, we look into the problem of scheduling scientific
workflows, which are applications consisting of multiple tasks
connected into a dependency graph. We discuss challenges
related to workflow scheduling and propose the Serverless
Deadline-Budget Workflow Scheduling (SDBWS) algorithm
adapted to serverless platforms. We present preliminary ex-
periments with a small-scale Montage workflow run on the
AWS Lambda infrastructure.

Index Terms—FaaS, serverless computing, cloud functions,
scientific workflow, task scheduling

1. Introduction

Function as a Service, or serverless computing, is a rel-
atively new approach to distributed computing in the cloud,
wherein small units of code (cloud functions) can be de-
ployed and run on demand while server management and
dynamic scaling are managed by the cloud infrastructure.
Moreover, the current implementations of serverless plat-
forms, such as AWS Lambda, Google Cloud Functions,
Azure Functions or IBM Cloud Functions, allow executing
custom binary code on their infrastructures, making them
usable not only for specific Web application frameworks,
but for general purpose computing tasks that can fit into
this model. Examples include scientific workflows, which
are applications consisting of multiple tasks connected into
a dependency graph. Many of scientific workflows include
a large number of parallel fine-grained tasks which can
naturally fit into the cloud functions.

Serverless computing is an attractive execution model
for scientific workflows, as the provider takes care of such
resource management issues as resource provisioning and
autoscaling. Nevertheless, there are still challenges related

to scheduling of scientific workflows on cloud functions.
For example, functions are heterogeneous in terms of the
memory and computing power assigned to them. The cost
is based on the resource consumption and it is charged per
every 100ms of the CPU time used. Also, there is a strict
limit on the function’s execution time, e.g. 300 seconds
on AWS Lambda. Moreover, when scheduling workflows,
we need to take into account the various overheads the
cloud providers may introduce, parallelism limits, and data
access model. All these challenges motivate us to rethink the
scheduling problem and investigate the approaches suitable
for the serverless model.

In this paper, we focus on the challenges for schedul-
ing scientific workflows on the example of the Serverless
Deadline-Budget Workflow Scheduling (SDBWS), a heuris-
tic adapted to run all tasks in the FaaS execution model.
We present a preliminary experimental evaluation of this
heuristic using our HyperFlow workflow engine and small-
scale workflows run on the AWS Lambda infrastructure.

The paper is structured as follows: in Section 2 we
give a short overview of the recent developments in using
serverless platforms for scientific workflows and relevant
scheduling approaches. Next, in Section 3 we discuss in
detail the challenges related to scheduling workflows in
serverless platforms. Section 4 presents the scheduling al-
gorithm we developed, which is a list scheduling heuristic
adapted to serverless environment. In Section 5 we present
the preliminary results, and in Section 6 we discuss the
conclusions and future work.

2. Related Work

In our earlier work we have done preliminary experi-
ments with scientific workflows [1] on AWS Lambda and
Google Cloud Functions using HyperFlow, a lightweight
workflow engine. A more advanced solution was presented
in [2], where the implementation of a hybrid model com-
bining FaaS with IaaS was evaluated, showing the benefits
of such a hybrid approach.

In [3], we presented a performance evaluation of cloud
functions by running benchmarks on infrastructures of major
cloud function providers: AWS Lambda, Azure Functions,
Google Cloud Functions and IBM OpenWhisk.

While serverless computing is still a relatively new
paradigm, much work has been done regarding the potential
applications of the new infrastructure. Examples include
running containers on serverless infrastructures [4] and low-
latency, massively parallel, video processing using cloud
functions [5].

There are multiple static algorithms for cloud work-
flow scheduling. One example is Deadline-Budget Workflow
Scheduling (DBWS) [6], which we selected as the one that
can be easily adapted to the FaaS model. An example of
dynamic scheduling is given in [7], which describes a bag-
of-tasks scheduler with budget constraints.

In this paper, we study the application of the FaaS infras-
tructure from the perspective of the end user. Consequently,
we are not concerned about the implementation details of the
particular infrastructure. However, there is ongoing research
on scheduling on the provider side, which may also have im-
pact on workflow execution. Some examples are described
in [8], which studies the aspects of FaaS implementation
like environment reusability and infrastructure provisioning
overhead.

3. Workflow Execution in Serverless Model

Serverless workflow execution differs from execution in
IaaS clouds in terms of architecture and scheduling. Let us
discuss these issues in this section.

3.1. Workflow Execution Architecture

There are several possible workflow execution archi-
tectures leveraging the serverless infrastructure, discussed
in our previous article [1]. For the purpose of this paper
we have implemented the direct execution model in the
HyperFlow workflow engine [9]. The model of computa-
tion implemented by HyperFlow belongs to the process
networks family. In HyperFlow, workflows are multi-graphs,
described in a simple JSON format, where nodes are work-
flow activities (called processes), while edges represent data
and control flow between them. While the workflow descrip-
tion language is simple, it is highly expressive, allowing
implementation of diverse complex workflow patterns [9].
The engine maintains the workflow execution state, and
whenever a workflow process is activated, it calls a user-
defined JavaScript function which usually is the entry point
to invoking the actual scientific procedure associated with
the given workflow activity. This is a flexible execution
model that gives advanced users low-level control over how
workflow activities are implemented. When using distributed
computing infrastructures, the entry point functions use
their APIs to orchestrate execution of workflow jobs on
distributed resources. We have previously shown that this
model can be successfully applied to both IaaS and PaaS
clouds [10]. Here, we extend it to serverless infrastructures.

The serverless workflow execution architecture is de-
picted in Fig. 1. The workflow engine is deployed outside
the serverless infrastructure, e.g. on the user’s laptop, or
a dedicated virtual machine in a cloud, and invokes the cloud

HyperFlow Engine

FunctionFunction Function

Storage

Execution
state

Decorated
workflow
description

Scheduler

Figure 1: Workflow Execution Architecture

functions directly (via a cloud API, or an API gateway). For
task scheduling, we implement an approach in which the
scheduler prepares the plan (mapping between tasks and
resources) prior to workflow execution. The plan is then
passed to the engine in the form of a decorated workflow
description.

3.2. Workflow Scheduling Challenges

From the perspective of the user, the FaaS model leads
to the following challenges regarding workflow scheduling:

1) Which size of cloud functions should be allocated
to each task of a workflow?

2) Which tasks should be executed on FaaS and which
ones on IaaS?

3) What is the performance variability of the cloud
functions infrastructure and how to deal with it?

4) What are the limits of concurrency that we can ex-
pect when running multiple tasks as cloud functions
in parallel?

5) How to address the problem of data transfer be-
tween tasks?

Challenge (1) is a fundamental problem of scheduling
workflows on heterogeneous resources and it depends on
the optimization criteria and constraints, most importantly
time and cost. In the basic variant we can assume ide-
alized infrastructure in which all functions submitted for
execution start immediately and there is no startup delay.
Various scheduling heuristics can be adapted to this model
to produce plans to be used by the workflow engine.

We can distinguish two approaches: static and dynamic
scheduling. In the static approach, workflow tasks are al-
located to computing resources before the execution, e.g.
based on data from previous executions. In the dynamic
approach, the execution is monitored and the schedule can
be adjusted at runtime, e.g. tasks can be assigned to faster
functions if the deadline is at risk.

Challenge (2) is related to the specific constraint FaaS
providers impose on the execution time of cloud functions,

for example 300 or 540 seconds. Obviously, tasks that may
run longer than the limit need to be executed on standard
VMs, so a hybrid execution model is necessary [2]. In that
case there still remains the problem of VM provisioning,
i.e. choosing the VM size and deciding when to start and
terminate such VMs. In this paper, we do not solve this prob-
lem, since our SDBWS algorithm works only for workflows
which can be run entirely in FaaS.

Challenges (3) and (4) stem from the difference between
the real infrastructure and its idealized model. Due to perfor-
mance variability of the cloud, the actual execution will di-
verge from its schedule obtained by the scheduling heuristic,
and the constraints such as deadline will be violated. This
effect will be even more harmful when the concurrency limit
is reached, since the tasks which cannot execute in parallel
may delay the workflow considerably.

To address challenges (3) and (4) we can use perfor-
mance studies of FaaS providers. In our earlier work we
started a systematic monitoring of cloud functions to gain
insights into the performance problems [3]. The data gath-
ered in these studies can provide input for the scheduling
algorithms, but research in this area is still needed [11].

Finally, challenge (5) is solved by the infrastructure
model: the cloud functions are in general stateless, so there
is a need to use some external storage for intermediate data.
Cloud object storage can thus be used, as in [1], [2]. This dif-
fers from traditional scheduling on heterogeneous resources,
where data is transferred directly between resources.

In this paper, we focus on challenge (1) by adapting
an existing DBWS heuristic to the serverless workflow
execution model, and via experiments on real clouds we
observe how challenges (3) and (4) influence the overall
performance.

4. Static Scheduling Solution

The main purpose of scheduling is to produce an execu-
tion plan which allows completing all tasks of a workflow
within given time and cost constraints.

As described in section 2, there is a variety of scheduling
algorithms applicable for cloud environments. For the needs
of this study, we have chosen the Deadline-Budget Workflow
Scheduling algorithm [6], with some modifications adapting
it to fit the serverless computing model. This particular algo-
rithm was chosen because it is a list scheduling algorithm,
which utilizes a heuristic approach based on the efficient
PEFT algorithm [12] and is well suited for heterogeneous
cloud environments by incorporating a billing model. More-
over, it was well documented and easy to adapt. In its
original form, the estimation of minimum and maximum
cost of schedules is performed using PEFT, while in the
case of FaaS this step is not needed.

4.1. Formal Definition of the Problem

Scientific workflow can be represented as a Di-
rected Acyclic Graph (DAG), which can be defined as

G = 〈T,E,Data〉 where T = {t1, t2, ..., tn} is a set of
tasks, while E represents the set of edges denoting task data
dependencies. A dependency guarantees that a child task
cannot be executed before all parent tasks have finished and
transferred required data. Data denotes the files that need
to be available in order to execute a given task. Tasks in
a DAG can be grouped into levels based on the path length
from the entry node to a task’s node.

Cloud computing platforms offer many heterogeneous
function types that have different cost and performance. F
denotes the set of function types that are available for given
provider. Different infrastructure providers tend to offer their
own unique set of function types.

The scheduling problem can be defined as finding a
map function g : T → F between task and function types,
in order to meet the requirements defined for a workflow.
The sought solution should comply with time and cost
constraints given by the user, whenever possible.

4.2. Proposed Approach

Our solution is based on the HyperFlow engine and
includes the following steps:

1) decorate the workflow description file with addi-
tional information about where to execute the func-
tions,

2) deploy the function executor on FaaS infrastructure
with specified memory constrains,

3) for workflow execution use HyperFlow extended
with a command responsible for invoking the func-
tion according to information from decorated DAG.

This approach is based on the information available at
the moment when the execution process begins. One type of
information is the execution time of each function, gathered
from previous runs. This allows for making assumptions
about future runtimes. Another type of data is the time of
function execution depending on the function configuration
parameters. The most interesting property is memory size,
which directly relates to available computing power and
cost. The greater is the memory size, the more computing
power is available.

4.3. Serverless Deadline-Budget Workflow Schedul-
ing Algorithm

Deadline-Budget Workflow Scheduling [6] is a heuristic
strategy that allows obtaining a schedule in a single step.
The strategy always meets the deadline constraint and tries
to accomplish the budget constraint. The algorithm has two
phases: task selection and resource selection.

The main idea behind DBWS is to sort tasks by an
upward rank, then calculate sub-deadlines, and finally to
calculate a quality score for each task on each resource. To
calculate the upward rank, the average execution time of
a task on all resources is used. The sub-deadline is assigned
to each task based on the overall user-provided deadline,

proportionally to the maximum execution time of each level
in the graph. The final quality score is calculated for each
task on each resource based on the sub-deadline information
and constraints provided by the user. If the finish time of
the task on a resource takes longer than its sub-deadline,
then the score on that resource is lower. This guarantees that
the schedule plan meets deadline expectations. The resource
with the highest score is chosen as the designated resource.
This approach has been developed for virtual machines and
the pay-per-hour billing model. However, by making some
modifications it can be adapted to the function model.

One of the features which distinguish FaaS from IaaS
is the granularity of the accounting. In the case of IaaS it
was possible to exploit the hourly billing rate by running
additional tasks on machines which finished their workload
early. In the case of FaaS this optimization is not possible,
due to millisecond grained accounting.

When a task on a Virtual Machine completes in a time
shorter than one hour, the next tasks scheduled on the same
machine can be counted with zero cost. Each task executed
as a function is treated independently and the cost is always
greater than zero.

We propose a serverless version of the Deadline-Budget
Workflow Scheduling (SDBWS) algorithm using the nota-
tion based on [6]:

• tcur denotes the current task to be scheduled,
• Cost(task, r) denotes cost for a given task on the

resource of type r,
• ST (task, r) denotes start time for a task on the

resource of type r,
• FT (task, r) denotes finish time for a task on the

resource of type r,
• Costlow(DAG) and Costhigh(DAG) represent to-

tal execution cost for scheduling each task on the
resource with the lowest and highest cost among all
possible resources available,

• Costmin(task) and Costmax(task) denote mini-
mum and maximum time for task among all tested
resources,

• FTmin(task) and FTmax(task) denote minimum
and maximum finish time for a task among all tested
resources,

• l(ti) denotes level of task ti. It is an integer value
representing the length of the longest path from the
entry node to ti

l(ti) = 1 + max
tpεpredecessors(ti)

l(tp),

where l(tentry) = 1,
• DAGmakespan is equal to FT (texit)− ST (tentry).

4.4. Resource Selection

To select the best resource for a given task, we evaluate
the relation between cost and time constraints. We define
a sub-deadline for each task, based on the deadline of the
whole workflow and on levels of the graph. Then, we define
maximum execution time for each level:

Leveljexecution = max
l(ti)==j

{ETmax(ti)}

where ETmax represents the maximum execution time for
task ti among all resources. Next, we distribute the user
deadline (Duser) between all levels. The sub-deadline value
is computed recursively by going through the graph starting
from the first level.

LeveljDL = Levelj−1
DL +Duser∗

Leveljexecution∑
1≤j′≤l(texit)

Levelj
′

execution

All tasks belonging to the same level have same sub-
deadline.

SDL(tcur) = {LeveljDL|l(ti) == j}

The resource is selected based on the combination of two
factors: cost and time, trying to keep the best balance
between them. We define time and cost quantities for a
current task on every type of resource. These quantities are
normalized by their maximum values

TimeQ(tcur, r) =
ξ ∗ SDL(tcur)− FT (tcur, r)
FTmax(tcur)− FTmin(tcur)

CostQ(tcur, r) =
Costmax(tcur)− Cost(tcur, r)
Costmax(tcur)− Costmin(tcur)

∗ ξ

where

ξ =

{
1 if FT (tcur, r) < SDL(tcur)
0 otherwise

TimeQ denotes how far the task’s finish time on the
resource r is from the level sub-deadline. CostQ measures
how much less the cost on resource r is than the cost on
the most expensive resource. ξ is a flag that makes qualities
irrelevant in the case if the task on resource r exceeds the
sub-deadline constraint.

A resource is selected based on a quality measure
which is computed as follows:

Q(tcur, r) = TimeQ(tcur, r)∗(1−CF)+CostQ(tcur, r)∗CF
where CF , a cost-efficient factor is a tradeoff factor defined
as:

CF =
Costlow(DAG)

Buser

TimeQ and CostQ parameters represent user preferences as
they are weighted by the ratio of the cheapest workflow ex-
ecution. A lower value of CF means that the user prefers to
pay more and execute the whole workflow faster, while the
higher value of CF results in choosing cheaper resources.

During the test runs we measure start and end time of
each task within the function, i.e. on the provider side. It
is then used to calculate the execution time and cost of the
task on the resource. As a result, the makespan which is
calculated afterwards as FT (texit) − ST (tentry) includes

the overheads of running the tasks: there is always a delay
between invocation of a cloud function by the workflow
engine and the start of task execution on the provider in-
frastructure. Inclusion of these overheads is crucial because
they can have a big impact on the whole workflow execution.

Algorithm 1 Serverless Deadline-Budget Workflow
Scheduling

Require: DAG, time (Duser) and budget (Buser)
1: Sort all tasks based on their level
2: if Buser < Costlow(DAG) then
3: return no possible schedule
4: else if Buser > Costhigh(DAG) then
5: return schedule map on the most expensive resource
6: end if
7: Compute the sub-deadline value for each task
8: while there is unscheduled task do
9: for r ∈ resources do

10: Calculate quality measure Q(tcur, r)
11: end for
12: rselected ⇐ r with highest quality measure
13: assign tcur to rselected
14: end while
15: return schedule map

SDBWS is shown in Algorithm 1. First, we sort tasks
by their level. In the next steps, we check the possibility
of finding a schedule under given constraints. If the cost
computed as the sum of costs of running each task on the
cheapest resource is lower than the given budget, there is
no possibility of executing the workflow without exceed-
ing the budget. If the budget is higher than the cost of
running each task on the most expensive resource, tasks
are scheduled to run on this resource. If neither of these
conditions is satisfied, we compute a sub-deadline value
for each task, using the formula presented earlier. A sub-
deadline defines the maximum amount of time that can
pass in order to achieve the deadline constraint. Next, the
algorithm schedules every task to the best suited resource,
as long as there are unscheduled tasks in the workflow. To
do so, we select a task and calculate a quality measure for
it on every resource. Then, we choose a resource with the
highest quality measure and assign this resource to the task.

The main differences between SDBWS and DBWS can
be summarized as follows:

• scheduling a workflow on a set of homogeneous
resources by using PEFT algorithm is not needed
since we use a separate resource for each task,

• the number of available resources is not limited,
• since we cannot reuse the resource as is done with

VMs, we do not need to track which of the given
resources are currently in use,

• the user is billed for each 100ms of executed code,
unlike in the IaaS model,

• exchange of data between tasks is based on transfers
from and to a cloud storage and the time needed for

communication is included in the task’s execution
time,

• there is no requirement to sort the tasks by their
upward rank,

• to take into account the overheads, the makespan
used to calculate the sub-deadlines includes all the
overheads measured during runs on homogeneous
resources.

5. Preliminary Results

To evaluate the results we used AWS Lambda to execute
the small-scale 0.25-degree Montage [13] workflow which
consists of 43 tasks. It is an astronomical application often
used for evaluation of workflow systems. First, to obtain
estimates of task runtimes, we performed the test runs of
the workflow on homogeneous resources, i.e. functions with
256, 512, 1024 and 1536 MB memory allocated, several
times on each resource type. Having the data about each
task average execution time, we set the deadline and budget
constraints and performed scheduling using the SDBWS al-
gorithm. Subsequently, we executed the workflow using the
resources assigned to tasks, measuring each task execution
time as well as the workflow makespan and cost.

In order to keep the constraints feasible, they are com-
puted within the range given by boundary values. We
calculate the total makespan of the workflow on the re-
sources with highest and lowest associated cost as the min-
imum (minD) and maximum (maxD) deadline value. The
corresponding execution costs are minimum (minB) and
maximum (maxB) cost boundary values for the workflow.
Having these values we define user’s budget and deadline
parameters described as:

Duser = minD + aD ∗ (maxD −minD)

Buser = minB + aB ∗ (maxB −minB)

TABLE 1: Deadline and budget parameters used in experi-
ments

aD aB Deadline Budget
0.1 0.3 18.6 s $0.00086
0.3 0.7 26.7 s $0.00094
0.7 0.3 42.8 s $0.00086

Deadline and budget parameters given by aD and aB
can be selected from range [0...1]. We conducted the ex-
periment with various deadline and budget parameters. In
this paper, we present the results for the most interesting
parameter values as shown in Table 1. For other values of
budget and deadline parameters, which were similar to the
cost and makespan in homogeneous executions, the results
were correct but less interesting. The most of the selected
resources were of a single type. These solutions confirm that
the algorithm works properly, but we have decided to show
here the solutions with more diverse resource assignments.

0

20

40

sdbws 1536 1024 real 512 256

Function type

T
im

e
in

 s
ec

on
ds

(a) Execution time aD = 0.1 and aB = 0.3

0.00000

0.00025

0.00050

0.00075

0.00100

sdbws 1536 1024 real 512 256

Function type

P
ric

e
in

 d
ol

la
rs

(b) Execution cost aD = 0.1 and aB = 0.3

0

20

40

1536 1024 sdbws real 512 256

Function type

T
im

e
in

 s
ec

on
ds

(c) Execution time aD = 0.3 and aB = 0.7

0.00000

0.00025

0.00050

0.00075

0.00100

1536 1024 sdbws real 512 256

Function type

P
ric

e
in

 d
ol

la
rs

(d) Execution cost aD = 0.3 and aB = 0.7

0

20

40

1536 1024 sdbws 512 real 256

Function type

T
im

e
in

 s
ec

on
ds

(e) Execution time aD = 0.7 and aB = 0.3

0.00000

0.00025

0.00050

0.00075

0.00100

1536 1024 sdbws 512 real 256

Function type

P
ric

e
in

 d
ol

la
rs

(f) Execution cost aD = 0.7 and aB = 0.3

Figure 2: Comparison of makespans and costs of execution on homogeneous resources and scheduled by SDBWS

The execution results for the selected parameters are
shown in Figure 2. The horizontal lines delineate the dead-
line and budget constraints, respectively. The bar described
as sdbws represents the theoretical makespan and cost that
the workflow would have if there were no delays in execu-
tion between the consecutive tasks. Obviously, as an ideal
solution it is better in terms of both time and cost than any
real execution. It shows how big the influence of the delays
can be on the overall workflow makespan.

TABLE 2: Percentage comparison of the results with slower
homogeneous resource

aD aB Faster More expensive
0.1 0.3 33.3% 7.9%
0.3 0.7 3.07% 4.9%
0.7 0.3 49.0% -7.8%

The resource types that have been assigned to each task
are represented in Figures 3a, 3b and 3c. As we can see
the workflow’s execution accomplishes within the deadline
constraint, and in some cases within the budget constraint,
according to the assumptions of the algorithm.

Table 2 compares the execution scheduled by SDBWS
with the homogeneous resource on which the execution took
longer. Taking the experiment with aD = 0.1, aB = 0.3
parameters into consideration, we can see that the proposed
heterogeneous schedule is 33.3% faster than the execution
of resource with 512MB memory size. However it is only
7.9% more expensive. Using the scheduling algorithm we
can fit into the deadline and budget constraints which would
not be possible by using only homogeneous resources. We
can also observe in Figure 2 that the differences in cost
are smaller than the differences in execution time. This is
explained by the fact that faster functions complete the tasks
in a shorter time which cancels out the effect on their higher
price per time unit.

6. Conclusions and Outlook

In this paper, we discussed the challenges related to
scheduling scientific workflows onto cloud functions. Al-
though the serverless execution model automates most of
the resource management tasks, the decisions regarding the
selection of cloud function types (size) remain with the user
and can be used by scheduling algorithms. We have shown
this on the example of the SDBWS algorithm we developed,
by adapting the existing DBWS heuristic from the IaaS to
the FaaS model. We have also observed that taking into
account the overheads is crucial for obtaining usable results.

Our results of evaluation are preliminary, but we can
draw some interesting conclusions from them. First, correct
selection of resources for scheduling workflow tasks has
significant impact on the performance and cost. Simply
executing workflows on homogeneous resources may lead
to violating the deadline or budget constraints. Choosing
heterogeneous resources is a non trivial problem, and we
can observe that while SDBWS does meet the deadline

0

10

20

30

40

0 5 10 15

Time in seconds

Ta
sk

512

1024

1536

(a) aD = 0.1 and aB = 0.3

0

10

20

30

40

0 10 20

Time in seconds

Ta
sk

512

1024

1536

(b) aD = 0.3 and aB = 0.7

0

10

20

30

40

0 10 20

Time in seconds

Ta
sk

256

512

1024

1536

(c) aD = 0.7 and aB = 0.3

Figure 3: Execution trace showing resources assigned to
each task

constraint, it may fail to meet the budget constraint. This
depends on the values of these constraints, since tightening
the constraints makes the problem more difficult.

It is also important to take into account the overheads
introduced by cloud providers. In our implementation of
SDBWS we include the overheads measured during test runs
to use the actual makespan for estimating the sub-deadlines.
We observe that the real execution takes more time than the
theoretical makespan calculated assuming that there are no

overheads.
There are several known limitations of our approach.

SDBWS is a static scheduling algorithm, so it assumes the
knowledge of task execution times on all resource types.
This limits its applicability to workflows that are run re-
peatedly on some regular basis (e.g. daily). An alternative
approach would be to use dynamic scheduling algorithms
that can make decisions at runtime. We also assume that
the data transfer time is included in the task runtime. Better
approaches should model data transfers separately. Finally,
SDBWS assumes that the entire workflow can run on the
FaaS infrastructure, so there is no capability of off-loading
larger tasks to IaaS.

As this is a report from an on-going work, we plan to
run more experiments with other larger-scale workflows and
with a wider range of deadline and budget parameters, to
study the challenges we discussed in this paper. We plan
also to extend our algorithm to handle hybrid FaaS-IaaS
scenarios, model overheads and data access architecture.
Future work includes also a comparison to other heuristics
and more evaluation metrics to assess various scheduling
approaches.

Acknowledgments

We would like to thank the anonymous reviewers from
the Serverless Computing workshop for their suggestions on
how to improve the paper.

This work was supported by the National Science Cen-
tre, Poland, grant 2016/21/B/ST6/01497.

References

[1] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions,” vol. (In Print), 2017.

[2] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of
scientific workflows,” in Service-Oriented Computing. ICSOC 2017,
M. Maximilien, A. Vallecillo, J. Wang, and M. Oriol, Eds., vol.
10601 LNCS. Springer, Cham, nov 2017, pp. 706–721. [Online].
Available: http://link.springer.com/10.1007/978-3-319-69035-3 51

[3] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking
heterogeneous cloud functions,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence

[5] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam,
W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein,
“Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, 2017, pp. 363–376. [On-
line]. Available: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

and Lecture Notes in Bioinformatics), D. B. Heras and L. Bougé,
Eds., vol. 10659 LNCS. Springer, aug 2018, pp. 415–426. [Online].
Available: http://link.springer.com/10.1007/978-3-319-75178-8 34

[4] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless
computing for container-based architectures,” Future Generation
Computer Systems, vol. 83, pp. 50–59, jun 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17316485

[6] M. Ghasemzadeh, H. Arabnejad, and J. G. Barbosa, “Deadline-Budget
constrained Scheduling Algorithm for Scientific Workflows in a
Cloud Environment,” in 20th International Conference on Principles
of Distributed Systems (OPODIS 2016), ser. Leibniz International
Proceedings in Informatics (LIPIcs), P. Fatourou, E. Jiménez, and
F. Pedone, Eds., vol. 70. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017, pp. 19:1–19:16. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2017/7088

[7] A.-M. Oprescu and T. Kielmann, “Bag-of-tasks scheduling
under budget constraints,” in Proceedings of the 2010 IEEE
Second International Conference on Cloud Computing Technology
and Science, ser. CLOUDCOM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 351–359. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2010.32

[8] S. Nadgowda, S. Suneja, and A. Kanso, “Comparing scaling
methods for linux containers,” in Proceedings - 2017
IEEE International Conference on Cloud Engineering, IC2E
2017. IEEE, apr 2017, pp. 266–272. [Online]. Available:
http://ieeexplore.ieee.org/document/7923811/

[9] B. Balis, “Hyperflow: A model of computation,
programming approach and enactment engine for complex
distributed workflows,” Future Generation Computer Systems,
vol. 55, pp. 147 – 162, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X15002770

[10] B. Balis, K. Figiela, M. Malawski, M. Pawlik, and M. Bubak, “A
lightweight approach for deployment of scientific workflows in cloud
infrastructures,” in Parallel Processing and Applied Mathematics,
11th International Conference, PPAM 2015, Revised Selected Papers,
ser. Lecture Notes in Computer Science, vol. 9573. Springer, 2016,
pp. 281–290.

[11] E. van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG Cloud Group’s Vision on the Performance Challenges of
FaaS Cloud Architectures,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering - ICPE ’18.
New York, New York, USA: ACM Press, 2018, pp. 21–24. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3185768.3186308

[12] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm
for heterogeneous systems by an optimistic cost table,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 3, pp. 682–694, mar 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6471969/

[13] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity,
E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. Prince, and Others,
“Montage: a grid portal and software toolkit for science-grade astro-
nomical image mosaicking,” International Journal of Computational
Science and Engineering, vol. 4, no. 2, pp. 73–87, 2009.

