Serverless Execution of Scientific Workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions

Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, Kamil Figiela

AGH University of Science and Technology, Department of Computer Science
Krakow, Poland

Abstract

Scientific workflows consisting of a high number of interdependent tasks represent an important class of complex scientific
applications. Recently, a new type of serverless infrastructures has emerged, represented by such services as Google Cloud
Functions and AWS Lambda, also referred to as the Function-as-a-Service model. In this paper we take a look at such
serverless infrastructures, which are designed mainly for processing background tasks of Web and Internet of Things
applications, or event-driven stream processing. We evaluate their applicability to more compute- and data-intensive
scientific workflows and discuss possible ways to repurpose serverless architectures for execution of scientific workflows.
We have developed prototype workflow executor functions using AWS Lambda and Google Cloud Functions, coupled
with the HyperFlow workflow engine. These functions can run workflow tasks in AWS and Google infrastructures,
and feature such capabilities as data staging to/from S3 or Google Cloud Storage and execution of custom application
binaries. We have successfully deployed and executed the Montage astronomy workflow, often used as a benchmark, and
we report on initial results of its performance evaluation. Our findings indicate that the simple mode of operation makes
this approach easy to use, although there are costs involved in preparing portable application binaries for execution in
a remote environment.

While our solution is an early prototype, we find the presented approach highly promising. We also discuss possible
future steps related to execution of scientific workflows in serverless infrastructures. Finally, we perform a cost analysis
and discuss implications with regard to resource management for scientific applications in general.

Keywords: Scientific workflows, cloud functions, serverless architectures, FaaS

1. Introduction ground tasks of Web and Internet of Things applications,
or event-driven stream processing, we nevertheless inves-
tigate whether they can be applied to more compute- and
data-intensive scientific workflows. The main objectives of

this paper are as follows:

Scientific workflows consisting of a large number of de-
pendent tasks represent an important class of complex sci-
entific applications that have been successfully deployed
and executed in traditional cloud infrastructures, includ-
ing Infrastructure as a Service (IaaS) clouds. Recently, a
new type of serverless infrastructures has emerged, repre-
sented by such services as Google Cloud Functions (GCF) [1]
or AWS Lambda [2]. This model is often called Function-
as-a-Service (FaaS), an alternative to the well-known Infrastructure-

e To present the main features of serverless infrastruc-
tures, comparing them to traditional infrastructure-
as-a-service clouds,

To discuss the options of using serverless infrastruc-

as-a-Service (IaaS) model. These services allow deploy-
ment of software in the form of functions that are exe-
cuted in the provider’s infrastructure in response to spe-
cific events such as new files being uploaded to a cloud data
store, messages arriving in queue systems or direct HT'TP
calls. This approach frees the user from having to main-
tain a server, including configuration and management of
virtual machines, while resource management is provided
by the platform in an automated and scalable way.

In this paper we take a look at such serverless infras-
tructures. Although designed mainly for processing back-

Email address: malawski@agh.edu.pl (Maciej Malawski)

Preprint submitted to FGCS

tures for execution of scientific workflows,

e To present our experience with a prototype imple-
mented using the HyperFlow [3] workflow engine,
AWS Lambda and Google Cloud Functions,

e To evaluate our approach using the Montage work-
flow [4], a real-world astronomy application,

e To discuss the costs and benefits of this approach, to-
gether with its implications for resource management
of scientific workflows in emerging infrastructures.

This paper extends our earlier work presented at the

WORKS workshop [5], where we reported the results achieved

July 18, 2017

using a prototype based on Google Cloud Functions only.
Here we extend our prototype to support both GCF and
AWS Lambda, and provide more detailed results of ex-
periments performed on these platforms, more in-depth
discussion of serverless platforms and workflow architec-
tures, as well as a cost analysis comparing cloud functions
to traditional IaaS clouds.

The paper is organized as follows. We begin with
an overview of serverless infrastructures in Section 2. In
Section 3 we propose and discuss alternative options for
serverless architectures of scientific workflow systems. Our

Node.js, Java and Python in the case of AWS Lambda,
and Node.js in the case of GCF. The user has no control
over the execution environment, such as underlying oper-
ating system, version of the runtime libraries, etc., but can
use custom libraries with package managers and even up-
load binary code to be executed. A summary of features
provisioned by main cloud function providers is shown in
Table 1

Functions are thus different from Virtual Machines in
TaaS clouds where the users have full control over the OS
(including root access) and can customize the execution

prototype implementation, based on HyperFlow, AWS Lambdaenvironment to their needs. On the other hand, functions

and GCF, is described in Section 4. This is followed by
evaluation using the Montage application, presented in
Section 5. We discuss implications for resource manage-
ment, including a sample cost analysis in Section 6, and
present related work in Section 7. Section 8 provides a
summary and description of future work.

2. Overview of serverless clouds

Writing “serverless” applications is a recent trend, mainly

addressing Web and other event-driven distributed ap-
plications. It frees programmers from having to main-
tain a server — instead, they can use a set of existing
cloud services directly from their application. Examples
of such services include cloud databases such as Firebase
or DynamoDB, messaging systems such as Google Cloud
Pub/Sub, notification services such as Amazon SNS and
so on. When there is a need to execute custom application
code in the background, special “cloud functions” (here-
after simply referred to as functions) can be called. Ex-
amples of such functions are AWS Lambda, Google Cloud
Functions (GCF) or Microsoft Azure Functions.

All these infrastructures are based on the functional
programming paradigm: a function is a piece of software
that can be deployed on the providers’ cloud infrastruc-
ture and it performs a single operation in response to an
external event.

Functions can be triggered by:

e an event generated by the cloud infrastructure, e.g.
a change in a cloud database, a file being uploaded to
a cloud object store, a new item appearing in a mes-
saging system, or an action scheduled at a specified
time,

e a direct request from the application via HTTP or
cloud APIT calls.

The cloud infrastructure which hosts the functions is
responsible for automatic provisioning of resources (includ-
ing CPU, memory, network and temporary storage), au-
tomatic scaling when the number of function executions
varies over time, as well as monitoring and logging. The
user is responsible for providing executable code in a for-
mat required by the framework. Typically, the execution
environment is limited to a set of supported languages:

free the developers from the need to configure, maintain,
and manage server resources.

Cloud providers impose certain limits on the amount
of resources a function can consume, as illustrated in Ta-
ble 2. In the case of AWS Lambda these limits are as
follows: temporary disk space: 512 MB, number of pro-
cesses and threads: 1024, maximum execution duration
per request: 300 seconds. There is also a limit of 100
concurrent executions per region, but this limit can be in-
creased on request. GCF, in Beta since Feb. 2017, limits
the concurrent executions to 400. There is also a timeout
parameter that can be provided when deploying a function
and the default value is 60 seconds. Azure functions have
in general higher limits.

Functions are thus different from permanent and state-
ful services, since they are not long-running processes, but
rather serve individual tasks. Resource limits indicate
that such cloud functions are not currently suitable for
large-scale HPC applications, but can be useful for high-
throughput computing workflows consisting of many fine-
grained tasks.

Functions have a fine-grained pricing model associated
with them. In the case of AWS Lambda, the price is
$0.20 per 1 million requests and $0.00001667 for every
GB-second used, defined as CPU time multiplied by the
amount of memory used. There are also additional charges
for data transfer and storage (when DynamoDB or S3 is
used). The beta version of Google Cloud Functions offers
lower prices per execution time and free quota of requests
per month, while Azure follows AWS pricing.

Functions can have a configurable size, e.g. their RAM
allocation can be adjusted to 128, 256, 512, 1024 or 1536
MB in the case of AWS Lambda and Azure. GCF will also
likely have a similar structure. Interestingly, AWS Lambda
documentation states that the CPU, I/O and network al-
location is proportional to RAM size. To the best of our
knowledge, there are no good benchmark results available,
however our initial results presented in Section 5 confirm
that performance indeed depends on the function size.

Serverless infrastructures can be cost-effective compared
to standard VMs. For example, the aggregate cost of run-
ning AWS Lambda functions with 1 GB of memory for
1 hour is $0.060012. This is more expensive than the
t2.micro instance, which also has 1 GB of RAM but costs
$0.013 per hour. A T2.micro instance, however, offers

Table 1: Main features of the leading cloud function providers

AWS Lambda Google Cloud Func- | Azure Functions
tions
Language Java, Python, Node.js Node.js Node.js, C#, F#
Pricing $0.20 per 1M requests and | $0.40 per 1M requests | $0.20 per 1M requests and
$0.00001667/GB-s (first two milions free) | $0.00001667/GB-s
$0.0000025/GB-s
Triggers API Gateway, Event | Cloud Pub/Sub, Cloud | Schedule, HTTP, Azure
Sources (S3, SNS, SES, | Storage, Object Change | Storage, Azure Event
DynamoDB, Kinesis, | Notifications Hubs, Azure Service Bus
CloudWatch)
Deployment Only zip upload Zip + CVS (e.g. Git) Zip + CVS (e.g. Git)
Versioning Possible No info Not possible
Dependency Management | Not Possible NPM NPM and NuGet for C#
and F+#

Table 2: Limits of cloud

function infrastructures

AWS Lambda Google Cloud Func- | Azure Functions
tions
Execution Time 300s 540 No limit
Disk space 500 MB Consumes memory re- | 5 TB
sources
Number of functions No limit 1000 10
Parallel Execution 100 functions in parallel | 400 No limit

(configurable)

only burstable performance, which means only a fraction
of CPU time per hour is available, e.g. T2.micro can use
100% of CPU capacity for only 10% of run time. The
smallest standard instance at AWS is m3.medium, which
costs $0.067 per hour, but gives 3.75 GB of RAM. Both
burstable and standard instances are billed at the begin-
ning of each hour, while for cloud functions the billing in-
terval is 100 ms, and hundreds of them can run in parallel,
resulting in better elasticity. This means the provisioned
capacity can quicker react to the current load, resulting in
reduction of overprovisioning or underprovisioning. Cloud
functions are thus more suitable for variable load condi-
tions while standard instances can be more economical for
applications with stable workloads.

In addition to the above-mentioned public cloud providers,

there are initial Open Source solutions providing cloud
functions that can be deployed on the premises. Iron.io
created their own serverless technology called IronFunc-
tions [6]. What distinguishes this solution from the ones
discussed above is that it provides deployment using Docker
containers, which can be hosted on Docker Hub or in our
private Docker Trusted Registry. The flexibility of Iron-
Functions allowed Iron.io to adapt this solution to Open-
Stack, resulting in a framework called Picasso, which pro-
vides an API abstraction layer for serverless computing on
OpenStack [7].

3. Execution of scientific workflows in serverless
infrastructures

In light of the identified features and limitations of
serverless infrastructures and cloud functions, we can dis-
cuss the option of using them for execution of scientific
workflows. We will begin with a comparison of three work-
flow management system (WMS) architectures (section
3.1), and then discuss several options for implementing
a WIMS in a serverless infrastructure (section 3.2).

3.1. Overview of WFMS architectures

The first question is how the emergence of serverless
infrastructures affects the architecture of workflow man-
agement systems. Fig. 1 presents simplified diagrams
of three architectural types of scientific workflow systems:
FaaS/serverless-based, service-based and “Resource” (IaaS)-
based.

First, let us compare the FaaS-based architecture with
the service-based one. The first similarity is that they are
both inherently distributed — the call graph of the appli-
cation is also the component graph. The second similar-
ity is that some aspects of application management (e.g.
server provisioning and application scaling) are in both
cases done by an external entity (cloud provider or service

FaaS based architecture

Service based architecture

Resource (laaS) based architecture

o

Engine

Intermediate
data storage

o

Engine

API Gateway

\ 4

¥

Virtual
Machine

Virtual
Machine

Function FunCtionA Function
4 4 4 Service
T] T O

[Service j
A

OL] JAN

A

j 3
L] 1 0

E

Intermediate
data storage

Service
3 S — [
N Intermediate | _ 7
data storage

Intermediate data
transfer

Application
management domain

Figure 1: Alternative architectures of scientific workflow management systems. Two questions that differentiate the architectures are empha-
sized: (1) Who is responsible for different aspects of application management? (2) How is intermediate data handled?

owner). These similarities are, however, arguably less con-
sequential than the differences. First, unlike functions, ser-
vices are deployed and maintained by different owners and
normally are not under the control of the workflow devel-
oper. This leads to operational problems such as workflow
decay [8], wherein a workflow can no longer be executed or
produces different results than expected because the un-
derlying services have changed. Workflow reproducibility
is much easier with FaaS, because the workflow developer
has full control over deployment of cloud functions. The
second difference concerns management of intermediate
data. Services are deployed in different infrastructures, so
data transfer between them must be done via an external
shared storage service which, in practice, is the memory of
the workflow engine (possibly backed by a local database)
[9]. This substantially affects the performance of data-
intensive workflows. On the surface, FaaS-based architec-
tures suffer from a similar problem because functions are
stateless and their runtime environment is brought up and
down for every request, so any data must also be passed
through external persistent storage. However, in this case
the functions can directly access the storage service, so
the data does not have to be passed through the workflow
engine. Moreover, the storage service is usually deployed
in the same infrastructure as functions, so data transfers
can be much more efficient, arguably making the FaaS
architecture more suitable for data-intensive workflows.
The third architectural type found in workflow systems
is a “resource-based” one, wherein the workflow engine in-
vokes application programs deployed on computing nodes

of a distributed computing infrastructure such as a cluster
or an laaS cloud. Here, without sacrificing generality, we
consider the latter case. In this architecture, the workflow
owner is fully responsible for application management, in-
cluding server provisioning, application deployment, map-
ping of application programs to computing nodes, scal-
ing and fault tolerance. Intermediate data sometimes also
must be transferred between nodes, but the options to
achieve this are more diverse, including network file sys-
tems [10]. Moreover, only in this architecture can transfers
of intermediate data be avoided altogether by mapping de-
pendent tasks to the same nodes and storing intermediate
data on local disks, or even in memory if the application
components are designed to cache data between requests
[11].

8.2. Options for workflow execution in serverless infras-
tructures

Having pointed out the specific characteristics of the
FaaS-based WfMS architecture, let us discuss different op-
tions for its implementation in more detail. We will start
with a traditional execution model in an IaaS cloud with
no cloud functions (1), then present the queue model (2),
direct executor model (3), bridge model (4), and decentral-
ized model (5). These options are schematically depicted
in Fig. 2, and discussed in detail further on.

3.2.1. Traditional model
The traditional model assumes the workflow runs in a
standard TaaS cloud. In this model, workflow execution

Traditional
model

Queue

model model

Direct executor

Engine

%

Engine

Queue

Workers

L)L L

\Mrage

Bridge
model

Decentralized
model

Engine

Engine

Workers

Bridge

worker Storage

Workers

Figure 2: Options of serverless architectures for execution of scientific workflows.

follows the well-known master-worker architecture, where
the master node runs a workflow engine, tasks that are
ready for execution are submitted to a queue, and worker
nodes process these tasks in parallel, whenever possible.
The master node can be deployed in the cloud or outside
of the cloud, while worker nodes are usually deployed as
VMs in a cloud infrastructure. The worker pool is typically
created on demand and can be dynamically scaled up or
down depending on resource requirements.

Such a model is represented e.g. by Pegasus and Hy-
perFlow. The Pegasus Workflow Management System [12]
uses HTCondor [13] to maintain its queue and manage
workers. HyperFlow [3] is a lightweight workflow engine
based on Node.js — it uses RabbitMQ as its queue and
AMQP Executors on worker nodes. The deployment op-
tions of HyperFlow on grids and clouds are discussed in
detail in [14].

In this model the user is responsible for management
of resources comprising the worker pool. The pool can be
provisioned statically, which is commonly done in practice,
but there is also ongoing research on automatic or dynamic
resource provisioning for workflow applications [15, 16],
which is a non-trivial task.

In the traditional cloud workflow processing model there
is a need for some storage service to store input, output
and temporary data. There are multiple options for data
sharing [10], but one of the most widely used approaches
is to rely on existing cloud storage, such as Amazon S3 or
Google Cloud Storage. This option has the advantage of
providing a permanent store so that data is not lost af-
ter the workflow execution is complete and the VMs are
terminated.

3.2.2. Queue model

This model is similar to the traditional model: the mas-
ter node and the queue remain unchanged, but the worker
is replaced by a cloud function. Instead of running a pool
of VMs with workers a set of cloud functions is prepared.

Each task in a queue is translated to function call which
returns the result via the queue.

The main advantage of this model is its simplicity, since
it only requires changes in the worker module. This may
be simple if the queue uses a standard protocol, such as
AMQP in the case of HyperFlow Executor, but in the
case of Pegasus and HTCondor a Condor daemon (con-
dor_startd) must run on the worker node and communi-
cate using a proprietary Condor protocol. In this scenario
implementing a worker as a cloud function would require
more effort.

Another advantage of the presented model is the abil-
ity to combine the workers implemented as functions with
other workers running e.g. in a local cluster or in a tra-
ditional cloud. This would also enable concurrent usage
of cloud functions from multiple providers (e.g. AWS and
Google) when such a multi-cloud scenario is required.

An important issue associated with the queue model is
how to trigger the execution of the functions. If a native
implementation of the queue is used (e.g. RabbitMQ as in
HyperFlow), it is necessary to trigger a function for each
task added to the queue. This can be done by the workflow
engine or by a dedicated queue monitoring service. Other
options include periodic function execution or recursive
execution: a function can itself trigger other functions once
it finishes processing data.

To ensure a clean serverless architecture another option
is to implement the queue using a native cloud service
which is already integrated with cloud functions. In the
case of AWS Lambda one could implement the queue using
SQS or DynamoDB: here, a function could be triggered by
adding a new item to a task table. In the case of GFC, a
Google Cloud Pub/Sub service can be used for the same
purpose. Such a solution, however, would require more
changes in the workflow engine and would not be easy to
deploy in multi-cloud scenarios.

3.2.8. Direct executor model

This is the simplest model and requires only a workflow
engine and a cloud function that serves as a task executor.
It eliminates the need for a queue since the workflow en-
gine can trigger the cloud function directly via API/HTTP
calls. Regarding development effort, it requires changes in
the master and a new implementation of the executor: in-
stead of a worker fetching the tasks from the queue the
executor is implemented as a function.

Advantages of this model include its cleanness and sim-
plicity, but these come at the cost of tight master-worker
coupling. Accordingly, it becomes more difficult to imple-
ment the multi-cloud scenario, since the workflow engine
would need to be able to dispatch tasks to multiple cloud
function providers.

3.2.4. Bridge model

This solution is more complex but it preserves the de-
coupling of the master from the worker, using a queue.
In this case the master and the queue remain unchanged,
but a new type of bridge worker is added. It fetches tasks
from the queue and dispatches them to the cloud functions.
Such a worker needs to run as a separate service (daemon)
and can trigger cloud functions using the provider-specific
APIL.

The decoupling of the master from the worker allows
for more complex and flexible scenarios, including multi-
cloud deployments. A set of bridge workers can be spawned,

each dispatching tasks to a different cloud function provider.

Moreover, a pool of workers running in external distributed
platforms, such as third-party clouds or clusters, can be
used together with cloud functions.

3.2.5. Decentralized model

This model re-implements the whole workflow engine
in a distributed way using cloud functions. Each task of a
workflow is processed by a separate function. These func-
tions can be triggered by (a) new data items uploaded to
cloud storage, or (b) other cloud functions, i.e. predecessor
tasks triggering their successor tasks following completion.
Option (a) can be used to represent data dependencies in a
workflow while option (b) can be used to represent control
dependencies.

In the decentralized model the structure and state of
workflow execution have to be preserved in the system.
The system can be implemented in a fully distributed way,
by deploying a unique function for each task in the work-
flow. In this way, the workflow structure is mapped to
a set of functions and the execution state propagates by
functions being triggered by their predecessors. Another
option is to deploy a generic task executor function and
maintain the workflow state in a database, possibly one
provided as a cloud service.

The advantages of the decentralized approach include
fully distributed and serverless execution, without the need
to maintain a workflow engine. The required development

&b HyperFlow
Engine

HTTP
API GCE Worker
Gateway Executor
Lambda Storage
Executor Client
S3 Client
Google Cloud
Storage
Amazon S3

Figure 3: Architecture of the prototype integrating HyperFlow with
AWS Lambda and Google Cloud Functions, using direct executor
model

effort is extensive, since it requires re-implementation of
the whole workflow engine. A detailed design of such an
engine is out of scope of this paper, but remains an inter-
esting subject of future research.

3.83. Summary of options

As we can see, cloud functions provide multiple inte-
gration options with scientific workflow engines. The users
need to decide which option is best for them based on their
requirements, most notably the allowed level of coupling
between the workflow engine and the infrastructure and
the need to run hybrid or cross-cloud deployments where
resources from more than one provider are used in parallel.
We consider the fully decentralized option as an interesting
future research direction, while in the following sections we
will focus on our experience with a prototype implemented
using the direct executor model.

4. Prototype based on HyperFlow

To evaluate the feasibility of our approach we decided
to develop a prototype using the HyperFlow engine and in-
tegrate it with two major cloud function providers: AWS
Lambda and Google Cloud Functions, applying the direct
executor model. This decision was made for several rea-
sons. First, HyperFlow is implemented in Node.js, while
cloud functions support Node.js as a native function ex-
ecution environment. This good match simplifies devel-
opment and debugging, which is always non-trivial in a
distributed environment. Our selection of the direct ex-
ecution model was motivated by the extensible design of

HyperFlow, which can associate with each task in a work-
flow a specific executor function responsible for handling
command-line tasks. Since GCF provides a direct trig-
gering mechanism for cloud functions using HTTP calls
and AWS Lambda provides it via an HT'TP API Gateway
service, we can apply existing HTTP client libraries for
Node.js, plugging support for cloud functions into Hyper-
Flow as a natural extension. It should be noted that our
prototype does not currently support using AWS Lambda
and GCF in the same workflow execution, so each run has
to specify which infrastructure to use.

4.1. Architecture and components

A schematic diagram of the prototype is shown in Fig. 3.
We rely on the extension mechanism of HyperFlow, in
which all the tasks (or processes) in the workflow are as-
sociated with a function responsible for task execution.
These functions may e.g. call an external service, or sub-
mit the task to the execution queue, as in the traditional
model which uses RabbitMQ, or execute tasks locally as
the command function does. HyperFlow can be extended
by providing new implementations of these functions.

On the engine side, we extended HyperFlow with two
new functions: AWS Lambda Command and GCF Command,
which are responsible for communication with cloud func-
tions. They provide a replacement for the AMQPCommand
function, which is used in the standard HyperFlow dis-
tributed deployment with the AMQP protocol and Rab-
bitMQ. The role of command functions is to send the task
description in a JSON-encoded message to the cloud func-
tion.

On the cloud function side, we implemented the Lambda
Executor and GCF Executor functions, which need to be
deployed on the AWS or GCF platforms respectively. The

executor processes the message and uses the Storage Client

for staging input and output data. It uses S3 or Google
Cloud Storage respectively, and requests parallel transfers
to speed up download and upload of data. The Executor
calls the executable which needs to be deployed together
with the function. Both AWS Lambda and GCF infras-
tructures support running custom Linux-based binaries,
but the user has to make sure that the binary is portable,
e.g. by statically linking all of its dependencies. Our ar-
chitecture is thus purely serverless, with the HyperFlow
engine running on a client machine and directly relying
only on cloud services such as GCF and Cloud Storage.
In the case of AWS Lambda, we apply an architectural
approach similar to GCF, but with a few additions. First,
the AWS Lambda Command needs to communicate with AWS
API Gateway to trigger our Lambda function. Moreover,
since the API Gateway supports only API calls which take
less than 30 seconds to complete, we needed to develop a
simple retry mechanism to check if our Lambda function
completed successfully. After receiving a timeout from
API Gateway we start polling for proper output files on
S3. In this way we can benefit from the AWS Lambda
capability to run functions for up to 5 minutes.

4.2. Fault tolerance

Transient failures are a common risk in cloud environ-
ments. Since execution of a possibly large volume of con-
current HTTP requests in a distributed environment is
always prone to errors caused by various layers of network
and middleware stacks (load balancers, gateways, proxies,
etc.), the execution engine needs to be able to handle such
failures gracefully and attempt to retry failed requests.

In the case of HyperFlow, the Node.js ecosystem ap-

pears very helpful in this context. We used the requestretry

library for implementing the HTTP client, which allows
for automatic retry of failed requests with a configurable
number of retries (default: 5) and delay between retries
(default: 5 seconds). Our prototype uses these default
settings, but in the future it will be possible to explore
more advanced error handling policies taking into account
error types and patterns.

5. Evaluation using Montage workflow

Based on our prototype which combines HyperFlow
with AWS Lambda and Google Cloud Functions, we per-
formed several experiments to evaluate our approach. The
goals of the evaluation are as follows:

e To validate the feasibility of our approach, i.e. to
determine whether it is practical to execute scientific
workflows in serverless infrastructures.

e To measure performance characteristics of the exe-
cution environment in order to provide hints for re-
source management.

Details regarding our sample application, experiment
setup and results are provided below.

5.1. Montage workflow and experiment setup

Montage application. For our study we selected the Mon-
tage [17] application, which is an astronomy workflow. It is
often used for various benchmarks and performance evalu-
ation, since it is open-source and has been widely studied
by the research community. The application processes a
set of input images from astronomic sky surveys and con-
structs a single large-scale mosaic image. The structure
of the workflow is shown in Fig. 4: it consists of several
stages which include parallel processing sections, reduction
operations and sequential processing.

The size of the workflow, i.e. the number of tasks,
depends on the size of the area of the target image, which
is measured in angular degrees. For example, a small-scale
0.25-degree Montage workflow consists of 43 tasks, with 10
parallel mProjectPP tasks and 17 mDiffFit tasks, while
more complex workflows can involve thousands of tasks.
In our experiments we used the Montage 0.25 workflow
with 43 tasks, the Montage 0.4 workflow with 107 tasks
and Montage 0.6 with 165 tasks. Montage 0.6 was the
largest workflow we were able to run on AWS Lambda,
due to exceeding the 500 MB temporary disk space limit
for larger workflows.

mProjectPP

mDiffFit

mConcatFit
mBgModel

mBackground
mlImgThbl

mAdd

mShrink
mJPEG

Figure 4: Structure of the Montage workflow used for experiments

Ezperiment setup. We used a recent version of HyperFlow,
AWS Lambda and an Alpha version of Google Cloud Func-
tions. The HyperFlow engine was installed on a client ma-
chine with Ubuntu 14.04 LTS Linux and Node.js 4.5.0. For
staging the input and output data, as well as for temporary
storage, we used an S3 and Google Cloud Storage bucket
with standard options. For each cloud, the functions stor-
age buckets were located in the same region eu-central-1
for Lambda and us-cental-1 for GCF, while the client
machine was located in Europe.

Data preparation and handling. To run the Montage work-
flow in our experiments all input data needs to be uploaded
to the cloud storage first. For each workflow run, a sepa-
rate subfolder in the storage bucket is created. The sub-
folder is then used for exchange of intermediate data and
for storing the final results. Data can be conveniently up-
loaded using a command-line tool which supports parallel
transfers. The web-based AWS or Google console is use-
ful for browsing results and displaying the resulting JPEG
images.

5.2. Feasibility

To assess the feasibility of our approach we tested our
prototype using the Montage 0.25 workflow, on both AWS
Lambda and GCF. We collected task execution start and
finish timestamps, which give the total duration of cloud
function execution. This execution time also includes data
transfers. Based on the collected execution traces we plot-
ted Gantt charts. Altogether, several runs were performed
and an example execution trace from GCF (representative
of all runs) is shown in Fig. 5.

Montage 0.25 is a relatively small-scale workflow, but
the resulting plot clearly reveals that the cloud function-
based approach works well in this case. We can observe
that the parallel tasks of the workflow (mProjectPP, mD-
iffFit amd mBackground) are indeed quick and can be pro-
cessed in parallel. The user has no control over the level
of parallelism, but the cloud platform is able to process
tasks in a scalable way, as stated in the documentation.

mJPEG = 1
mShrink =
mAdd =
mimgtbl = |
mBackground =
mBackground =
mBackground =
mBackground =
mBackground =
mBackground =
mBackground =
mBackground =
mBackground =
mBackground =
mBgModel =
mConcatFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mDiffFit =
mProjectPP =
mProjectPP =
mProjectPP =
mProjectPP =
mProjectPP =
mProjectPP =
mProjectPP =
mProjectPP =
mProjectPP =
mProjectPP —

mBackground

Task

mBgModel
mConcatFit

mDiffFit

mimgtbl

mJPEG
mProjectPP
mShrink

1 1 1 1 1
0 25 50 75 100
Time in seconds

Figure 5: Sample run of Montage 0.25 workflow.

We also observe no significant delays between execution
of tasks, and can attribute this to the fact that the re-
quests between HyperFlow engine and the cloud functions
are transmitted using HTTP over a wide-area network,
including a trans-Atlantic connection.

Similar results were obtained for the Montage 0.4 work-
flow, which consists of 107 tasks; however the correspond-
ing detailed plots are not reproduced here for reasons of
readability. It should be noted that while the parallel tasks
of Montage are relatively fine-grained, the execution time
of sequential processing tasks such as mImgTbhl and mAdd
grows along with the size of the workflow and can exceed
the default limit of 60 seconds imposed upon cloud func-
tion execution. This limit can be extended when deploying
the cloud function, but there is currently no information
regarding the maximum duration of such requests. We
can only expect that such limits will increase as the plat-
forms become more mature. This was indeed the case with
Google App Engine, where the initial request limit was in-
creased from 30 seconds to 10 minutes [18].

5.3. Deployment size and portability

Our current approach requires us to deploy cloud func-
tion together with all application binaries. AWS Lambda
requires all code to be packaged during the deployment
phase, while the Google Cloud Functions execution en-
vironment enables inclusion of dependencies in Node.js li-
braries packaged using the Node Package Manager (NPM)
and automatically installed when the function is deployed.
Moreover, in both infrastructures the user can provide a
set of JavaScript source files, configuration and binary de-
pendencies to be uploaded together with the function.

In the case of the Montage application, users need to
prepare application binaries in a portable format. Since
Montage is distributed in its source! format, it can be
compiled and statically linked with all libraries making it
portable to any Linux distribution.

The volume of the Montage binaries is 50 MB in total,
and 20 MB in a compressed format, which is used for de-
ployment. We consider this deployment size practical in
most cases. If the size of executable becomes problematic,
we may consider deploying one separate function per exe-
cutable. We should note that deployment of the function
is performed only once, prior to workflow execution. Of
course, when the execution environment needs to instanti-
ate the function or create multiple instances for scale-out
scenarios, the size of each instance may affect performance,
so users should try to minimize the volume of the deploy-
ment package. It is also worth noting that such binary
distributions are usually more compact than full images of
virtual machines used in traditional IaaS clouds. Unfortu-
nately, if the source distribution or portable binary is not
available, it may not be possible to deploy it as a cloud
function. One useful option would be to allow deployment
of container-based images, such as Docker images, but this
is currently not supported.

5.4. Variability

Variability is an important metric of cloud infrastruc-
tures, since distribution and resource sharing often ham-
per consistent performance. To measure the variability of
GCF while executing scientific workflows, we measured the
duration of parallel task execution in the Montage (0.25
degree) workflow — specifically, mBackground, mDiffFit
and mProjectPP — running 10 workflow instances over a
period of one day.

Results are shown in Fig. 6. We can see that the distri-
bution of tasks is moderately wide, with the inter-quartile
range of about 1 second. The distribution is skewed to-
wards longer execution times, up to 7 seconds, while the
median is about 4 seconds. It is important that we do not
observe any significant outliers. We have to note that the
execution times of the tasks themselves vary (they are not
identical) and that task duration includes data transfers
to/from cloud storage. Having taken this into account,

Thttp://montage.ipac.caltech.edu/

Duration of tasks

7_
o0
ot °
% 8 o L4
6- .
» L]
2
8 eey”
85- = .
c
c : [] ®
o e
© .: oo
—_ L) (d
> r 4 o °
Q4- .
0
0 PO
% e’
L J
% o °
3- :' ° .,
L] o
.
1 1 1
mBackground mDiffFit mProjectPP

Figure 6: Distribution of execution times of parallel tasks of the
Montage 0.25 workflow.

we can conclude that the execution environment behaves
consistently in terms of performance, since the observed
variation is rather low. Further studies and long-term
monitoring would be required to determine whether such
consistency is preserved over time.

5.5. Scalability

Cloud functions provide scalable and parallel execu-
tion, but the user has no control over the number of ma-
chines and over the assignment of tasks to machines. We
can only try to infer the level of parallelism by analyzing
the execution traces of workflows in which there are many
independent tasks that can be executed in parallel. For
these experiments we used Montage, in which all tasks of
a given type can be executed at the same time in paral-
lel. In our experiment, we ran the Montage 0.6 workflow
on AWS Lambda and recorded task start/end timestamps.
Then, based on these timestamps we assigned tasks to pos-
sible “machines” in such a way that there is no overlap,
and to minimize the number of machines. In this way we
obtained a potential assignment of tasks to a minimum set
of machines required to execute a given workflow.

The results are shown in Fig. 7. We can see that the
maximum parallelism achieved, as measured by the con-
currency level, is over 60 (out of 100) on AWS Lambda. It
is likely that more machines are actually needed to produce
such an execution trace, since the delays between tasks are
very small in this case. The reported number was consis-
tent over several runs of this and other workflows, in some
cases reaching 85 instances, which means that all mDiffFit
tasks were running in parallel on distinct instances. We

http://montage.ipac.caltech.edu/

task

mAdd
I mBackground
S mBgModel
B mConcatFit
B mDiffFit
B mimgtbl
8 mJPEG

Machine

mProjectPP

mShrink

i i
20 30
Time in seconds

50

=]
o

40

Figure 7: Possible distribution of tasks to machines based on a sam-
ple execution of the Montage 0.6 workflow on AWS Lambda with
1024 MB of RAM.

find these results very promising, revealing good scalabil-
ity of AWS Lambda and potentially other FaaS platforms.
At the time of writing we do not have the scalability re-
sults of the beta version of the GCF platform, and this
will be the subject of future work as the platform goes
into production.

5.6. Performance depending on function size

As mentioned in Section 2, AWS Lambda allows con-
figuring the “size” of each function by setting its mem-
ory (RAM) allocation between 128MB and 1536MB in
64MB increments. According to the documentation, CPU
and other resources are allocated proportionally to RAM
size. To verify this experimentally, we ran the Montage
0.6 workflow with RAM set to 128, 256, 512, 1024 and
1536MB respectively.

Results are shown in Fig. 8, where we present the run
times of parallel tasks: mBackground, mDiffFit and mPro-
jectPP. Task duration comprises data transfer and execu-
tion time. We can observe that the execution time is not

10

exactly inversely proportional to the function size, so per-
formance does not scale linearly. Generally, the execution
time decreases along with increases in RAM size, which is
in agreement with the allocation policy described in the
documentation. More detailed benchmarking will be nec-
essary to precisely characterize the influence of CPU and
I/0O allocation on these results.

6. Discussion

Experiments conducted with our prototype implemen-
tation confirm the feasibility of our approach to execution
of scientific workflows in serverless infrastructures. There
are, however, some limitations that need to be emphasized
here, and some interesting implications for resource man-
agement of scientific workflows in such infrastructures.

6.1. Granularity of tasks

Granularity of tasks is a crucial issue which determines
whether a given application is well suited for processing us-
ing serverless infrastructures. It is obvious that for com-
putationally heavy HPC applications a dedicated super-
computer is a better option. On the other hand, for high-
throughput computing workloads distributed infrastruc-
tures such as grids and clouds have proven useful. Server-
less infrastructures can be considered similar to these high-
throughput infrastructures, but they usually have shorter
task execution limits (300 seconds in the case of AWS
Lambda and a 60-second default timeout for GCF). While
these limits may vary, may be configurable or may change
over time, we must assume that each infrastructure will
always impose some kind of limit, which will constrain the
types of supported workflows to those consisting of rel-
atively fine-grained tasks. Many high-throughput work-
flows can fit into these constraints, but for the rest, other
solutions should be developed, such as hybrid approaches.

6.2. Hybrid solutions

In addition to purely serverless solutions, we can pro-
pose hybrid approaches, such as the one outlined in Sec-
tion 3. The presented bridge model is a typical hybrid
solution which combines traditional VMs with cloud func-
tions for lightweight tasks. This architecture can overcome
the limitations of cloud functions, such as the need to cre-
ate custom binaries or execution time limits.

The hybrid approach can also be used to minimize costs
and optimize throughput. Such optimization should be
based on cost analysis of leasing a VM and calling a cloud
function, assuming that longer-term lease of resources typ-
ically corresponds to lower unit cost. This idea is generally
applicable to hybrid cloud solutions [19]. For example, it
may be more economical to lease VMs for long-running se-
quential parts of the workflow and trigger cloud functions
for parallel stages, where spawning VMs that are billed on
an hourly basis would be more costly. It may also prove
interesting to combine cloud functions with spot instances

mBackground mDiffFit

mProjectPP

%)
-g 20
§ task
17 L L E mBackground
C . .
g * : - mDiffFit
2 10 - o == - E3 mProjectPP
o b4 ° °
3 Eﬁ | + L L &
= =]
O - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
128 256 512 1024 1536 128 256 512 1024 1536 128 256 512 1024 1536

RAM size of Lambda in MB

Figure 8: Distribution of execution times of parallel tasks of the Montage 0.6 workflow on AWS Lambda, depending on the configured RAM

of the deployed function

or burstable [20] instances, which are cheaper but have
varying performance and reliability characteristics.

The serverless approach may be used to speed up par-
allel parts of fork-join structured workflows. While se-
quential tasks, especially join tasks that deal with a large
amount of data produced by the parallel part, would vio-
late run time or disk space limits on serverless services and
need to be processed in a classical environment, tasks in
parallel stages are often fine-grained enough to fit within
the function run time limit. While running such a workflow
will still require a classical [aaS infrastructure, a significant
amount of tasks from parallel stages can be offloaded to
and massively parallelized on serverless platforms without
the need for brief TaaS scale-out periods. Implementation-
wise, the workflow tasks can be e.g. labeled with infor-
mation regarding the target execution platform. Alterna-
tively, a scheduler should dynamically decide, at runtime,
whether the task being scheduled should be run as a func-
tion or using a classical worker, taking into account the
task characteristics and infrastructure state (e.g. queue
length for IaaS workers or data location).

The hybrid approach can also help resolve issues caused
by the statelessness and transience of cloud functions, where
no local data is preserved between function calls. By
adding a traditional VM as one of the executor units, data
transfers can be significantly reduced in the case of tasks
that need to access to the same set of data multiple times.

6.3. Resource management and autoscaling

The core idea behind serverless infrastructures is that
they free users from having to manage the server — and this
also extends to clusters of servers. Decisions concerning re-
source management and autoscaling are thus made by the
platform based on the current workload, history, etc. This
is useful for typical Web or mobile applications that have
interactive usage patterns and whose workload depends on
user behavior. With regard to scientific workflows which
have a well-defined structure, there is ongoing research on

11

scheduling algorithms for clusters, grids and clouds. The
goal of these algorithms it to optimize such criteria as time
or cost of workflow execution, assuming that the user has
some control over the infrastructure. In the case of server-
less infrastructures the user does not have any control over
the execution environment. The providers would need to
change this policy by adding more control or the ability to
specify user preferences regarding performance.

For example, users could specify priorities when de-
ploying cloud functions, and a higher priority would mean
a faster response time, quicker autoscaling, etc., but at
an additional price. Lower-priority functions could have
longer execution times, possibly relying on resource scav-
enging, but at a lower cost. Another option would be to
allow users to provide hints regarding expected execution
times or anticipated level of parallelism. Such information
could be useful for internal resource managers to better
optimize the execution environment and prepare for de-
mand spikes, e.g. when many parallel tasks are launched
by a workflow.

Adding support for cooperation between the applica-
tion and the internal resource manager of the cloud plat-
form would open an interesting area of research and op-
timization of applications and infrastructures which both
users and providers could potentially benefit from.

6.4. Cost analysis example

The key question when considering serverless infras-
tructures is whether and when it may be more economical
to use cloud functions or regular cloud instances. Here,
we use Amazon services (EC2 and Lambda) to compare
the cost of running a simplified scientific application. This
analysis is a theoretical calculation based on the pricing
model of AWS Lambda.

For this evaluation, we consider a bag-of-tasks appli-
cation consisting of N independent tasks with a uniform
task run time of 300 seconds. This can represent a parallel

stage of a typical scientific workflow. 300 seconds (5 min-
utes) is the current limit of AWS Lambda. We impose a
deadline constraint and calculate the cost of running this
bag of tasks using (1) cloud functions (AWS Lambda) or
(2) a traditional model with IaaS cloud instances. This
corresponds to comparing the cost of the direct executor
model to the traditional model presented in Fig. 2.

CPU allocation on Lambda is proportional to mem-
ory size of the function. Therefore, for CPU-bound tasks,
the cost will remain constant regardless of memory size.
This is caused by the fact that a function with a propor-
tionally greater memory size will be proportionally more
expensive, but, interestingly, will complete the task in pro-
portionally less time, resulting in the same cost as a func-
tion with a lower memory capacity. Since the Lambda
infrastructure is able to provide a high level of parallelism,
we may assume that the cost of running the application
remains constant. We assume that Lambda runs on the
same hardware as EC2 instances, therefore task execution
time remains fixed. We used real pricing for both services,
valid as of January 2017, and relied on an m4.large in-
stance (with 2 virtual cores) for comparison. We further
assumed that tasks are single-threaded applications and
the workflow execution engine uses all available cores of
the VM. The cost of larger instances in the m4 family is
proportional to the number of virtual cores, so it does not
influence results. For simplicity we also assumed infinite
scalability of both Lambda and EC2 and no startup delays
or other overheads.

Based on the number of tasks, their duration and the
deadline, we calculated the number of IaaS instances re-
quired to run the application, and their cost using the
hourly billing model. We also calculated the constant cost
of running the application on the Lambda infrastructure.
The consequence of this pricing model is that for some
workloads cost of deployment to Lambda will be lower
than to EC2.

The results of this calculation are presented in Fig. 9.
We may observe that for sub-hour deadlines or small num-
bers of tasks Lambda is always cheaper than the classical
EC2 infrastructure. This is a direct result of the hourly
billing cycle in the case of IaaS. The serverless approach is
definitely more suitable for workloads where a high level
of parallelism is required for a short period of time. The
cost of using IaaS instances is a step function of the dead-
line: steps are observed whenever an additional instance
is needed. For example, with 20 tasks the total comput-
ing time is 100 minutes, or 50 minutes on 2-core machine.
This means that for deadlines shorter than 50 minutes two
instances are needed, while for longer deadlines a single in-
stance suffices. However, in the case of larger workflows
the traditional setup based on EC2 will be more cost effi-
cient.

Nevertheless, even our simplified example shows that
serverless infrastructures may be cost-efficient for compute-
intensive applications in selected cases, depending on their
characteristics.

12

20 tasks
__ 15-
2
@ 10-
o
8 s-
i)
0-I]]]]]
0 25 50 75 100 125
Deadline [minutes]
200 tasks
__ 15-
A
@ 10-
[&]
8 s-
i)
0-I]]]]]
0 25 50 75 100 125
Deadline [minutes]
2000 tasks
__ 15-
A
@ 10-
[&]
8 s5-
i)
0-I]]]]]
0 25 50 75 100 125

Deadline [minutes]

Figure 9: Cost of running the application on EC2 with a varying
number of tasks and deadlines. The black line represents the cost of
running the application on AWS Lambda, which is constant in our
model.

7. Related Work

Although scientific workflows in clouds have been widely
studied, research focus is typically on IaaS and little re-
lated work concerns serverless or other alternative types
of infrastructures.

An example of using AWS Lambda for analyzing ge-
nomics data comes from the AWS blog [21]. The authors
show how to use R, AWS Lambda and the AWS API gate-
way to process a large number of tasks. Their use case is
to compute some statistics for every gene in the genome,
which gives about 20,000 tasks in an embarrassingly paral-
lel problem. This work is similar to ours, but our approach
is more general, since we show how to implement generic
support for scientific workflows.

A detailed performance and cost comparison of tra-
ditional clouds with microservices and the AWS Lambda
serverless architecture is presented in [22]. An enterprise
application was benchmarked and results show that server-
less infrastructures can introduce significant savings with-
out impacting performance. Similarly, in [4] the authors
discuss the advantages of using cloud services and AWS
Lambda for systems that require higher resilience. They
show how serverless infrastructures can reduce costs in
comparison to traditional TaaS resources and the spot mar-

ket. An interesting discussion of serverless and cloud event
programming paradigms is given in [23], where the case
studies are blogging and media management application.
Although these use cases are different from our scientific
scenario, we believe that serverless infrastructures offer an
interesting option for scientific workflows.

An interesting general discussion on the economics of
hybrid clouds is presented in [19]. The author shows that
even if when a private cloud is strictly cheaper (per unit)
than public clouds, a hybrid solution can result in a lower
overall cost in the case of variable workload. We expect
that a similar effect can be observed in the case of a hy-
brid solution combining traditional and serverless infras-
tructures for scientific applications which often have a wide
range of granularity of tasks.

Regarding the use of alternative cloud solutions for sci-
entific applications, there is work on evaluation of Google
App Engine for scientific applications [24, 18]. Google App
Engine is a Platform-as-a-Service cloud, designed mostly
for Web applications, but with additional support for pro-
cessing background tasks. App Engine can be used for run-
ning parameter-study high-throughput computing work-
loads, and there are similar task processing time limits as
in the case of serverless infrastructures. The difference is
that the execution environment is more constrained, e.g.
only one application framework is allowed (such as Java or
Python) and there is no support for native code and access
to local disk. For these reasons, we consider cloud func-
tions such as AWS Lambda or Google Cloud Functions as
a more interesting option for scientific applications.

The concept of cloud functions can be considered an
evolution of earlier remote procedure call concepts, such as
GridRPC [25], proposed and standardized for Grid com-
puting. The difference between these solutions and cur-
rent cloud functions is that the latter are supported by
commercial cloud providers with emphasis on ease of use
and development productivity. Moreover, the granularity
of tasks processed by current cloud functions tends to be
finer, so we need to follow the development of these tech-
nologies to further assess their applicability to scientific
workflows.

From another perspective, cloud functions are a nat-
ural evolution of early approaches to executing programs
over the Web interface, as defined in the widely used Com-
mon gateway Interface (CGI) standard [26]. CGI enables
a Web server to run command-line programs in order to re-
turn dynamic Web pages. As such, our usage of cloud func-
tions to execute program binaries is very similar, but of
course the difference is in the way the infrastructure man-
ages scalability and resource provisioning. Current cloud
infrastructures are increasingly elastic, which was not the
case with early Web servers running CGI programs.

A recently developed approach to decentralized work-
flow execution in clouds is represented by Flowbster [27],
which also focuses on serverless infrastructures. We can
expect that more similar solutions will emerge in the near
future.

13

The architectural concepts of scientific workflows are
discussed in the context of component and service archi-
tectures [28]. Cloud functions can be considered a specific
class of services or components, which are stateless and
can be deployed in cloud infrastructures. They do not
impose any rules of composition, giving more freedom to
developers. The most important distinction is that they
are backed by the cloud infrastructure which is responsible
for automatic resource provisioning and scaling.

The architectures of cloud workflow systems are also
discussed in [29]. We believe that such architectures need
to be re-examined as new serverless infrastructures become
more widespread.

Based on the discussion of related work we conclude
that our paper is likely the first attempt to use serverless
clouds for scientific workflows and we expect that more
research in this area will be needed as platforms become
more mature.

8. Summary and future work

In this paper we presented our approach to combining
scientific workflows with the emerging serverless clouds.
We believe that such infrastructures based on the con-
cept of cloud functions, such as AWS Lambda or Google
Cloud Functions, provide an interesting alternative not
only for typical enterprise applications, but also for sci-
entific workflows. We have discussed several options for
designing serverless workflow execution architectures, in-
cluding queue-based, direct executor, hybrid (bridged) and
decentralized ones.

To evaluate the feasibility of our approach we imple-
mented a prototype based on the HyperFlow engine cou-
pled with AWS Lambda and Google Cloud Functions. The
prototype was evaluated with the real-world Montage ap-
plication. Experiments with small-scale workflows consist-
ing of between 43 and 165 tasks confirm that both AWS
Lambda and GCF platforms can be successfully used, and
that this process does not introduce significant delays. We
have to note that the application needs to made portable
in order to facilitate execution on such infrastructures, and
that this may present an issue for more complex scientific
software packages. Our preliminary results confirm good
scalability of the AWS Lambda infrastructure within the
limit of 100 concurrent invocations. We also measured
how the performance of AWS Lambda functions depends
on the allocated memory for our application.

Our paper also presents some implications of serverless
infrastructures for resource management of scientific work-
flows. First, we observe that not all workloads are suitable
due to execution time limits, e.g. 5 minutes in the case of
AWS Lambda — accordingly, the granularity of tasks has
to be taken into account. We discuss how hybrid solu-
tions combining serverless and traditional infrastructures
can help optimize the performance and cost of scientific
workflows. We also suggest that adding more control or
the ability to provide priorities or hints to cloud platforms

could benefit both providers and users in terms of opti-
mizing performance and cost. The cost analysis we pre-
formed suggests that using cloud functions may be more
cost-effective than relying on traditional IaaS clouds, de-
pending on application characteristics such as the number
of tasks and execution deadlines.

Since this is a fairly new topic, we see many options
for future work. Further implementation and evaluation
of various serverless architectures for scientific workflows
is needed, with the decentralized option regarded as the
greatest challenge. A more detailed performance evalua-
tion of different classes of applications on various emerg-
ing infrastructures would also prove useful to better un-
derstand the possibilities and limitations of this approach.
Finally, interesting research can be conducted in the field
of resource management for scientific workflows, in order to
propose strategies and algorithms for optimizing the time
or cost of workflow execution in the emerging serverless
clouds.

Acknowledgments

This work is partially supported by the National Sci-
ence Centre, Poland, grant 2016/21/B/ST6/01497. Ma-
ciej Malawski would like to thank the Google Cloud Func-
tions team for the opportunity to use the alpha version of
their service.

References
(1]
(2]
(3]

Cloud Functions - Serverless Microservices — Google Cloud
Platform, https://cloud.google.com/functions/ (2016).
AWS Lambda - Serverless Compute, https://aws.amazon. com/
lambda/ (2016).

B. Balis, HyperFlow: A model of computation, programming
approach and enactment engine for complex distributed work-
flows, Future Generation Computer Systems 55 (2016) 147-162.
doi:10.1016/j.future.2015.08.015.

URL http://www.sciencedirect.com/science/article/pii/
S0167739X15002770

B. Wagner, A. Sood, Economics of Resilient Cloud Services,
in: 1st IEEE International Workshop on Cyber Resilience Eco-
nomics, 2016. arXiv:1607.08508.

URL http://arxiv.org/abs/1607.08508

M. Malawski, Towards serverless execution of scientific work-
flows — HyperFlow case study, in: WORKS 2016 Workshop,
Workflows in Support of Large-Scale Science, in conjunction
with SC16 Conference, CEUR-WS.org, Salt Lake City, Utah,
USA, 2016.
IronFunctions
functions (2017).

OpenStack Picasso Functions as a Service, https://github.
com/openstack/picasso (2017).

J. Zhao, J. M. Gomez-Perez, K. Belhajjame, G. Klyne,
E. Garcia-Cuesta, A. Garrido, K. Hettne, M. Roos,
D. De Roure, C. Goble, Why workflows breakunderstanding
and combating decay in taverna workflows, in: E-Science (e-
Science), 2012 IEEE 8th International Conference on, IEEE,
2012, pp. 1-9.

P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Ne-
nadic, I. Dunlop, A. Williams, T. Oinn, C. Goble, Taverna,
reloaded, in: International conference on scientific and statisti-
cal database management, Springer, 2010, pp. 471-481.

(5]

[6]
(7]

Iron.io, https://github.com/iron-io/

14

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P.
Berman, P. Maechling, Data Sharing Options for Scientific
Workflows on Amazon EC2, in: SC ’10 Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, IEEE
Computer Society, 2010, pp. 1-9. doi:10.1109/SC.2010.17.
URL http://portal.acm.org/citation.cfm?id=1884693

B. Balis, K. Figiela, K. Jopek, M. Malawski, M. Pawlik, Porting
hpc applications to the cloud: A multi-frontal solver case study,
Journal of Computational Science 18 (2017) 106-116.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny,
K. Wenger, Pegasus, a workflow management system for science
automation, Future Generation Computer Systems 46 (2015)
17-35. doi:10.1016/j.future.2014.10.008.

URL http://wuw.sciencedirect.com/science/article/pii/
S0167739X14002015

D. Thain, T. Tannenbaum, M. Livny, Distributed computing
in practice: the Condor experience, Concurrency and Com-
putation: Practice and Experience 17 (2-4) (2005) 323-356.
doi:doi:10.1002/cpe.938.

URL citeulike-article-id:866823http://dx.doi.org/10.
1002/cpe.938

B. Balis, K. Figiela, M. Malawski, M. Pawlik, M. Bubak, A
Lightweight Approach for Deployment of Scientific Workflows
in Cloud Infrastructures, in: R. Wyrzykowski, E. Deelman,
J. Dongarra, K. Karczewski, J. Kitowski, K. Wiatr (Eds.),
Parallel Processing and Applied Mathematics: 11th Interna-
tional Conference, PPAM 2015, Krakow, Poland, September
6-9, 2015. Revised Selected Papers, Part I, Springer Interna-
tional Publishing, Cham, 2016, pp. 281-290. doi:10.1007/
978-3-319-32149-3_27.

URL http://dx.doi.org/10.1007/978-3-319-32149-3{_}27
M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algo-
rithms for cost-and deadline-constrained provisioning for sci-
entific workflow ensembles in IaaS clouds, Future Generation
Computer Systems 48 (2015) 1-18. doi:10.1016/j.future.
2015.01.004.

M. Mao, M. Humphrey, Auto-scaling to minimize cost and
meet application deadlines in cloud workflows, in: SC 11 Pro-
ceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, ACM,
Seattle, Washington, 2011. doi:10.1145/2063384.2063449.
URL http://portal.acm.org/citation.cfm?id=2063384.
2063449

J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity,
E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. Prince, Oth-
ers, Montage: a grid portal and software toolkit for science-
grade astronomical image mosaicking, International Journal of
Computational Science and Engineering 4 (2) (2009) 73-87.
M. Malawski, M. Kuzniar, P. Wojcik, M. Bubak, How to Use
Google App Engine for Free Computing, IEEE Internet Com-
puting 17 (1) (2013) 50-59. doi:10.1109/MIC.2011.143,

URL http://ieeexplore.ieee.org/xpl/articleDetails. jsp?
tp={&}arnumber=6065729

J. Weinman, Hybrid Cloud Economics, IEEE Cloud Computing
3 (1) (2016) 18—22. doi:10.1109/MCC.2016.27.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7420473

P. Leitner, J. Scheuner, Bursting with Possibilities — An
Empirical Study of Credit-Based Bursting Cloud Instance
Types (dec 2015). doi:10.1109/UCC.2015.39.

URL https://www.computer.org/csdl/proceedings/ucc/
2015/5697/00/5697a227-abs.html

Bryan Liston, Analyzing Genomics Data at Scale using R, AWS
Lambda, and Amazon API Gateway — AWS Compute Blog,
http://tinyurl.com/h7vyboo (2016).

M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca,
M. Verano, R. Casallas, S. Gil, C. Valencia, A. Zambrano,
M. Lang, Infrastructure cost comparison of running web ap-
plications in the cloud using aws lambda and monolithic and

https://cloud.google.com/functions/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
http://www.sciencedirect.com/science/article/pii/S0167739X15002770
http://www.sciencedirect.com/science/article/pii/S0167739X15002770
http://www.sciencedirect.com/science/article/pii/S0167739X15002770
http://dx.doi.org/10.1016/j.future.2015.08.015
http://www.sciencedirect.com/science/article/pii/S0167739X15002770
http://www.sciencedirect.com/science/article/pii/S0167739X15002770
http://arxiv.org/abs/1607.08508
http://arxiv.org/abs/1607.08508
http://arxiv.org/abs/1607.08508
https://github.com/iron-io/functions
https://github.com/iron-io/functions
https://github.com/openstack/picasso
https://github.com/openstack/picasso
http://portal.acm.org/citation.cfm?id=1884693
http://portal.acm.org/citation.cfm?id=1884693
http://dx.doi.org/10.1109/SC.2010.17
http://portal.acm.org/citation.cfm?id=1884693
http://www.sciencedirect.com/science/article/pii/S0167739X14002015
http://www.sciencedirect.com/science/article/pii/S0167739X14002015
http://dx.doi.org/10.1016/j.future.2014.10.008
http://www.sciencedirect.com/science/article/pii/S0167739X14002015
http://www.sciencedirect.com/science/article/pii/S0167739X14002015
http://dx.doi.org/10.1007/978-3-319-32149-3_27
http://dx.doi.org/10.1007/978-3-319-32149-3_27
http://dx.doi.org/10.1016/j.future.2015.01.004
http://dx.doi.org/10.1016/j.future.2015.01.004
http://portal.acm.org/citation.cfm?id=2063384.2063449
http://portal.acm.org/citation.cfm?id=2063384.2063449
http://dx.doi.org/10.1145/2063384.2063449
http://portal.acm.org/citation.cfm?id=2063384.2063449
http://portal.acm.org/citation.cfm?id=2063384.2063449
http://dx.doi.org/10.1109/MIC.2011.143
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7420473
http://dx.doi.org/10.1109/MCC.2016.27
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7420473
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7420473
https://www.computer.org/csdl/proceedings/ucc/2015/5697/00/5697a227-abs.html
https://www.computer.org/csdl/proceedings/ucc/2015/5697/00/5697a227-abs.html
https://www.computer.org/csdl/proceedings/ucc/2015/5697/00/5697a227-abs.html
http://dx.doi.org/10.1109/UCC.2015.39
https://www.computer.org/csdl/proceedings/ucc/2015/5697/00/5697a227-abs.html
https://www.computer.org/csdl/proceedings/ucc/2015/5697/00/5697a227-abs.html
http://tinyurl.com/h7vyboo

23]

24]

27]

(28]

[29]

microservice architectures, in: 2016 16th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2016, pp. 179-182. doi:10.1109/CCGrid.2016.37.

G. McGrath, B. Judson, P. Brenner, J. Short, S. Ennis, Cloud
event programming paradigms: Applications and analysis, in:
EEE Cloud 2016 Conference, 2016.

R. Prodan, M. Sperk, S. Ostermann, Evaluating High-
Performance Computing on Google App Engine, IEEE
Software 29 (2) (2012) 52-58. doi:10.1109/MS.2011.131.
URL http://wuw.computer.org/csdl/mags/so0/2012/02/
ms02012020052.html

K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
H. Casanova, Overview of gridrpc: A remote procedure call
api for grid computing, in: International Workshop on Grid
Computing, Springer, 2002, pp. 274-278.

D. Robinson, K. A. L. Coar, The Common Gateway Interface
(CGI) Version 1.1.

URL https://tools.ietf.org/html/rfc3875

P. Kacsuk, J. Kovacs, Z. Farkas, Flowbster: Dynamic creation of
data pipelines in clouds, in: Digital Infrastructures for Research
event, Krakow, Poland, 28-30 September 2016, 2016.

D. Gannon, Component Architectures and Services: From
Application Construction to Scientific Workflows, Springer
London, London, 2007, pp. 174-189. doi:10.1007/
978-1-84628-757-2_12.

URL http://dx.doi.org/10.1007/978-1-84628-757-2_12

X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen,
Y. Yang, The Design of Cloud Workflow Systems, Springer New
York, New York, NY, 2012. doi:10.1007/978-1-4614-1933-4.

15

http://dx.doi.org/10.1109/CCGrid.2016.37
http://www.computer.org/csdl/mags/so/2012/02/mso2012020052.html
http://www.computer.org/csdl/mags/so/2012/02/mso2012020052.html
http://dx.doi.org/10.1109/MS.2011.131
http://www.computer.org/csdl/mags/so/2012/02/mso2012020052.html
http://www.computer.org/csdl/mags/so/2012/02/mso2012020052.html
https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc3875
http://dx.doi.org/10.1007/978-1-84628-757-2_12
http://dx.doi.org/10.1007/978-1-84628-757-2_12
http://dx.doi.org/10.1007/978-1-84628-757-2_12
http://dx.doi.org/10.1007/978-1-84628-757-2_12
http://dx.doi.org/10.1007/978-1-84628-757-2_12
http://dx.doi.org/10.1007/978-1-4614-1933-4

	Introduction
	Overview of serverless clouds
	Execution of scientific workflows in serverless infrastructures
	Overview of WfMS architectures
	Options for workflow execution in serverless infrastructures
	Traditional model
	Queue model
	Direct executor model
	Bridge model
	Decentralized model

	Summary of options

	Prototype based on HyperFlow
	Architecture and components
	Fault tolerance

	Evaluation using Montage workflow
	Montage workflow and experiment setup
	Feasibility
	Deployment size and portability
	Variability
	Scalability
	Performance depending on function size

	Discussion
	Granularity of tasks
	Hybrid solutions
	Resource management and autoscaling
	Cost analysis example

	Related Work
	Summary and future work

