
Declarative Big Data Analysis for High-Energy
Physics: TOTEM Use Case

Valentina Avati1, Milosz Blaszkiewicz1, Enrico Bocchi2, Luca Canali2, Diogo
Castro2, Javier Cervantes2, Leszek Grzanka1, Enrico Guiraud2, Jan Kaspar2,

Prasanth Kothuri2, Massimo Lamanna2, Maciej Malawski1, Aleksandra
Mnich1, Jakub Moscicki2, Shravan Murali2, Danilo Piparo2, and Enric Tejedor2

1 AGH Universtity of Science and Technology, Krakow, Poland
{grzanka,malawski}@agh.edu.pl

2 CERN, CH-1211 Geneva 23, Switzerland,
{first.last}@cern.ch

Abstract. The High-Energy Physics community faces new data pro-
cessing challenges caused by the expected growth of data resulting from
the upgrade of LHC accelerator. These challenges drive the demand for
exploring new approaches for data analysis. In this paper, we present a
new declarative programming model extending the popular ROOT data
analysis framework, and its distributed processing capability based on
Apache Spark. The developed framework enables high-level operations
on the data, known from other big data toolkits, while preserving com-
patibility with existing HEP data files and software. In our experiments
with a real analysis of TOTEM experiment data, we evaluate the scala-
bility of this approach and its prospects for interactive processing of such
large data sets. Moreover, we show that the analysis code developed with
the new model is portable between a production cluster at CERN and
an external cluster hosted in the Helix Nebula Science Cloud thanks to
the bundle of services of Science Box.

Keywords: High-Energy Physics · distributed data analysis · Apache
Spark · scalability.

1 Introduction

The High-Energy Physics (HEP) community of thousands of researchers around
the world processing massive amounts of data has always been renown for driving
the development of distributed processing tools and infrastructures. Regarding
the tools, the predominant software toolkit for data analysis is ROOT [6]. ROOT
provides all the functionalities required to deal with big data processing, statis-
tical analysis, visualisation and storage. To give an idea of its importance, all
the data collected so far by the Large Hadron Collider (LHC), the particle ac-
celerator hosted at CERN, is stored in ROOT format (around 1 EB). Regarding
the infrastructures, batch processing on clusters and grid technologies are the
typical means of operations on HEP data.



2 V. Avati et al.

On the other hand, recent developments in commercial big data processing
tools and infrastructures, which include toolkits such as Apache Spark [19] and
cloud computing, show the importance of high-level interfaces and user-friendly
APIs to exploit the full potential of new data analysis infrastructures. This be-
comes even more apparent with the upgrades of the LHC experiments foreseen
for Run III [2] and High-Luminosity LHC (HL-LHC) [3] and the consequent
increase in the amount and complexity of data to be collected and processed.
Specifically, the HL-LHC will operate at at least 10 times higher data rate than
the current machine. With such an increased demand for data storage and pro-
cessing, together with the need for more user-friendly analysis tools, investigating
new approaches for big data analysis, become an important research problem.

To address this challenge, we present, in this paper, a new declarative pro-
gramming model of ROOT, called RDataFrame, and its distributed processing
backend based on Apache Spark. The developed framework enables high-level
operations on the data, while preserving performance, scalability and compat-
ibility with existing HEP data files and software. Specifically, while using the
parallel processing of Spark, optimized C++ code runs on the backend, reading
ROOT files directly, and uses the wide set of existing ROOT tools for creating
high quality histograms, plots and statistical analysis calculations.

In order to evaluate the developed framework, we present our experience
with porting a real production analysis of 4.7 TB data from the TOTEM [8]
experiment at LHC. With dedicated experiments on the Helix Nebula Cloud and
a production Spark cluster at CERN, we show the (1) correctness of the results,
(2) scalability of this approach, (3) prospects for interactivity with the use of
ScienceBox [7], and (4) portability of the high-level code across infrastructures.

2 Related work

Apache Spark [19] is probably the most popular, open-source framework for dis-
tributed analysis on clusters, providing scalability and fault tolerance capacity.
Its Directed Acyclic Graph (DAG) and task schedulers features allow for the
deployment of data transformation operations such as filtering and reductions
in a scalable way on large clusters. In this work, we leverage these features to
parallelize and scale ROOT jobs across a cluster.

Several approaches to usage of big data tools in HEP have been proposed.
The main challenges come from the fact that ROOT is based on C++ and relies
heavily on its native objects for data serialization into its specific data format,
while tools such as Spark are Java based.

One of the approaches [18] is thus to transform the ROOT input data to
HDF5 format before porting the analysis code from ROOT C++ to Spark oper-
ations. This has the advantage of allowing usage of standard HDF5 libraries and
common Spark operations. Limitations come from the fact that data need to
be converted first, and then stored for processing, however our approach allows
unmodified input ROOT files to be used.



Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 3

Fig. 1. Layout of a columnar ROOT dataset.

A different approach consists of reading ROOT files into the native Spark
structures. It can be done using the Spark-Root connector developed by the
CMS Big Data project [10]. This approach requires data processing jobs to be
written using native Spark Dataframe APIs, which has the advantage of be-
ing compatible with popular big data toolkits, at the cost of the effort needed
to re-implement all the code in a new programming language. Moreover, per-
formance overheads of the code running in Java Virtual Machine may become
non-negligible in comparison to direct usage of C++ as we propose.

In addition to Java-based frameworks, other toolkits such as Python’s Dask
[1] could be used. The framework allows running the same analysis at the local
machine as well as at the cluster with minimal changes to the code. Unfortu-
nately, those benefits come at a certain price. Dask requires the developer to
go very deep into the technical details of the parallelization, adding another
responsibility for the developer, in this case the physicist.

We should also mention here earlier approaches [12] of using Hadoop for im-
plementing HEP data analysis using MapReduce model. Their experience shows
that using HDFS for data storage can reduce network I/O thanks to using data
locality. In our approach, we directly use EOS, a standard storage at CERN,
which does not take advantage of data locality as with HDFS, but still provides
a good scalability.

3 Declarative Data Analysis with ROOT RDataFrame

3.1 From Imperative to Declarative: RDataFrame

A ROOT file can contain multiple properties of every collision event, arranging
them in a columnar format. A typical ROOT dataset is therefore similar to a
table whose column values – the event properties – can vary from floating point
numbers to arbitrarily complex objects and nested structures (Fig. 1).

Traditionally, HEP analysis programs have been based on an loop over a
ROOT dataset, where the properties of an event are read at every iteration and



4 V. Avati et al.

Fig. 2. RDataFrame design integration with the processing of ROOT datasets.

information is aggregated in some way for later analysis (e.g. filling histograms
with some physics quantities). This corresponds to a more imperative program-
ming approach, where users explicitly manage the reading and processing of a
dataset via interfaces offered by ROOT. Such interfaces provide more control
over the whole process but, at the same time, they can make programs more
error-prone, since the user deals with lower-level details in longer programs,
which can hinder their programming productivity.

More recently, ROOT has proposed a new interface for data analysis, called
RDataFrame (formerly known as TDataFrame) [13], whose objective is twofold:

– Providing a high-level interface for data analysis that overcomes the pro-
ductivity issues mentioned above, making it simpler for physicists to express
their analyses, and to focus on physics rather than on implementation.

– Opening the door to runtime optimisations, such as parallelisation, thanks
to a declarative expressing the analysis, stating what to do but not how.

Therefore, in a similar vein to other modern data analysis frameworks such as
Apache Spark’s DataFrames [19] and Python’s data analysis library pandas [15],
RDataFrame exposes a declarative API designed to be easy to use correctly and
hard to use incorrectly. Novel elements introduced by RDataFrame are the choice
of programming language (C++, although it provides a Python interface too),
the integration of just-in-time compilation of user-defined expressions to make
analysis definition concise and a tight integration with the rest of the ROOT.

An RDataFrame program basically expresses a set of operations to be ap-
plied on a dataset. At runtime, the implementation reads from a columnar data
format via a data source, applies the required operations to the data (i.e. selects
rows and/or defines new columns) and produces results (i.e. data reductions like
histograms, new ROOT files, or any other user-defined object). Fig. 2 illustrates
this process, while Fig. 3 shows an example of an RDataFrame program.

3.2 Local Parallelisation

The abstraction provided by the RDataFrame programming model paves the
way for crucial run time optimisations that can potentially lead physicists to
their results faster. Indeed, the future requirements of the LHC, introduced in



Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 5

Fig. 3. Example of a simple RDataFrame application. The first line, which is optional,
enables the implicit parallelisation of the program, as explained in Section 3.2.

Section 1, make it necessary not only to simplify the programming of analyses,
but also to exploit the underlying resources in the most efficient way possible.

User-transparent task-based parallelism has been a goal of RDataFrame since
its inception, as detailed by [13]. A sequential RDataFrame program can be easily
parallelised just by adding one line, as shown in Fig. 3. When the implicit multi-
threading mode is activated, RDataFrame concurrently reads chunks of data
from the source and spreads the work among multiple threads, which will apply
the required operations to their fragment. Moreover, a reduction step to obtain
the final results is also performed under the hood at the end.

3.3 Distributed Parallelisation

This paper presents a new python library built on top of ROOT RDataFrame
that extends its parallelisation scheme, allowing not only local cores but also a
set of distributed resources to be exploited. Moreover, in order to go from local
to distributed, no changes are required to the application, since the library offers
the same API as the RDataFrame Python interface. The extension to C++ will
be investigated in the future.

The modular design of the distributed RDataFrame is presented in Fig. 4,
where the application generates a computation graph that reflects the set of
operations applied on the input dataset. Underneath, multiple backends can be
implemented for either local or distributed execution. Regarding the latter, a
Spark backend has been developed to be able to exploit Spark clusters.

When starting an RDataFrame application, the Spark backend inspects the
metadata of the input dataset to know about its total number of rows (or entries).
This dataset can correspond to one or more ROOT files, which are typically
stored on CERN’s mass storage system, EOS [16]. With the information about
the number of entries and the available resources, the Spark backend creates
logical ranges of entries, which represent the partitioning of the data. After that,
it launches a map-reduce computation where every mapper task will process a
given range of entries. Thus, the mapper code receives the lower and upper
boundaries of its range and uses the ROOT I/O libraries to read the entries of
that particular range (e.g. remotely from EOS). Then, it applies the RDataFrame



6 V. Avati et al.

Fig. 4. Applications that use RDataFrame can run both on local and distributed re-
sources thanks to its multiple backends.

Fig. 5. The Spark backend of RDataFrame launches a map-reduce computation, where
mapper tasks read ranges of entries and apply the computation graph to them, before
a reduce phase aggregates the final results.

computation graph to its entries and generates partial results, which are finally
merged during a reduce phase. This whole process is illustrated in Fig. 5.

It is worth pointing out that, even if the RDataFrame program is written
in Python, most of the computation happens in C++, which is the language in
which RDataFrame is implemented. The Python interface of ROOT just provides
a thin layer on top of its C++ libraries (for I/O, histogramming, etc.).

3.4 Data management

Moreover, our framework does not need any interface between Java and C++
code since the Spark runtime does not manage the input data but instead it is
the ROOT C++ library that reads remotely that data. As a result, no reading
is involved in the Java layer. On this approach, Spark is only used as a task
scheduler: creation of the map-reduce tasks to be run on the remote workers
and the coordination the tasks. At runtime, each worker spawns its own Python
subprocess, which in turn uses C++ code to run the actual processing.

Furthermore, the implementation of RDataFrame has been optimised to be
as efficient as possible when reading the input data in the mapper tasks: only
the entries of the assigned range are considered and only the columns that are
actually used in the RDataFrame computation graph are read and internally
cached.



Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 7

4 TOTEM Analysis Use Case

The physics analysis we used in the evaluation is the analysis of the elastic scat-
tering data gathered by the TOTEM experiment in 2015 during a special LHC
run. The dataset comprises 1153 files totalling 4.7 TB of data in ROOT Ntuple
format, and stores 2.8 Billion events representing proton-proton collisions. The
choice of TOTEM data was in part motivated by the fact that TOTEM is a
relatively small experiment: the test dataset was fully available on EOS (not
distributed on the grid). Moreover, a small collaboration facilitated the direct
interactions between physicists doing analysis, software engineers and students
supporting their work, data administrators granting access rights, and ROOT
team developing RDataFrame, as well as CERN IT team responsible for cloud
and Spark setup.

4.1 Original Analysis

The original analysis was written using the ROOT framework and includes 2
stages: (1) data reduction, and (2) filtering based on physics cuts. It followed a
traditional approach of implementing an imperative processing loop. The first
stage is a simple filtering which rejects a majority of input entries. The remaining
set is subject to more complex computations. The output is a set of one and two
dimensional histograms representing distributions of interesting trends.

4.2 Porting of Analysis to RDataFrame

The conversion from ROOT C++ code to the new RDataFrame interface is
a required preparation step before running the analysis on Spark. Unlike [18],
the input data for this analysis can keep the original format and still be run
on Spark, as the RDataFrame interface delegates every I/O operations to the
ROOT internals. While the original code has to be adapted to the new pro-
gramming paradigm offered by RDataFrame, all operations can be reused since
RDataFrame is part of ROOT. Consequently, all C++ headers, data structures
and custom functions defined by users can be adopted from the original analy-
sis with minimal changes on the new version. As a result, the migration of the
existing analysis to the new interface requires significantly less effort than using
e.g. Scala language (native for Spark) where everything needs to be rewritten.

Dealing with C++ code from Python As stated in Section 3.1, RDataFrame
exposes a Python interface with support for all methods available in C++.
Therefore, every line of the original C++ code can be expressed with an equiva-
lent Python syntax keeping the same functionality. Besides, manipulating C++
code from Python benefits from a simpler and quicker interface while still getting
a level of performance closer to C++ than raw Python. These advantages do not
come for free as all C++ expressions on the Python interface will be just-in-time
compiled to C++, leading to a known overhead which may vary depending on



8 V. Avati et al.

Fig. 6. Dynamic library loading mechanism with ROOT

the use-case. On the other hand, this Python interface lowers the hurdles to run
C++ code on Spark clusters. Libraries and C++ headers defined on the original
code can be reused as shown in Listing 1.1.

1 ROOT.gInterpreter.Declare(’#include "common algorithms.h"’)
2 ...
3 f1 = rdf.Filter("!SkipTime(time)")

Listing 1.1. Equivalent example of Listing 1.2 with RDataFrame

SkipTime is defined in the common algorithms.h which is written in C++.
Before starting the computation, the string !SkipTime(time) is compiled by
the ROOT C++ Interpreter and ready to be called during the execution.

This process can be slightly improved by providing compiled libraries rather
than just headers, thereby saving one step to the interpreter. In this regard,
all headers ought to be modified to keep only structs and function definitions
while real implementations go to a different source file. These two files can be
later compiled into a shared library and injected to Python. Fig. 6 illustrates an
example of this mechanism.

From an imperative to a declarative model Following a declarative pro-
gramming model rapidly reduce the verbosity of the code compared to the im-
perative version where half of the lines are boilerplate. Listings 1.2 and 1.3 show
a simplified example of filling a histogram written in both ways. The first list-
ing requires the creation of temporal variables (rp L 1 N, rp L 2 N, rp L 2 F)
to store the values read from the dataset (lines 9 - 14) using manual memory
assignments. Then, the iteration over all the dataset entries needs to be speci-
fied in form of a for loop. Finally, a histogram, previously created, is filled with
the valid entries, which are filtered by a IsValidEntry function. In contrast,
the RDataFrame version (Listing 1.3) just specifies the required actions rather
than the real implementation, hence it circumvents the necessity of temporal
variables, explicit loops and manual memory assignments.



Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 9

1 // Input data with all events
2 TChain data = new TChain(TotemData);
3

4 // Custom object with Totem data structure
5 rp L 1 N = new TotemDataStructure();
6 rp L 2 N = new TotemDataStructure();
7 rp L 2 F = new TotemDataStructure();
8

9 // Read three columns
10 data−>SetBranchStatus("track rp 5.∗", 1);
11 data−>SetBranchAddress("track rp 5.", &rp L 1 N);
12 ...
13 data−>SetBranchStatus("track rp 25.∗", 1);
14 data−>SetBranchAddress("track rp 25.", &rp L 2 F);
15

16 // Loop over all entries
17 long int ev index = 0;
18 for (; ev index < data−>GetEntries() ; ev index++){
19 // Assigns entry values to corresponding custom objects
20 data−>GetEvent(ev index);
21 if (IsValidEntry(rp L 1 N, rp L 1 N, rp L 2 F...)
22 histogram−>Fill(rp L 1 N);
23 }

Listing 1.2. Reading from file, selection of branches and filtering in the original
analysis

1 rdf = ROOT.ROOT.RDataFrame(TotemData)
2 histo = rdf.Filter(IsValidEntry, {"track rp 5",
3 "track rp 21",
4 "track rp 26"})
5 .Histo1D("track rp 5");

Listing 1.3. Equivalent example of Listing 1.2 with RDataFrame

The original analysis codebase written in ROOT C++ has around 4000 lines
of code. Approximately 60% of this code describes the main process of the anal-
ysis, so-called the event-loop, while the remaining 40% defines data structures,
algorithms and global parameters on headers files.

The code corresponding to the main process was completely rewritten with
the new RDataFrame interface, leading to a 76% reduction of the code length,
applying similar changes to the ones describes in Listings 1.2 and 1.3. The 40%
of the code corresponding to header files can be reused by RDataFrame without
any conversion, since it can be loaded by the ROOT C++ Interpreter and used
from RDataFrame at runtime.

Besides decreasing the amount of code, local executions of the analysis ex-
pressed in RDataFrame Python code on a single core showed that it performs



10 V. Avati et al.

three times faster than the original version. Although it has not been properly
analysed, one possible reason for this difference in performance may be the pres-
ence of inefficiencies on the original code that are repeated on every event loop.
This demonstrates that the fact of using a high-level interface based on Python
does not add any major overhead for this analysis since underneath the real
computation runs on C++.

5 Evaluation – Interactive data analysis in the cloud

The main objective of our evaluation was to verify that the proposed RDataFrame
framework can handle the workload of real physics data analysis. We used the
TOTEM experiment dataset as described in Sec. 4. Our experiments were de-
signed to demonstrate (1) the correctness of obtained results, (2) the scalability
of parallel processing along with the increasing number of cores, (3) the inter-
activity provided by the user interface and the reduced computing times, and
(4) the code portability between clusters located at CERN and on the Open
Telekom Cloud (T-Systems), the latter being provided exclusively for our exper-
iments thanks to the Helix Nebula initiative [11] (referred to as HNSciCloud).

5.1 Science Box software bundle

To achieve portability and interactivity, we used the Science Box software bun-
dle [7]. As described in [4], the main components are:

– EOS [16], the distributed storage system used to host all physics data at
CERN. A dedicated EOS instance hosting a subset of the TOTEM experi-
ment data is deployed on the HNSciCloud.

– SWAN [17], a web-based platform to perform interactive data analysis. It
builds on top of Jupyter notebooks by integrating the ROOT analysis frame-
work and the computational power of Spark clusters.

– A dedicated Spark cluster accessible from the SWAN notebook interface.

– CERNBox [14], the synchronization and sharing service for personal and
scientific files that uses EOS as storage backend.

All the Science Box services run in containers orchestrated by Kubernetes
with the only exception of Spark, which runs on VMs with Cloudera Manager.

5.2 Testbed details

The testbed used for the physics analysis consisted of two independent clusters:

– Analytix, a general purpose Hadoop and Spark cluster located at CERN
that is used as a shared resource for various analytics jobs.

– the Spark cluster deployed on the HNSciCloud.



Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 11

All the performance and scalability experiments were executed on the cluster on
the HNSciCloud. It consists of 57 nodes of 32 cores and 128 GiB each, giving a
total of 1,824 vCPUs and 7296 GiB of memory. The cluster was equipped with
21.5 TiB of storage, out of which 16.4 TiB were available to EOS (the actual
space available is 8.2 TiB due to the replica 2 layout of stored files). Network
connectivity among the different Science Box containers and the Spark cluster
was provided by general purpose 10 Gigabit Ethernet interfaces.

5.3 Correctness

One of the most important requirements for physicists was to make sure that
the analysis re-implemented in RDataFrame produces the same results as the
original one. First, all the output histograms and their main statistics (mean and
standard deviation) have been compared with the help of physicists and ROOT
experts. Second, a set of scripts was developed to automate the comparison of
resulting outputs [9]. These checks confirmed that the results are correct. We
also observed that the way ROOT displays the number of entries in weighted
histograms may be misleading, since it depends on the number of partitions, but
it is a known issue and does not influence the other physics results. For more
details, we refer to the report [5].

5.4 Scalability

The main goal of these experiments was to measure the performance and parallel
scalability of the analysis running on Spark depending on the number of CPU
cores. We conducted multiple experiments in order to identify the bottlenecks
and tune the Spark configuration, e.g. the number of partitions, executors per
node and worker reuse policy. From these experiments it turned out that the
best configuration is to use one Spark executor per node and the number of
partitions data is divided into should be equal to the number of cores allocated.

Here we report on the results of the largest run, when we allocated up to 1470
cores total and we varied the number of partitions, which limited the number
of cores actually used. In order to measure the effect of Python worker restart
policy in Spark, which may affect the performance for larger deployments, we
include two series of data contrasting the results obtained when using a fixed
number of Python workers that do not fork() a process for every task (i.e.,
spark.python.worker.reuse = True) against the ones obtained when forking
(i.e., spark.python.worker.reuse = False).

The results are shown in Fig. 7. As we can see, the policy of reusing workers
gives better results for larger number of cores. The best computing time achieved
was 1m43s at 736 cores, while on 16 cores it was 34m15s and on 1 core 8h15m20.
It results in a best speedup of about 280x compared to single core execution, but
we observe that beyond 800 cores the execution time begins to grow. This shows
that we reached the limits of parallelism for this particular analysis application.
The scalability limits can be attributed to: (a) overheads during start-up time
and work distribution, (b) not ideal load balancing of computing tasks, and



12 V. Avati et al.

100

200

500

1000

1500

2000

16 32 64 128 256 512 1024

Cores

T
im

e 
in

 s
ec

on
ds

Type

Restart

Reuse

20

50

100

200
250

16 32 64 128 256 512 1024

Cores

S
pe

ed
−

up

Type

Restart

Reuse

Fig. 7. Execution time and speedup versus the number of CPU cores used for the two
configuration options of spark.python.worker.reuse.

(c) possible memory leaks in the current implementation of the framework. We
expect that two former issues may become less pronounced when dealing with
larger data sets, while the latter will be investigated in further development.

5.5 Interactivity

One of the challenges we addressed is to examine whether it is possible to perform
an interactive data analysis of the full 4.7 TB dataset at a large scale. We consider
two relevant aspects: (1) the provisioning of user interfaces to run code and
visualize the results interactively, and (2) the reduction of the computing time
to consider the waiting time acceptable. According to the collected results, we
argue that we have shown interactivity in both aspects. (1) was achieved by using
the SWAN interface so that the whole analysis was implemented and executed
via Jupyter notebook (see repo: [9]). SWAN together with ScienceBox builds on
top of Jupyter, providing such additional features as notebook sharing between
users of CERNBox, integration with Spark provides interactive monitoring of
job progress directly in the notebook, and direct access to CERN resources
(Spark clusters, EOS). (2) was achieved by reducing the computing time below
2 minutes, as discussed in Sec. 5.4. While interactivity is not simple to quantify,
we are convinced that our approach is a big step towards interactivity compared
to traditional batch processing, which takes hours or even days and requires the
use of multiple command-line tools and intermediate copies of data.

5.6 Portability

Implementing the analysis in the RDataFrame model and the components de-
scribed in Sec. 5.1 allowed us to achieve transparent portability of the code



Declarative Big Data Analysis for High-Energy Physics: TOTEM Use Case 13

across two infrastructures, namely the Analytix cluster at CERN and the Spark
cluster at HNSciCloud. In particular, the whole dataset was replicated on the
EOS instance at HN with the same directory structure, so that the same paths
to data files could be used in both clusters. Next, the same version of SWAN was
deployed on both clusters and local files could be synchronized via CERNBox.
Thanks to this setup, the same Jupyter Notebook [9] could be executed on both
clusters. We emphasize that our solution is not specific to the HNSciCloud but
it can be used on any public cloud infrastructures or private OpenStack clouds.
Specifically, services provided through Science Box can be deployed on any Ku-
bernetes cluster or Kubernetes-based container orchestration engine, while the
Spark cluster can be deployed on commodity virtual machines.

6 Conclusions

In this paper, we presented recent developments in the data analysis frame-
works for HEP community. The declarative RDataFrame extension to the pop-
ular ROOT toolkit allowed us to transparently parallelize the data analysis pro-
cess using Apache Spark, while still preserving compatibility with the existing
ecosystem of tools. Moreover, by the usage of Science Box Tools we were able to
perform the whole analysis interactively with modern Web-based notebooks.

We consider the results of our evaluation very promising to the HEP com-
munity planning their data analysis for the future experiments expecting higher
data volumes. We have shown that the framework works correctly on a real
analysis of 4.7 TB of data from the TOTEM experiment, and that thanks to
distributed processing we can reduce the computing time to less than 2 minutes.
The analysis we used for evaluation was not simplified by any means, and we
can consider it as representative for typical data processing in HEP. Other, more
complex analysis programs sometimes use external numerical libraries (e.g. for
integration, approximation, etc.), but as they are available for use with Python
or C++, we foresee no major issues with their integration in our framework.

Our results are important also to other scientific or commercial data analysis
applications. We have shown that it is possible to combine efficient widespread
High-Energy Physics C++ libraries with a Java- and Python-based Apache
Spark platform. Moreover, a combination of open source tools that comprise the
Science Box environment can be dynamically deployed in an external cloud, pro-
viding additional resources for similar big data science and engineering projects.

Future work includes studies on performance with the larger data sets or the
multi-user and multi-application workloads, including comparisons with other
solutions described in Sec. 2. We also plan to investigate other emerging frame-
works and infrastructures, such as serverless or containerized clouds.

Acknowledgments: This work was supported in part by the Polish Ministry
of Science and Higher Education, grant DIR/WK/2018/13.



14 V. Avati et al.

References

1. Python Dask. http://docs.dask.org/en/latest/why.html
2. Alves, Antonio Augusto, J., et al.: A Roadmap for HEP Software and Computing

R&D for the 2020s. Tech. Rep. HSF-CWP-2017-001 (Dec 2017), http://cds.cern.
ch/record/2298968

3. Apollinari, G., Bjar Alonso, I., Brning, O., Fessia, P., Lamont, M., Rossi, L.,
Tavian, L.: High-Luminosity Large Hadron Collider (HL-LHC): Technical De-
sign Report V. 0.1. CERN Yellow Reports: Monographs, CERN, Geneva (2017),
https://cds.cern.ch/record/2284929

4. Avati, V., et al.: Big data tools and cloud services for high energy physics analysis
in TOTEM experiment. In: 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion, Zurich, Switzerland, December 17-20, 2018.
pp. 5–6 (2018), https://doi.org/10.1109/UCC-Companion.2018.00018

5. Blaszkiewicz, M., Mnich, A.: Interactive data analysis of data from high energy
physics experiments using Apache Spark. Tech. rep. (2019), http://cds.cern.ch/
record/2655457, BSc Thesis Presented 2019

6. CERN: ROOT a data analysis framework (2018), https://root.cern.ch
7. CERN: Science Box (2018), https://sciencebox.web.cern.ch
8. CERN: The TOTEM Experiment (2018), https://totem.web.cern.ch
9. Cervantes, J.: Rdataframe-totem repository (2018), https://github.com/

JavierCVilla/RDataFrame-Totem/
10. Cremonesi, M., et al.: Using big data technologies for hep analy-

sis, https://indico.cern.ch/event/587955/contributions/2937521/

attachments/1684310/2707721/chep_bigdata.pdf
11. Gasthuber, M., Meinhard, H., Jones, R.: HNSciCloud - Overview and technical

challenges. J. Phys. : Conf. Ser. 898(5), 052040. 5 p (2017), http://cds.cern.ch/
record/2297173

12. Glaser, F., Neukirchen, H., Rings, T., Grabowski, J.: Using mapreduce for
high energy physics data analysis. In: 2013 IEEE 16th International Confer-
ence on Computational Science and Engineering. pp. 1271–1278 (Dec 2013).
https://doi.org/10.1109/CSE.2013.189

13. Guiraud, E., Naumann, A., Piparo, D.: TDataFrame: functional chains for ROOT
data analyses (Jan 2017), https://doi.org/10.5281/zenodo.260230

14. Mascetti, L., Labrador, H.G., Lamanna, M., Moscicki, J., Peters, A.: CERNBox +
EOS: end-user storage for science. J. Phys.: Conf. Ser. 664(6), 062037. 6 p (2015)

15. McKinney, W., et al.: Data structures for statistical computing in python. In: Proc.
of the 9th Python in Science Conference. vol. 445, pp. 51–56. Austin, TX (2010)

16. Peters, A., Sindrilaru, E., Adde, G.: EOS as the present and future solution for
data storage at CERN. J. Phys.: Conf. Ser. 664(4), 042042. 7 p (2015), http:

//cds.cern.ch/record/2134573
17. Piparo, D., Tejedor, E., Mato, P., Mascetti, L., Moscicki, J., Lamanna, M.: SWAN:

a Service for Interactive Analysis in the Cloud. Future Gener. Comput. Syst.
78(CERN-OPEN-2016-005), 1071–1078. 17 p (Jun 2016), http://cds.cern.ch/
record/2158559

18. Sehrish, S., Kowalkowski, J., Paterno, M.: Spark and HPC for High Energy Physics
Data Analyses. In: Proceedings, 31st IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW): Orlando, Florida, USA, May 29-
June 2, 2017. pp. 1048–1057 (2017). https://doi.org/10.1109/IPDPSW.2017.112

19. The Apache Software Foundation: Apache Spark (2018), https://spark.apache.
org/


