

A virtual laboratory for decision support in viral disease treatment

A Security Infrastructure for **MOCCA Component Environment**

http://virolab.cyfronet.pl

1. Objective

Concept and development of a new security system for H2O and MOCCA

2. Target environment

- H2O
 - Middleware platform for distributed computing
 - Providers setup H2O kernel (container)
 - Allowed parties can deploy pluglets (components)

MOCCA

- Distributed, CCA-compliant component framework
- Build on top of H2O, uses its security mechanisms

4. Concept and implementation

- H2O-applicable authenticator
 - based on PKI and X.509
 - providing delegation based on proxy certificates
- · Compliant with GSI
- Single Sign-On and delegation using proxy certificates
- Widely deployed on production infrastructures (EGEE)

3. Authentication in H2O

- Extensible, pluggable architecture
 - Tunneled
 - Chain of authenticators
 - Based on message exchange
 - Similar to Pluggable Authentication Modules
 - Returns Subject object for JAAS authorization

Only basic Password Authenticator by default

- Low level of security
- Simple to intercept
- Not applicable for SSO and delegation
- Hardly possible to manage validity lifetime
- Careless users...

Authentication steps:

- Identity introduction with (proxy) certificate
 - Kernel verifies validity and checks if the issuing CA is trusted
- Identity confirmation simple user challenge-response algorithm:
 - Kernel encrypts a nonce and sends it to the client
 - Client decrypts and signs the nonce and sends back to the kernel
- Credential delegation:

5. Performance

- Authenticators comparison
- SSL/TLS and server authentication overhead

- Risk analysis
- How much security are we ready we loose?
- How much performance can we gain?

Authors

References

Michał Dyrda (1), Maciej Malawski (1), Syed Naqvi (3), Marian Bubak (1,2)

- (1) Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Kraków, Poland
- (2) Academic Computer Center CYFRONET, ul. Nawojki 11, 30-950 Kraków, Poland
 - (3) CETIC, Rue des Freres Wright 29/3, B-6041 Charleroi, Belgium

Dawid Kurzyniec, Tomasz Wrzosek, Dominik Drzewiecki, and Vaidy Sunderam: Towards Self-Organizing Distributed Computing Frameworks: The H2O Approach. Parallel Processing Lett., 13(2):273-290, 2003.

Maciej Malawski, Dawid Kurzyniec, Vaidy Sunderam: MOCCA - Towards a Distributed CCA Framework for Metacomputing, IPDPS 2005 Michał Dyrda. Security in Component Grid Systems. Master's thesis, AGH University of Science and Technology, Krakow, Poland, 2008.

ViroLab EU-IST-027446

Coordinator: Prof. P.M.A. Sloot Universiteit van Amsterdam www.virolab.org

