This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
research_group:publications [2023/04/16 23:28] abrodzicki |
research_group:publications [2023/12/27 22:09] (current) macal |
||
---|---|---|---|
Line 8: | Line 8: | ||
* [[https://bpp.agh.edu.pl/autor/piekarski-michal-43242|Michał Piekarski]] | * [[https://bpp.agh.edu.pl/autor/piekarski-michal-43242|Michał Piekarski]] | ||
- | MVG Group IF: 25.7\\ | + | MVG Group IF: 25.7\\ FIXME zaktualizować |
+ | |||
+ | ===== 2023 ===== | ||
+ | * **Aleksandrowicz M.** and **Jaworek-Korjakowska J.**: //Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments//, Journal of Artificial Intelligence and Soft Computing Research, 2023, **IF 2,8, 140 pkt**, [[https://doi.org/10.2478/jaiscr-2024-0003|10.2478/jaiscr-2024-0003]], [[https://github.com/macmacal/drl_generalization_metrics| GitHub repo]]. | ||
===== 2022 ===== | ===== 2022 ===== | ||
- | * Cassidy B., Kendrick C., **Brodzicki A.**, **Jaworek-Korjakowska J.**, Hoon Yap M.: Analysis of the ISIC image datasets: usage, benchmarks and recommendations, Medical Image Analysis, 2022, IF 8.545, 200 pkt | + | * Cassidy B., Kendrick C., **Brodzicki A.**, **Jaworek-Korjakowska J.**, Hoon Yap M.: Analysis of the ISIC image datasets: usage, benchmarks and recommendations, Medical Image Analysis, 2022, **IF 8.545, 200 pkt** |
- | * Wójcicka A., Walusiak Ł., Mroczka K., Jaworek-Korjakowska J., Oprzędkiewicz K., Wróbel Z.: The object segmentation from the microstructure of a FSW dissimilar weld, Materials, 2022, IF 3,748, 140 | + | * **Wójcicka A.**, Walusiak Ł., Mroczka K., **Jaworek-Korjakowska J.**, Oprzędkiewicz K., Wróbel Z.: The object segmentation from the microstructure of a FSW dissimilar weld, Materials, 2022, **IF 3,748, 140 pkt** |
- | * Brodzicki A., Kucharski D., Piekarski M., Kostuch A., Jaworek-Korjakowska J.: Deep neural network interpretability methods for supervised and unsupervised problems, PP-RAI'2022: proceedings of the 3rd Polish conference on Artificial intelligence, 2022 | + | * **Brodzicki A.**, **Kucharski D.**, **Piekarski M.**, **Kostuch A.**, **Jaworek-Korjakowska J.**: Deep neural network interpretability methods for supervised and unsupervised problems, PP-RAI'2022: proceedings of the 3rd Polish conference on Artificial intelligence, 2022 |
* Gorgoń M., et al.: Systemy wizyjne w zastosowaniach przemysłowych, Nauka – technika – technologia : seria wydawnicza AGH, 2022 | * Gorgoń M., et al.: Systemy wizyjne w zastosowaniach przemysłowych, Nauka – technika – technologia : seria wydawnicza AGH, 2022 | ||
- | * Piekarski M.: Deep Neural Network for Beam Profile Classification in Synchrotron, International Beam Instrumentation Conference, 2022 | + | * **Piekarski M.**: Deep Neural Network for Beam Profile Classification in Synchrotron, International Beam Instrumentation Conference, 2022 |
- | * Kucharski D., Kostuch A., Brodzicki A., Noworolnik F., Jaworek-Korjakowska J.: DFU-Ens: End-to-End Diabetic Foot Ulcer Segmentation Framework with Vision Transformer Based Detection, Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2022 | + | * **Kucharski D.**, **Kostuch A.**, **Brodzicki A.**, **Noworolnik F.**, **Jaworek-Korjakowska J.**: DFU-Ens: End-to-End Diabetic Foot Ulcer Segmentation Framework with Vision Transformer Based Detection, Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2022 |
- | * Jaworek-Korjakowska, J., Wójcicka A., Kucharski D., Brodzicki A., Kendrick C., Cassidy B., Hoon Yap M.: Skin_Hair dataset: Setting the benchmark for effective hair inpainting methods for improving the image quality of dermoscopic images, Proceedings of the 2022 European Conference on Computer Vision (ECCV), 2022 | + | * **Jaworek-Korjakowska, J.**, **Wójcicka A.**, **Kucharski D.**, **Brodzicki A.**, Kendrick C., Cassidy B., Hoon Yap M.: Skin_Hair dataset: Setting the benchmark for effective hair inpainting methods for improving the image quality of dermoscopic images, Proceedings of the 2022 European Conference on Computer Vision (ECCV), 2022 |