

QForm3D

Advanced software for forging simulation

The goals of forging technology :

- •Make the parts of the required shape
- Provide required properties
- •Do it in time and at the lowest cost

Forging process is a very complicated phenomenon,

Thus even the forger with the years of experience ...

still require expensive forging trials

for each new part to develope

The help can be found

in use of advanced simulation tool like QForm3D

QForm3D is created for forges And to be used by the forgers

QForm3D is

Precise,
Affordable
Very simple in use

Case study: Large 6 Cylinder Crankshaft

Simulation Inputs:

ProEngineer 6 Cylinder Crankshaft Stepped Dies Models Billet 133mm Square, 1040mm Long Micro Alloy Steel at 1280°C 9000T Press

The task - to predict

Press Capability Die Filling Material Flow Forging Defects

QUANTOR

QForm window ready for new problem

Case Action View Graphs Tracked points	Measurement Options Utilities Help	
●신 눈눈눈 없이 요 여러!		
1	1 10 110 110 120 120 140	
	9	
yback 100 40 1- 10 10- 301		
	84	
ilation O O	R ²	
writer Pecord		
size [s] Residion		
Nore 2		
\frown		
New operation		
	8	
	8	
	8-	
	8	
	8	
	4	
parameter Apply Cancel		
4.1		

Data preparation Wizard

Simulation: Action 1 – Mould

Simulation: Action 2 – Finish

Accurately Predicted Final Flash Thickness and Flash Widths

The temperature distribution

Look inside: the flow lines create the internal structure

One layer of the flow lines

The evolution of the grain flow in certain location

The lap formed on the web

What is required for the simulation

Material & Lubricant: comprehensive Database

QForm database contains flow stress for more than 430 steels, 30 copper alloys, 50 aluminum alloys, 20 titanium alloys, many nickel based alloys etc.

Next >>

Every user receives the

customized material and lubricant database

according to his specification

What is required for the simulation

Simulation can be performed for any type of equipment

For every type of equipment the simulation gives you vital information:

Critical load estimation

Optimal process parameter for safe use of press

Required number of blows

Energy and load requirements

What is required for the simulation

Quadratic approximation provides accurate solution for 2D

Linear (left) and quadratic (right) FE approximation of the surface with the same number of nodes

Accurate representation of the 3D source geometry

How simulation runs?

QForm makes optimal meshes in 2D and 3D without user`s interference

The models with up to 100 000 nodes runs on a PC with single, dual or two double core processors in parallel mode

Practice of forging simulation

Hot closed die forging: the project, the cases, the actions

Hot closed die forging: the project, the cases, the actions

Hot closed die forging: the project, the cases, the actions

Hot closed die forging: quick feedback

The project, the cases, the actions

Splitting the project for parallel simulation on several PCs in a network

Simulation of preforming operations

QUANTOR

Programmed simulation of cogging operation in a single action

		Process parame	tore		-2
		inal distance betwe in a point determ in a point with co	een tools 3 ined automatica ordinate	0.000 ,	חחר
Problem	Geometry Inte	ermediate operation Process p	s Equipment arameters	Process paramete	rs <u>// -</u>
	tistroke	Final distance in a point d in a point w Maximum num	between tools etermined autor ith coordinate ber of blows	30.000 natically	m
✓ Mul Blow	tistroke	Final distance Final distance Fin a point of Maximum num Cooling on tool [s]	between tools etermined autor ith coordinate ber of blows Shift fmm]	30.000 natically 7 Rotation angle	m
I Mul Blow 1	tistroke Cooling in air [s]	Final distance in a point of Maximum num Cooling on tool [s] 2	between tools etermined autor ith coordinate ber of blows Shift [mm]	30.000 natically 7 ÷ Rotation angle [deg.]	m
Mul Blow	tistroke Cooling in air [s] 3	Final distance in a point of in a point of Maximum num Cooling on tool [s] 2 1	between tools etermined autor ith coordinate ber of blows Shift [mm] 0 0	30.000 natically 7 Rotation angle [deg.] 90	m
Image: Second s	tistroke Cooling in air [s] 3 2 2	Final distance in a point of Maximum num Cooling on tool [s] 2 1 1	between tools etermined autor ith coordinate ber of blows Shift [mm] 0 0 -40	30.000 natically 7 8 Rotation angle (deg.) 90 0	m
Image: Constraint of the second se	tistroke Cooling in air [s] 2 2 2 2	Final distance in a point of Maximum num Cooling on tool [s] 2 1 1 1 1	between tools etermined autor ith coordinate ber of blows Shift [mm] 0 0 -40 0	30.000 natically 7 <u>÷</u> Rotation angle [deg.] 0 90 0 90	m
Image: Constraint of the second se	tistroke Cooling in air [s] 2 2 2 2 2 2	Final distance Final distance in a point of Maximum num Cooling on tool [s] 2 1 1 1 1 1 1	between tools etermined autor ith coordinate ber of blows Shift [mm] 0 -0 -40 -40 -40	30.000 matically 7 ÷ Rotation angle [deg.] 0 90 0 90 0 90 0 90	m

Simulation of reducer rolling

Simulation of reducer rolling

Simulation of electric upsetting

Specific data required for electric upsetting simulation

Iectric upsetting Process Problem Geometry Equipment Process Problem Geometry Equipment Process Process Forging equipment	
Equipment and setting Tool 1 Tool 2 Tool 3 Electric parameters Comment	Electric upsetting Process Problem Geometry Equipment Process parameters Workpiece parar Forging equipment Equipment and setting Tool 1 Tool 2 Tool 3 Electric parameters Comment Storage_EIL Tool type: Load Load
Image: State of water of w	Drive direction: Down Nominal velocity[m/s]: 0.02 Number of points 2 Time Load [s] [MN] 0 0.26 70 0.26 0 0.26 70 0.26 70 0.26 70 0.26 70 0.26 0 70 0 0.26 70 0.26 70 0.26 70 0.26 70 0.26 70 0.26 70 0.26 70 0.26 70 0.26

Electric upsetting simulation

Forging of the shaft in a screw press

Closed die Forging

 Piercing the holes and trimming the flash by clipping contour

Control of the dimensions after piercing

- Piercing the holes and trimming the flash
- Cooling in air
- Cooling in tool
- Rotation and gravitational positioning

- Piercing the holes and trimming the flash
- Cooling in air
- Cooling in tool
- Rotation and gravitational positioning

- Piercing the holes and trimming the flash
- Cooling in air
- Cooling in tool
- Rotation and gravitational positioning

What benefits do we get from simulation?

Solving technological problems

1. Die filling analysis

- 2. Saving the material
- **3. Prediction of material flow defects**
- 4. 3-tools-simulation
- 5. Simulation of multi-stroke forging
- 6. Positioning and gravity

Forging simulation (the die filling is shown)

Forging simulation (the die filling is shown)

Saving the material

1. Filling the dies at lower load

2. Saving the material

- **3. Prediction of material flow defects**
- 4. 3-tools-simulation
- 5. Simulation of multi-stroke forging
- 6. Positioning and gravity

Initial preform shape

Initial preform shape

Optimized preform shape

Optimized preform shape

Material saving: billet weight reduced by 12%

Distance 35 mm in front of center line in 3rd pass

Crankshaft forging simulation (the first blow, temperature shown)

The second forging blow (strain distribution)

The lap formation in second forging blow

Part 2. Solving technological problems using **QFORM3D**

- **1.** Filling the dies at lower load
- **2.** Saving the material

3. Prediction of material flow defects

- 4. 3-tools-simulation
- 5. Simulation of multi-stroke forging
- 6. Positioning and gravity

Prediction of material flow defects

Identification of the laps in simulation in QForm2D

Identification of the laps in simulation in QForm3D

Finding the solution by means of simulation

Finding the solution by means of simulation

Precise shape prediction and location of possible defects

Prediction of the flow-through defect by means of simulation in QForm2D

Prediction of the flow-through defect by means of simulation in QForm2D

Prediction of the flow-through defect by means of simulation in QForm2D

Initial die design

Modified die design

Flow-through defect

The forged part without flow-through defect

Prediction of the flow-through defect by means of simulation in 3D

Instability in forging

Multiple tools sets

Conventional forging with flash

Flashless forging

Solving technological problems using **QFORM3D**

- **1.** Filling the dies at lower load
- 2. Saving the material
- 3. Prediction of material flow defects
- 4. 3-tools-simulation
- 5. Positioning and gravity

Third blow - closed die - defect is detected

4th blow – closed die – defect is still in the critical area

Increasing the die life

Die stress in solid die block

Gear forging simulation

QForm v.4.1.6 QuantorForm

 Simulated in Half Section on QForm

Die crack

- 23 Toothed Gear with Finish-Forged Teeth for Combined Harvester PTO Application
- Dies Cracking After Around 400 Parts
- Improvement Needed for Production Quantities

Die stress in solid die block

Maximum Stress • Too!1 OFotmy 415 **Shown Where Dies** Nean stress 183.8 Guardor?terrs two ctra Actor 1 Were Cracking MPa: 1100 1000 900 800 700 600 500 400 300 . 200 100 ŧ. -100 -200 -300 400 Ман 11176 Min -458.B

Split die instead of solid die block

- "Inserted" Die Now Machined
- To Trial on Next Production Batch

- Potential Improvement in Die Life: At Least 150%
- Potential Cost Saving: ~£2000 (approx 4 dies)

Complex die assemblies

Effective stress distribution in assembled die

Shrink ring for the dies in 3D

The effect of shrink fitting for the dies

Effective stress distribution with free lateral surface

Effective stress distribution with shrink fitting

Die wear prediction

Die wear prediction

Die wear prediction: relative die wear factor distribution

Comparing the results of the predicted die wear distribution with the experiment

The conditions of the experiment: round bar 13mm, steel AISI 1030, temperature 1100-1150 degrees C

The experimental results of the die wear evaluation are obtained by Dr. Jan Cermak, Czech Technical University in Prague

The experimental evaluation of the abrasive wear

The maximum depth of the die wear (mm) versus the number of the forged parts (the upper die)

Abrasive wear distribution *10⁻¹ mm of the upper die

Abrasive wear distribution *10⁻¹ mm of the lower die

3

Initial technology of cold forging of the bolt

Initial technology of cold forging of the bolt

Intensive sliding of forged material under the upper die at the 3rd action of the initial technology

14

Relative die wear maximum values

2.8

maximum die wear w_r=20.78 exactly on the edge of the upper die;

4

Modified technology of cold forging of the bolt

Velocity vectors and the effective strain

Filling of the die cavity for modified technology (b) with equal sliding of the material along upper and lower dies.

6

Modified technology of cold forging of the bolt

Maximum relative die wear $w_r = 9.90$ on the lower die

Elastic deflection of the dies and its compensation

the stages of forging **Deflection of the die (magnified)**

Elastic deflection of the dies and its compensation

Graphs of upper die surface deflection along the radius of the forged part for initial and profiled die shape

Elastic deflection of the dies and its compensation

Export of deformed and profiled shapes of the tools

Compensation of the elastic deformation of the dies

The blocker die surface deflection (magnification factor 100)

QForm is very economically efficient

•It is the perfect tool for die designer and forging engineer that they use in their everyday practice

•It saves material, tools, energy

•The development is fast and effective, no forging trials required for new jobs

•Then using QForm the forging skill is significantly improving

QUANTOR