Fast and smooth simulation
of space-time problems

Day 3’

Maclej Paszynski

g Computer Science, AGH University
u‘Sulnu-ndTldmubny Krakow, Poland
Desde 24 al 28 de Julio, 2017

Department of Computer Science
AGH University of Science and Technology, Krakéw, Poland
home.agh.edu.pl/paszynsk
1/37

Outline

Isogeometric finite element method

Alternating Directions Implicit (ADI) method
Isogeometric L2 projections

Explicit dynamics

Example 1: Heat transfer

Installation of IGA-ADS solver

Parallel shared memory explicit dynamics
Example 2: Non-linear flow in heterogenous media
Parallel distributed memory explicit dynamics
Example 3: Linear elasticity

Implicit dynamics

Example 4: Implicit heat transfer

Example 5: Pollution problem

Labs with implict dynamics

37

Parallel domain decomposition based explicit dynamics

Parallel version for distributed-memory machines Message Passing

Interface (MPI)
Maciej Wozniak, Marcin to$, Maciej Paszynski, Lisandro Dalcin,

Victor Calo, Parallel Fast Isogeometric Solvers for Explicit Dynamics,

Computing and Informatics 36(2) (2017)

\ N\ L\

%

1,

(1////]/]/
(1]]]//]/
(]1]]/]]/
(/77711717

MMM LRRAA

Figure: Cube of processors. Gathers and scathers RHSs in three faces to
perform three 1D solves with multiple RHS.

3/37

Gather data

Message Passing Interface (MPI)

subroutine Gather
(F, F_out, n, elems, stride, dims, shifts, comm, ierr)

call Linearize(F_out_lin,F_out,n+1,stride)

call mpi_gatherv (F_lin, <—data to send by each processor 1, .., Ny

elems * stride, < size of data assigned to this processor
MPI_DOUBLE_PRECISION, < type of data

F_out_lin, <—data to receive by processor 0 in a row

dims, <size of data from entire row

shifts, < offsets of slices from all processor from a row
MPI_DOUBLE_PRECISION, < type of data to receive

0, COMM, ierr) <—communicator along a row

call Delinearize(F_out_lin,F_out,n+1,stride)

37

Parallel domain decomposition based explicit dynamics

Parallel version for distributed-memory machines (Fortran, MPI)
Maciej Wozniak, Marcin to$, Maciej Paszynski, Lisandro Dalcin,
Victor Calo, Parallel Fast Isogeometric Solvers for Explicit Dynamics,
Computing and Informatics 36(2) (2017)

LRRRRRRN
AN

AR
ARRRRNNY

ByBY BBy - 0 Zi1) (2211) 0 (Zkn binn) [bor1] -+ [b
ByBY ByBY - 0 2112 || 2212 ** | Zki2 bia| | bo1a | <+ | bu
0 0 - BRBR| |zum) 221m) o Ziam b11m) (boim) -+ \bw

Figure: Gather and scatter data into three faces on cube of processors

5/37

Parallel domain decomposition based explicit dynamics

Parallel version for distributed-memory machines (Fortran, MPI)
Maciej Wozniak, Marcin to$, Maciej Paszynski, Lisandro Dalcin,
Victor Calo, Parallel Fast Isogeometric Solvers for Explicit Dynamics,
Computing and Informatics 36(2) (2017)

5
$
4
5
0
$
()

Figure: Gather into OYZ face

0. Integration

la. Gather in every row of processors into OYZ face
1b. Solve N, N, 1D problems with multiple RHS

lc. Scatter results onto cube of processors

1d. Reorder right hand sides

6 /37

Parallel domain decomposition based explicit dynamics

Parallel version for distributed-memory machines (Fortran, MPI)
Maciej Wozniak, Marcin to$, Maciej Paszynski, Lisandro Dalcin,
Victor Calo, Parallel Fast Isogeometric Solvers for Explicit Dynamics,
Computing and Informatics 36(2) (2017)

D

(1771771 /
[17///7//
[/]///]]/]/
(17177 /]]/
(17111117

BBy B/By --- 0 yur)[yain| o (Yiam 21| zi1) - | Zkam
BYBY BBy --- 0 Y121 Y211t Ykem 21| 211l | Zkom
0 0 - B/B/| |y vin o Yiam zinl zon | Zidm

Figure: Gather into OXZ face

37

Parallel domain decomposition based explicit dynamics

Parallel version for distributed-memory machines (Fortran, MPI)
Maciej Wozniak, Marcin to$, Maciej Paszynski, Lisandro Dalcin,
Victor Calo, Parallel Fast Isogeometric Solvers for Explicit Dynamics,
Computing and Informatics 36(2) (2017)

2
oo,
BN
BN
o
o
0
S0
&
=
e
“

meee———
eeweww

3
o

V77777777
-/
A
A
-
=0
X
meeaa—

Figure: Gather and scatter data into three faces on cube of processors

2a. Gather in every row of processors into OXZ face
2b. Solve NN, 1D problem with multiple RHS

2c. Scatter results onto cube of processors

2d. Reorder right hand sides

37

Parallel domain decomposition based explicit dynamics

Parallel version for distributed-memory machines (Fortran, MPI)
Maciej Wozniak, Marcin to$, Maciej Paszynski, Lisandro Dalcin,
Victor Calo, Parallel Fast Isogeometric Solvers for Explicit Dynamics,
Computing and Informatics 36(2) (2017)

BiBf BiB; --- 0 X111 X121t Xim Y yier o Yim
BsBf B3B3 --- 0 X211 | X221 |ttt X2im Yo11| | Y221 Y2im
0 0 - B{BF| [Xku1 | Xk21 ** | Xkim Yk1l | Yk21! | Ykim

Figure: Gather into OXY face

37

Parallel domain decomposition based explicit dynamics

Parallel version for distributed-memory machines (Fortran, MPI)
Maciej Wozniak, Marcin to$, Maciej Paszynski, Lisandro Dalcin,
Victor Calo, Parallel Fast Isogeometric Solvers for Explicit Dynamics,
Computing and Informatics 36(2) (2017)

Q3

V77777777

Figure: Gather and scatter data into three faces on cube of processors

3a. Gather in every row of processors into OXY face
3b. Solve NN, 1D problem with multiple RHS

3c. Scatter results onto cube of processors

3d. Reorder right hand sides

10/37

Parallel domain decomposition based explicit dynamics

We have a mesh of N, x N, x N, elements

There are (px +1)(p, + 1)(p, + 1) basis functions over each element
P23 P2 Nx Ny N;)

CxCyCz

2 2 2
Solution (1D problem multiple RHS) O ((PXC*“’YCY*”ZCZ)(NX"’Y"’Z))

Integration over all elements O(

CxCyCz

Gather O ((CX+Cy+CZ)NXNyNZ

CxCyCz

Reorder O (7NXNyszxpypz>

CxCyCz

Scather O <(CX+CV+CZ)NxNyNZ)

CxCyCz

Assuming
Ny = Ny = N, = N3, pX:py—pz—pr:Cy:Cz:C1/3
we have the following cost (+ p2/3 + 2) teomp + () tcomm

which implies the computational complexity O (pﬁg)

and the communication complexity O(2/3>

11/37

Parallel domain decomposition based explicit dynamics

Numerical experiments LONESTAR Linux cluster

2300

1000 \ i

N

100 \\ experimental total

Time[s]

N

theoretical total \\
20

2 10

3

Figure: Comparison of total experimental and theoretical execution time
for N = 512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.

12 /37

Parallel domain decomposition based explicit dynamics

The integration time is dominating the solution time significantly.

3000

1000 \ |

\\
N experimental integration
100 |- \ i .

Time[s]

I

™~

2 10

3

theoretical integration

10

Figure: Comparison of experimental and theoretical integration time for
N = 512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.

13 /37

Parallel domain decomposition based explicit dynamics

The solution time takes around 1 percent of the total solver time.

experimental solve 2

Time[s]

01

3

Figure: Comparison of experimental and theoretical solution times for
N = 512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.

14 /37

Parallel domain decomposition based explicit dynamics

30
¢ experimental gather 2
10 experimental gather 3 b
theoretical gather 2,3

)
[i
£ o
= theoretical gather 1

0.1 | experimental gather 1

0.03

10

3

Figure: Comparison of experimental and theoretical gather times for
N =512 for p = 3 for different number of processors
3 =23%...,103=8,...,1000.

15 /37

Parallel domain decomposition based explicit dynamics

theoretical scatter

experimental scatter 3

Time[s]

experimental scatter 2

o1 | \]

experimental scatter 1 - ?

0.03

10

3

Figure: Comparison of experimental and theoretical scatter times for

N =512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.

16 /37

Parallel domain decomposition based explicit dynamics

Numerical experiments LONESTAR Linux cluster

5500

1000

N

\ experimental total

N~

theoretical totalk» &
100 \

3 10 12
3

Time[s]

C

Figure: Comparison of total experimental and theoretical execution time
for N = 1024 for p = 3 for different number of processors
c3=23...,103=8,...,1000.

17 /37

Parallel domain decomposition based explicit dynamics

The integration time is dominating the solution time significantly.

6000

1000 \ .

™~

\experimental integration

I~

100 - theoretical integration /'\

70 .
3 10 12
3

Time[s]

C

Figure: Comparison of total experimental and estimated integration time
for N = 1024 for p = 3 for different number of processors
c3=23...,103=8,...,1000.

18 /37

Parallel domain decomposition based explicit dynamics

The solution time takes around 1 percent of the total solver time.

10 gy

experimental solve 3

theoretical solve

Time[s]

3

Figure: Comparison of total experimental and estimated solution times for
N = 1024 for p = 3 for different number of processors
c3=23,...,103=8,...,1000.

19/37

Parallel domain decomposition based explicit dynamics

70
theoretical gather 2,3
experimental gather 2

10
)
£

S i
1
0.15

Figure: Comparison of total experimental and estimated gather times for
N = 1024 for p = 3 for different number of processors
3 =23%...,103=8,...,1000.

20

37

Parallel domain decomposition based explicit dynamics

experimental scatter 2

experimental scatter 3

Time[s]
P
T

0.2

3

Figure: Comparison of total experimental and estimated scatter times for
N = 1024 for p = 3 for different number of processors
3 =23%...,103=8,...,1000.

21/37

Limitations of isogeometric L2 projections

Time step size limited by Courrant-Fredrichs-Levy (CFL) condition
https://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_ condition
LA[‘ + LlyAt < C

Ax Ay — —max
where At is time step size, Ax = Ay = h element size,

Uy, uy magnitude of the field, Cy,ax = 1 for explicit method, so

(ux +uy) « At < h

é 0.0004 5 0.00003 T T T T
3 3
E 0.00035 - E
< % 0000025
2 0.0003 - g
g g
% 0.00025 - E 0.00002
£ £
s oo £ 0000015
g 000015 s g 0.00001
5 oo ot 5 w7 we Us ua 13 M2
£ 0.00005 - e B o0.000005 J / »
é i \/\/\’W e
T e m e om e H e g b e e
Relative errors for the time step Dt — 10~* Rel § " ! Di—105
clative errors for the time step = 2
Figure: Lack of convergence for Figure: Convergence for Dt = 10~
—4 1074 104 .
Dt =10"%1— . 10— and smaller time steps

Click in the middle

23/37

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Click in the middle

24/37

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Integration of the 3D matrix

If we go for implicit method, we need to integrate the matrix

We have a mesh of N, x N, x N, elements

nrdof = (px + 1)(py, + 1)(pz + 1) basis functions on each element
(Px, Py, Pz) denotes the B-splines order in directions x, y and z
ngx = O(px), ngy = O(py), ngz = O(p;) number of Gauss points

(B;fPBJ}':PBi, ’B/X,pB%/"vPBﬁ,P)L2 =
Ja BXx(x) B} p(¥) B (2) B ,(x) Bm.p(y) Bf, ,(2) dxdydz =
Y Jg Bip(x) B} p(v)Bf ,(2) B}, (x) Bm,p(y) Bf, p(2) dxdydz =

ZE Zs:l,ngx;t:lmgy;w:lmgz
WeWe W, B, (xs) BY ,(ve) Bf, p(2w) BfS, (xs) B, p(y2) B7 p(2w)

We construct the element matrices for each element, for all the
basis functions which span over the element, namely
Bfpi=1,px+1, Bj:pj =lp, +1 Bf k=1,p,+1 (trial
functions) and B,/ = 1,px +1, Bmpm =1,p, +1,

B; ,n=1,p; + 1 (test functions).

25 /37

Integration of the 3D matrix

We have a mesh of N, x N, x N, elements
nrdof = (px + 1)(py, + 1)(pz + 1) basis functions on each element
(Px, Py, Pz) denotes the B-splines order in directions x, y and z
ngx = O(px), ngy = O(py), ngz = O(p;) number of Gauss points
e for s =1,ngx // Gauss integration points
e for t=1ngy
° for w=1,ngz
get Gauss point (xs,Vt,zw), weight WsW:W,,
for /=1,px+1 // trial B-splines
for m=1,p, +1
for n=1,p,+1
for j=1,px+1 // test B-splines
for j=1,p,+1
for k=1,p,+1
aggregate
W s B, (x5) B] () Bf, p(xw), Bily (xs) Bim,p(xe) B (%)
px = py = p; = p computational complexity O(p°®), if p=9 it is 10°

26 /37

Sequential integration of the 3D matrix

F=10.d0
do ex = 1,nelemx //Loop through elements
do ey = 1,nelemy
do ez = 1,nelemz

J = Jx(ex)*Jy(ey)*Jz(ez) //element Jacobian
do kx = 1,ngx //Loop through Gauss points
do ky = 1,ngy
do kz = 1,ngz
W = Wx(kx)*Wy(ky)*Wz(kz) //Gauss weight
value = fvalue(Xx(kx,ex),Xy(ky,ey),Xz(kz,ez))
do ax = 0,px //B-splines
do ay = O,py
do az = 0,pz
do bx = 0,px //B-splines
do by = 0,py
do bz = 0,pz
call compute_index(ind,ax,ay,az,ex,ey,ez,nx,ny,nz)
call compute_index(indl,bx,by,bz,ex,ey,ez,nx,ny,nz)
A(ind,ind1) = A(ind,indl) +
NNx(0,ax,kx,ex)*NNy(0,ay,ky,ey) *NNz(0,az,kz ,ez)*

NNx (0,bx,kx,ex) *NNy(0,by,ky,ey) *NNz (0,bz,kz ,ez)*J*Wxvalue

27 /37

Parallel OpenMP integration of the 3D matrix

OpenMP = Open Multi-Processing

!$0MP PARALLEL DO
!$0MP& DEFAULT (SHARED)
!$0MP& FIRSTPRIVATE
(iy,ex,ey,ez,J,kx,ky,kz,W,value,ax,ay,az,bx,by,bz,ind,ind1)
! $0MP& REDUCTION (+:nr_nonzeros)
do iy=1,miy //Now it is 1 loop over elements
call map_indexes(iy,ex,ey,ez)
J = Jx(ex)*Jy(ey)*Jz(ez) //element Jacobian
do kx = 0,ngx //loop through Gauss points
do ky = O,ngy
do kz = O,ngz
W = Wx(kx)*Wy(ky)*Wz(kz) //Gauss weight
value = fvalue(Xx(kx,ex),Xy(ky,ey),Xz(kz,ez))
do ax = 0,px //trail B-splines along X,y,z
do ay = O,py
do az = 0,pz
do bx = 0,px //test B-splines along x,y,z
do by = 0,py
do bz = 0,pz
call compute_index(ind,ax,ay,az,ex,ey,ez,nx,ny,nz)
call compute_index(indl,bx,by,bz,ex,ey,ez,nx,ny,nz)
A(ind,ind1) = A(ind,indl) +
NNx(0,ax,kx,ex) *NNy (0,ay,ky,ey) *NNz(0,az,kz ,ez)*
NNx (0,bx,kx,ex)*NNy (0, by ,ky,ey) *NNz(0,bz,kz ,ez)*J*Wxvalue
!$0OMP END PARALLEL DO

28 /37

Numerical results

Computation time
w
T

6 T T T T T
p=2, Ne=41 —

5 10 15 20 25 30 35

Cores

Figure: Execution time of the parallel integration algorithm, when
increasing number of cores. 3D element with quadratic polynomials

40

29 /37

Numerical results

50 T T T T T
p=3, Ne=42 —

45 g

Computation time

5 10 15 20 25 30 35 40

Cores

Figure: Execution time of the parallel integration algorithm, when
increasing number of cores. 3D element with cubic polynomials

30/37

Numerical results

250 p=4, Ne=43 ——
200
[}
£
c
S 150
8
>
Q.
IS
o
O 100
50
| | | T L e —

5 10 15 20 25 30 35

Cores

Figure: Execution time of the parallel integration algorithm, when
increasing number of cores. 3D element with quartic polynomials

40

31/37

Numerical results

100% T T T T T
p=2, Ne=4] —

90% [~ N
80% [~ N
70% [~ N

60% [~ N

Efficiency

50% [~ N

40% [~ .

30% [~ N

20% [~ =

10% I I I I I I I
5 10 15 20 25 30 35 40

Cores

Figure: Efficiency of the parallel integration algorithm, when increasing
number of cores. 3D element with quadratic polynomials

32/37

Numerical results

100% T T T T T
p=3, Ne=42 —

90% [~ N
80% [~ N
70% [~ N

60% [~ N

Efficiency

50% [~ .

40% [~ N

30% [~ J

20% I I I I I I
5 10 15 20 25 30 35 40

Cores

Figure: Efficiency of the parallel integration algorithm, when increasing
number of cores. 3D element with cubic polynomials

33/37

Numerical results

100% T T T T T
p=4, Ne=43 —

90% [~ .
80% [~ .

70% [~ N

Efficiency

60% [~ .

50% [~ .

40% L L L
5 10 15 20 25 30 35 40

Cores

Figure: Efficiency of the parallel integration algorithm, when increasing
number of cores. 3D element with quartic polynomials

34 /37

Numerical results

8 T T T T T
p=2, Ne=41 =—

7 -

Speedup

| | | |
5 10 15 20 25 30 35 40

Cores

Figure: Speedup of the parallel integration algorithm, when increasing
number of cores. 3D element with quadratic polynomials

35/37

Numerical results

14 T T T T T
p=3, Ne=42 =

12

10 -

Speedup

5 10 15 20 25 30 35 40

Cores

Figure: Speedup of the parallel integration algorithm, when increasing
number of cores. 3D element with cubic polynomials

36 /37

Numerical results

18 T T T T T
p=4, Ne=43 —

16 3

10 | .

Speedup

I I I I I I I
5 10 15 20 25 30 35 40

Cores

Figure: Speedup of the parallel integration algorithm, when increasing
number of cores. 3D element with quartic polynomials

37/37

	fd@rm@0:
	fd@rm@1:

