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Parallel domain decomposition based explicit dynamics
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Interface (MPI)
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Figure: Cube of processors. Gathers and scathers RHSs in three faces to
perform three 1D solves with multiple RHS.
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Gather data

Message Passing Interface (MPI)

subroutine Gather
(F, F_out, n, elems, stride, dims, shifts, comm, ierr)

call Linearize(F_out_lin,F_out,n+1,stride)

call mpi_gatherv (F_lin, <—data to send by each processor 1, .., Ny

elems * stride, < size of data assigned to this processor
MPI_DOUBLE_PRECISION, < type of data

F_out_lin, <—data to receive by processor 0 in a row

dims, <size of data from entire row

shifts, < offsets of slices from all processor from a row
MPI_DOUBLE_PRECISION, < type of data to receive

0, COMM, ierr) <—communicator along a row

call Delinearize(F_out_lin,F_out,n+1,stride)
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Figure: Gather and scatter data into three faces on cube of processors
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Figure: Gather into OYZ face

0. Integration

la. Gather in every row of processors into OYZ face
1b. Solve N, N, 1D problems with multiple RHS

lc. Scatter results onto cube of processors

1d. Reorder right hand sides
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Figure: Gather into OXZ face
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Figure: Gather and scatter data into three faces on cube of processors

2a. Gather in every row of processors into OXZ face
2b. Solve NN, 1D problem with multiple RHS

2c. Scatter results onto cube of processors

2d. Reorder right hand sides
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Figure: Gather and scatter data into three faces on cube of processors

3a. Gather in every row of processors into OXY face
3b. Solve NN, 1D problem with multiple RHS

3c. Scatter results onto cube of processors

3d. Reorder right hand sides
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Parallel domain decomposition based explicit dynamics

We have a mesh of N, x N, x N, elements

There are (px +1)(p, + 1)(p, + 1) basis functions over each element
P23 P2 Nx Ny N; )

CxCyCz

2 2 2
Solution (1D problem multiple RHS) O ((PXC*“’YCY*”ZCZ)(NX"’Y"’Z))

Integration over all elements O(

CxCyCz

Gather O ((CX+Cy+CZ)NXNyNZ

CxCyCz

Reorder O (7NXNyszxpypz>

CxCyCz

Scather O <(CX+CV+CZ)NxNyNZ)

CxCyCz

Assuming
Ny = Ny = N, = N3, pX:py—pz—pr:Cy:Cz:C1/3
we have the following cost ( + p2/3 + 2 ) teomp + ( ) tcomm

which implies the computational complexity O (pﬁg)

and the communication complexity O( 2/3>
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Parallel domain decomposition based explicit dynamics

Numerical experiments LONESTAR Linux cluster
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Figure: Comparison of total experimental and theoretical execution time
for N = 512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics

The integration time is dominating the solution time significantly.
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Figure: Comparison of experimental and theoretical integration time for
N = 512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics

The solution time takes around 1 percent of the total solver time.
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Figure: Comparison of experimental and theoretical solution times for
N = 512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics
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Figure: Comparison of experimental and theoretical gather times for
N =512 for p = 3 for different number of processors
3 =23%...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics
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Figure: Comparison of experimental and theoretical scatter times for

N =512 for p = 3 for different number of processors
c3=23...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics

Numerical experiments LONESTAR Linux cluster
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Figure: Comparison of total experimental and theoretical execution time
for N = 1024 for p = 3 for different number of processors
c3=23...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics

The integration time is dominating the solution time significantly.
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Figure: Comparison of total experimental and estimated integration time
for N = 1024 for p = 3 for different number of processors
c3=23...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics

The solution time takes around 1 percent of the total solver time.
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Figure: Comparison of total experimental and estimated solution times for
N = 1024 for p = 3 for different number of processors
c3=23,...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics
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Figure: Comparison of total experimental and estimated gather times for
N = 1024 for p = 3 for different number of processors
3 =23%...,103=8,...,1000.
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Parallel domain decomposition based explicit dynamics

experimental scatter 2
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Figure: Comparison of total experimental and estimated scatter times for
N = 1024 for p = 3 for different number of processors
3 =23%...,103=8,...,1000.
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Limitations of isogeometric L2 projections

Time step size limited by Courrant-Fredrichs-Levy (CFL) condition
https://en.wikipedia.org/wiki/Courant-Friedrichs-Lewy_ condition
LA[‘ + LlyAt < C

Ax Ay — —max
where At is time step size, Ax = Ay = h element size,

Uy, uy magnitude of the field, Cy,ax = 1 for explicit method, so

(ux +uy) « At < h
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Click in the middle
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



Integration of the 3D matrix

If we go for implicit method, we need to integrate the matrix

We have a mesh of N, x N, x N, elements

nrdof = (px + 1)(py, + 1)(pz + 1) basis functions on each element
(Px, Py, Pz) denotes the B-splines order in directions x, y and z
ngx = O(px), ngy = O(py), ngz = O(p;) number of Gauss points

(B;fPBJ}':PBi, ’B/X,pB%/"vPBﬁ,P)L2 =
Ja BXx(x) B} p(¥) B (2) B ,(x) Bm.p(y) Bf, ,(2) dxdydz =
Y Jg Bip(x) B} p(v)Bf ,(2) B}, (x) Bm,p(y) Bf, p(2) dxdydz =

ZE Zs:l,ngx;t:lmgy;w:lmgz
WeWe W, B, (xs) BY ,(ve) Bf, p(2w) BfS, (xs) B, p(y2) B7 p(2w)

We construct the element matrices for each element, for all the
basis functions which span over the element, namely
Bfpi=1,px+1, Bj:pj =lp, +1 Bf k=1,p,+1 (trial
functions) and B,/ = 1,px +1, Bmpm =1,p, +1,

B; ,n=1,p; + 1 (test functions).
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Integration of the 3D matrix

We have a mesh of N, x N, x N, elements
nrdof = (px + 1)(py, + 1)(pz + 1) basis functions on each element
(Px, Py, Pz) denotes the B-splines order in directions x, y and z
ngx = O(px), ngy = O(py), ngz = O(p;) number of Gauss points
e for s =1,ngx // Gauss integration points
e for t=1ngy
° for w=1,ngz
get Gauss point (xs,Vt,zw), weight WsW:W,,
for /=1,px+1 // trial B-splines
for m=1,p, +1
for n=1,p,+1
for j=1,px+1 // test B-splines
for j=1,p,+1
for k=1,p,+1
aggregate
W s B, (x5) B] () Bf, p(xw), Bily (xs) Bim,p(xe) B (%)
px = py = p; = p computational complexity O(p°®), if p=9 it is 10°
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Sequential integration of the 3D matrix

F=10.d0
do ex = 1,nelemx //Loop through elements
do ey = 1,nelemy
do ez = 1,nelemz

J = Jx(ex)*Jy(ey)*Jz(ez) //element Jacobian
do kx = 1,ngx //Loop through Gauss points
do ky = 1,ngy
do kz = 1,ngz
W = Wx(kx)*Wy(ky)*Wz(kz) //Gauss weight
value = fvalue(Xx(kx,ex),Xy(ky,ey),Xz(kz,ez))
do ax = 0,px //B-splines
do ay = O,py
do az = 0,pz
do bx = 0,px //B-splines
do by = 0,py
do bz = 0,pz
call compute_index(ind,ax,ay,az,ex,ey,ez,nx,ny,nz)
call compute_index(indl,bx,by,bz,ex,ey,ez,nx,ny,nz)
A(ind,ind1) = A(ind,indl) +
NNx(0,ax,kx,ex)*NNy(0,ay,ky,ey) *NNz(0,az,kz ,ez)*

NNx (0,bx,kx,ex) *NNy(0,by,ky,ey) *NNz (0,bz,kz ,ez)*J*Wxvalue
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Parallel OpenMP integration of the 3D matrix

OpenMP = Open Multi-Processing

!$0MP PARALLEL DO
!$0MP& DEFAULT (SHARED)
!$0MP& FIRSTPRIVATE
(iy,ex,ey,ez,J,kx,ky,kz,W,value,ax,ay,az,bx,by,bz,ind,ind1)
! $0MP& REDUCTION (+:nr_nonzeros)
do iy=1,miy //Now it is 1 loop over elements
call map_indexes(iy,ex,ey,ez)
J = Jx(ex)*Jy(ey)*Jz(ez) //element Jacobian
do kx = 0,ngx //loop through Gauss points
do ky = O,ngy
do kz = O,ngz
W = Wx(kx)*Wy(ky)*Wz(kz) //Gauss weight
value = fvalue(Xx(kx,ex),Xy(ky,ey),Xz(kz,ez))
do ax = 0,px //trail B-splines along X,y,z
do ay = O,py
do az = 0,pz
do bx = 0,px //test B-splines along x,y,z
do by = 0,py
do bz = 0,pz
call compute_index(ind,ax,ay,az,ex,ey,ez,nx,ny,nz)
call compute_index(indl,bx,by,bz,ex,ey,ez,nx,ny,nz)
A(ind,ind1) = A(ind,indl) +
NNx(0,ax,kx,ex) *NNy (0,ay,ky,ey) *NNz(0,az,kz ,ez)*
NNx (0,bx,kx,ex)*NNy (0, by ,ky,ey) *NNz(0,bz,kz ,ez)*J*Wxvalue
!$0OMP END PARALLEL DO
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Numerical results
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Figure: Execution time of the parallel integration algorithm, when
increasing number of cores. 3D element with quadratic polynomials
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Numerical results
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Figure: Execution time of the parallel integration algorithm, when
increasing number of cores. 3D element with cubic polynomials
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Numerical results
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Figure: Execution time of the parallel integration algorithm, when
increasing number of cores. 3D element with quartic polynomials
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Numerical results
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Figure: Efficiency of the parallel integration algorithm, when increasing
number of cores. 3D element with quadratic polynomials
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Figure: Efficiency of the parallel integration algorithm, when increasing
number of cores. 3D element with cubic polynomials
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Numerical results
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Figure: Efficiency of the parallel integration algorithm, when increasing
number of cores. 3D element with quartic polynomials
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Numerical results
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Figure: Speedup of the parallel integration algorithm, when increasing
number of cores. 3D element with quadratic polynomials
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Numerical results
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Figure: Speedup of the parallel integration algorithm, when increasing
number of cores. 3D element with cubic polynomials
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Numerical results
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Figure: Speedup of the parallel integration algorithm, when increasing
number of cores. 3D element with quartic polynomials
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