```
A(1,1)*x(1)+A(1,2)*x(2) = b(1)
A(2,1)*x(1)+A(2,2)*x(2) = b(2)
where A(i,j) a square matrices, x(i),b(i) are vectors
```

How to get Schur complement:

1) $A(1,1)=L^{*} U$
2) $A(1,2)=(L * U)^{\wedge}-1 * A(1,2)$
3) $b(1)=(L * U)^{\wedge}-1 * b(1)$
4) $A(2,2)=A(2,2)-A(2,1) * A(1,2)$
5) $b(2)=b(2)-A(2,1) * b(1)$
then, the Schur complement is stored at $A(2,2)$ and $b(2)$

1)
 $A(1,1)=L * U$

LAPACK DGETRF for double precision
ZGETRF for complex
SUBROUTINE ZGETRF(M, N, A, LDA, IPIV, INFO)
INTEGER
INFO, LDA, M, N
INTEGER
IPIV(*)
DOUBLE
PRECISION A(LDA, *)
M (input) INTEGER The number of rows of the matrix $A . M>=0$.
N (input) INTEGER The number of columns of the matrix $\mathrm{A} . \mathrm{N}>=0$.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix to be factored.
On exit, the factors L and U from the factorization $A=P * L^{*} U$; the unit diagonal elements of L are not stored.
LDA (input) INTEGER The leading dimension of the array A. LDA $>=\max (1, M)$.
IPIV (output) INTEGER array, dimension $(\min (M, N)$) The pivot indices; for $1<=\mathrm{i}<=$ $\min (\mathrm{M}, \mathrm{N})$, row i of the matrix was interchanged with row IPIV(i).
INFO (output) INTEGER = 0: successful exit
<0 : if INFO $=-i$, the i-th argument had an illegal value
>0 : if INFO $=\mathrm{i}, \mathrm{U}(\mathrm{i}, \mathrm{i})$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
2)
$A(1,2)=(L * U)^{\wedge-1} * A(1,2)$
in other words (where $A=A(1,2)$)
$\mathrm{R}=\mathrm{U}^{\wedge}-1^{*} \mathrm{~L}^{\wedge}-1^{*} \mathrm{~A}$
$L^{\wedge}-1^{*} A=B$
$\mathrm{U}^{\wedge}-1 * \mathrm{~B}=\mathrm{R}$
Algorithm:
a) Given A and L, solve $A=L * B$
b) Given B and U, solve $B=L * R$ for R

DTRSM - ZDTRM (SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, LDA, B, LDB)
$B<=L^{\wedge}-1 * A$
A is of size $m \times n$
L is of size $m \times m$
SIDE = 'L'
UPLO = 'L' lower triangular matrix
TRANS = 'N' no transpoze of L
DIAG $=$ indicates if the diagonal of L is to be taken to equal the identity matrix (DIAG $=$
"Unit") or the values in the matrix (DIAG = "Non unit").

```
M=m,N=n
ALPHA=1
A <- L
B <- A
The leading dimensions of the matrices are given in LDA(for L) and LDB (for A).
R<=U^-1*B
B is of size nxn
U}\mathrm{ is of size nxn
SIDE = 'L'
UPLO = 'U' upper triangular matrix
TRANS = 'N' no transpoze of U
DIAG = indicates if the diagonal of U is to be taken to equal the identity matrix (DIAG =
"Unit" ) or the values in the matrix (DIAG = "Non unit" ).
M=n,N=n
ALPHA=1
A <- U
B <- B
```

The leading dimensions of the matrices are given in LDA(for U) and LDB (for B).

```
3)
b(1)=(L*U)^-1*b(1)
```

in other words (where $b=b(1)$)
$\mathrm{d}=\mathrm{U}^{\wedge}-1^{*} \mathrm{~L}^{\wedge}-1^{*} \mathrm{~b}$
L^-1*b $=$ e
$b=L^{*} \mathrm{e}$
$d=U^{\wedge}-1^{*} e$
e=U*d
Algorithm:
a) Given b and L, solve $b=L^{*} e$ for e
a) Given e and U, solve $e=U^{*} d$ for d

DTRSM - ZDTRM(SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, LDA, B, LDB)
L^-1*b $=e$
b is of size $m \times 1$
L is of size $m \times m$
SIDE = 'L'
UPLO = 'L' lower triangular matrix
TRANS = 'N' no transpoze of L
DIAG $=$ indicates if the diagonal of L is to be taken to equal the identity matrix (DIAG $=$
"Unit") or the values in the matrix (DIAG = "Non unit").
$\mathrm{M}=\mathrm{m}, \mathrm{N}=1$
ALPHA=1
A <-L
$B<-b$
The leading dimensions of the matrices are given in LDA(for L) and LDB (for b).
d<-U^-1*e
e is of size $m \times 1$
\mathbf{U} is of size $\mathbf{m x m}$
SIDE = 'L'
UPLO = 'U' upper triangular matrix
TRANS = 'N' no transpoze of U
DIAG $=$ indicates if the diagonal of U is to be taken to equal the identity matrix (DIAG $=$
"Unit") or the values in the matrix (DIAG = "Non unit").
$\mathrm{M}=\mathrm{m}, \mathrm{N}=1$
ALPHA=1
A <-U
$B<-e$

The leading dimensions of the matrices are given in LDA(for U) and LDB (for e).

4) $A(2,2)=A(2,2)-A(2,1) * A(1,2)$

DGEMM/ZGEMM (double / complex)
ZGEMM (transa, transb, I, n, m, alpha, a, Ida, b, Idb, beta, c, Idc)
$\mathrm{C}=$ alpha $\mathrm{A} * \mathrm{~B}+$ beta* C
here alpha $=-1$, beta $=1, A(2,1)=$ mult, $B=A(1,2), C=A(2,2)$
transa $=$ ' N ' \boldsymbol{A} is used in the computation.
transb = ' N ', \boldsymbol{B} is used in the computation.
I is the number of rows in matrix \boldsymbol{C}.
n is the number of columns in matrix \boldsymbol{C}.
m is the number of columns in matrix \boldsymbol{A}.
alpha is the scalar alpha.
a is the matrix \boldsymbol{A}, where: \boldsymbol{A} has I rows and m columns.
If transa equal to ' N ', its size must be Ida by (at least) m.
Ida is the leading dimension of the array specified for a.
b is the matrix \boldsymbol{B}, where: \boldsymbol{B} has m rows and n columns.
Idb is the leading dimension of the array specified for b.
beta is the scalar beta.
c is the I by n matrix \boldsymbol{C}.
Idc is the leading dimension of the array specified for c.
On Return c is the I by n matrix C, containing the results of the computation.

5) $b(2)=b(2)-A(2,1) * b(1)$

ZGEMV
(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
TRANS $=$ ' N ' for $\mathrm{y}:=$ alpha*A*x + beta* y,
$M=$ number of rows in A
$\mathrm{N}=$ number of columns in A
ALPHA = -1
$A<=A(2,1)$
LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub)
progra
$\mathrm{X}<=\mathrm{b}$ (1)
INCX=1
BETA=1
$\mathrm{Y}<=\mathrm{b}(1)$
INCY=1

