Frontal and multi-frontal solvers: Dealing with singularities

Maciej Paszynski

Department of Computer Science

AGH University of Science and Technology, Krakow, Poland

maciej.paszynski@agh.edu.pl

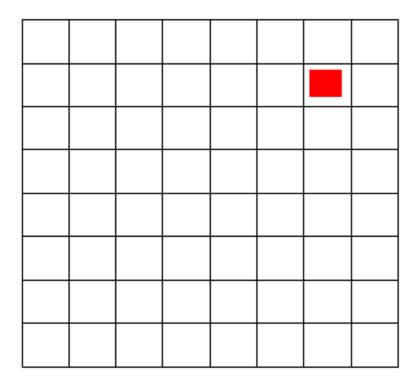
http://home.agh.edu.pl/paszynsk

http://www.ki.agh.edu.pl/en/staff/paszynski-maciej

http://www.ki.agh.edu.pl/en/research-groups/a2s

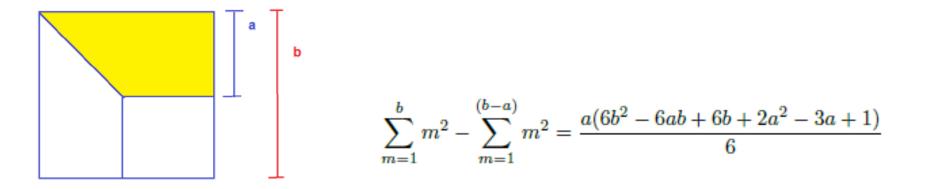
Main collaborators

Victor Calo (KAUST) Leszek Demkowicz (ICES, UT) David Pardo (IKERBASQUE)

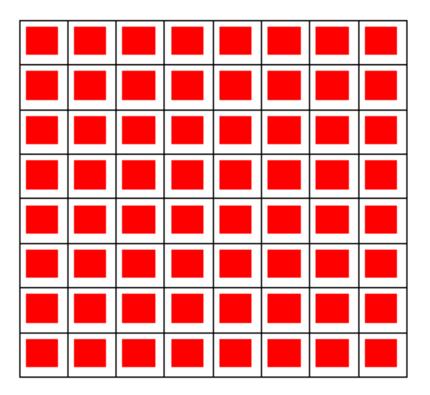


FLOPS(2D)= p^6 . FLOPS(3D)= p^9 .

Number of operations for partial forward elimination (Schur complement computations)

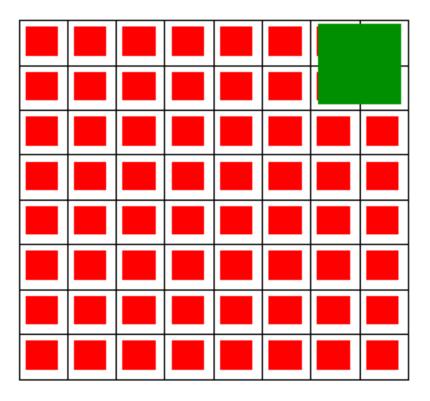


Computational complexity O(ab²)



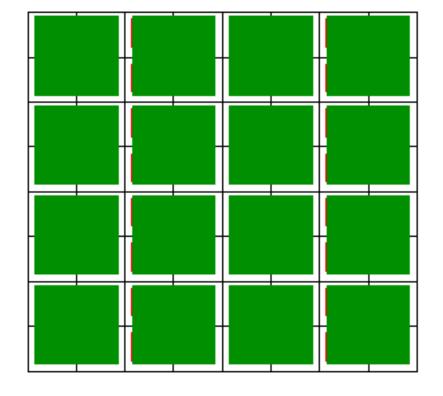
FLOPS(2D)= $2^{2s}p^6$. FLOPS(3D)= $2^{3s}p^9$.

NOTE: 2^s = Number of elements in each direction (s = 3 here)

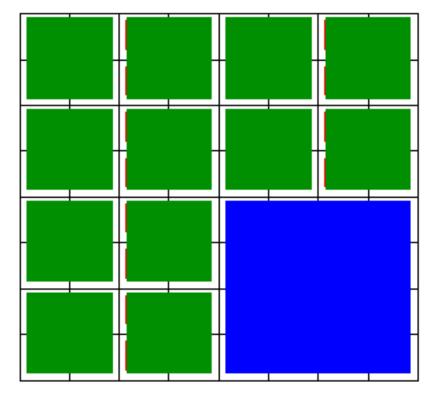


FLOPS(2D)= $2^{2s}p^6 + 2^4p^3$. FLOPS(3D)= $2^{3s}p^9 + 2^6p^6$.

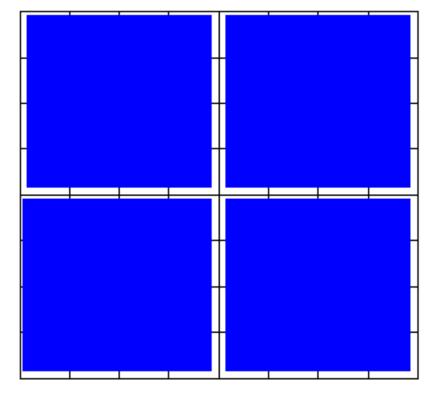
FLOPS(2D)= $2^{2s}p^6 + 2^{2(s-1)}2^4p^3$. FLOPS(3D)= $2^{3s}p^9 + 2^{3(s-1)}2^6p^6$.



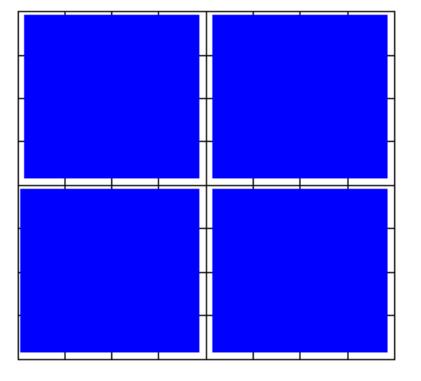
FLOPS(2D)= $2^{2s}p^6 + 2^{2(s-1)}2^4p^3 + 2^8p^3$ FLOPS(3D)= $2^{3s}p^9 + 2^{3(s-1)}2^6p^6 + 2^{12}p^6$

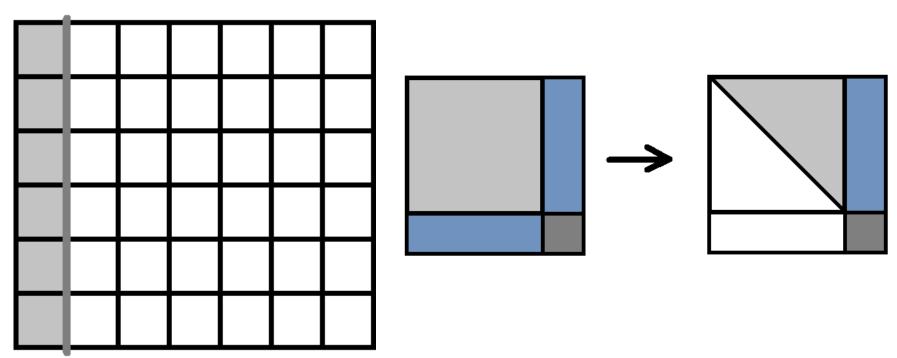


 $\begin{array}{l} \mathsf{FLOPS(2D)=}2^{2s}p^6+2^{2(s-1)}2^4p^3+2^{2(s-2)}2^8p^3}\\ \mathsf{FLOPS(3D)=}2^{3s}p^9+2^{3(s-1)}2^6p^6+2^{3(s-2)}2^{12}p^6 \end{array}$



$\begin{aligned} \mathsf{FLOPS(2D)=} 2^{2s}p^6 + 2^{2(s-1)}2^4p^4 + 2^{2(s-2)}2^8p^4 + \ldots = \mathcal{O}(Np^4) + \mathcal{O}(N^{1.5}) \\ \mathsf{FLOPS(3D)=} 2^{3s}p^9 + 2^{3(s-1)}2^6p^6 + 2^{3(s-2)}2^{12}p^6 + \ldots = \mathcal{O}(Np^6) + \mathcal{O}(N^2) \end{aligned}$



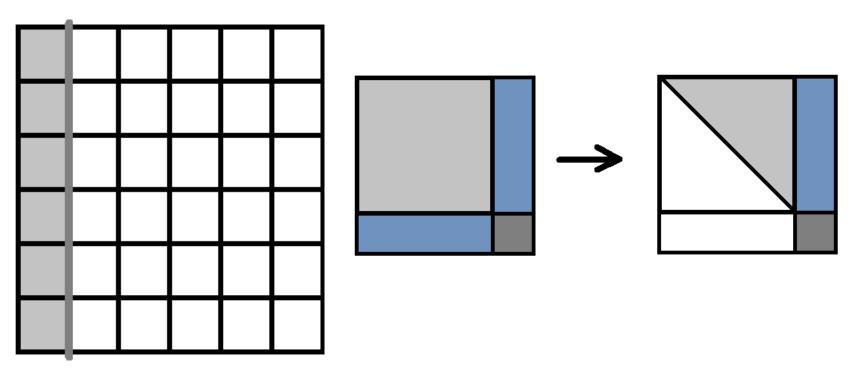


Computational cost of elimination of a single layer $O((N^{0.5})^3)=O(N^{3/2})$ Number of layers = $O(N^{0.5})$

Computational cost of elimination of entire mesh = computational cost of elimination of a single layer * number of layers

```
O(N<sup>0.5</sup>N<sup>3/2</sup>)=O(N<sup>2</sup>) in 2D
```

O(N^{1/3}N^{6/3})=O(N^{7/3}) in 3D

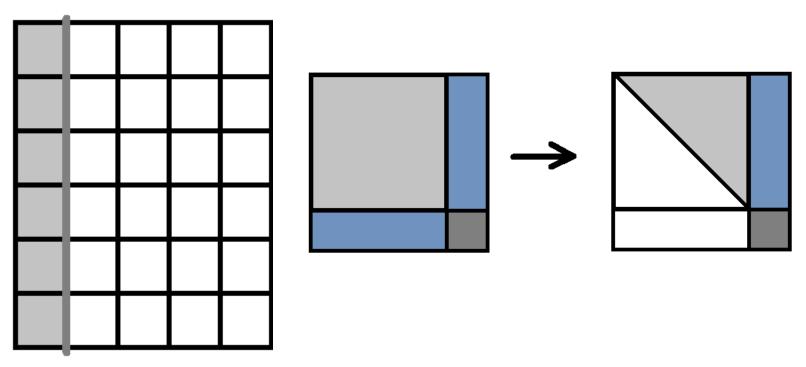


Computational cost of elimination of a single layer $O((N^{0.5})^3)=O(N^{3/2})$ Number of layers = $O(N^{0.5})$

Computational cost of elimination of entire mesh = computational cost of elimination of a single layer * number of layers

```
O(N<sup>0.5</sup>N<sup>3/2</sup>)=O(N<sup>2</sup>) in 2D
```

O(N^{1/3}N^{6/3})=O(N^{7/3}) in 3D



Computational cost of elimination of a single layer $O((N^{0.5})^3)=O(N^{3/2})$ Number of layers = $O(N^{0.5})$

Computational cost of elimination of entire mesh = computational cost of elimination of a single layer * number of layers

O(N^{0.5}N^{3/2})=O(N²) in 2D

O(N^{1/3}N^{6/3})=O(N^{7/3}) in 3D

MODEL ELIPTIC PROBLEM

Find
$$u = u(x, y, z) \in H^1(\Omega)$$
 such that $\Delta u = 0$
where $\Omega = (0, 1)^3$, with boundary conditions
 $u(:, :, 0) = 0$
 $u(:, :, 1) = 1$
 $\frac{\partial u}{\partial x}(0, :, :) = \frac{\partial u}{\partial x}(1, :, :) = \frac{\partial u}{\partial y}(:, 0, :) = \frac{\partial u}{\partial y}(:, 1, :) = 0$

Find
$$u \in V = \{u \in H^1(\Omega) : u(:,:,0) = u(:,:,1) = 0\}$$

such that $b(u,v) = l(v), \forall v \in V$
 $b(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dV$ $l(v) = -\int_{\Omega} \frac{\partial v}{\partial z} dV$

COMPUTATIONAL COST OF 3D DIRECT SOLVER

Notation:

N = number of degrees of freedom N_e = number of elements p = polynomial order of approximation $O(N)=O(N_e*p^3)$

Computational cost of direct solvers = cost of static condensation + cost of LU factorization

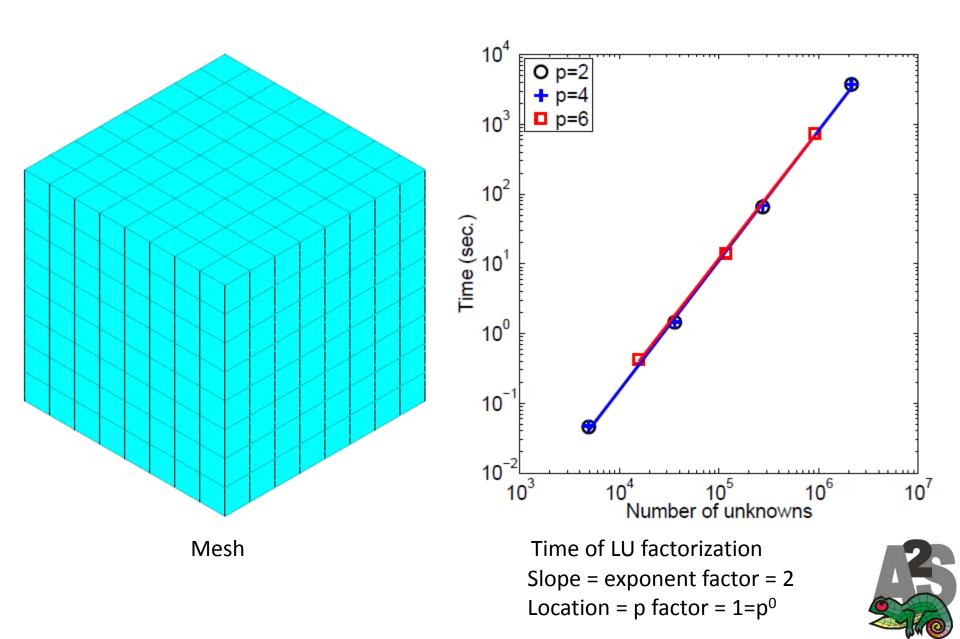
Static condensation $O(N_e^*p^9)=O(N^*p^6)$

Cost of LU factorization over regular grid O(N²)

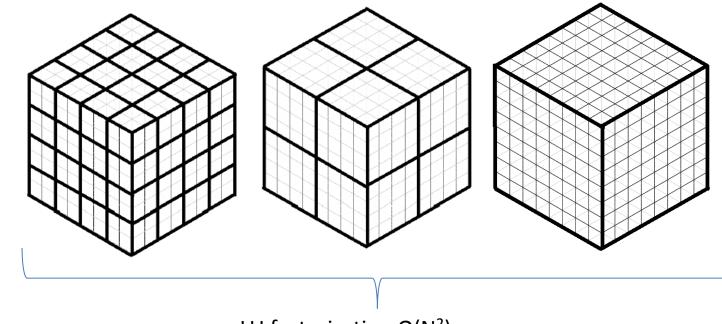
CONCLUSIONS: For regular grid total cost is $O(N^*p^6+N^2) = O(N^2)$

For other grids it is not always the case (static condensation may dominate)

UNIFORM REFINEMENTS



UNIFORM REFINEMENTS MULTI-FRONTAL SOLVER APPROACH



LU factorization O(N²)

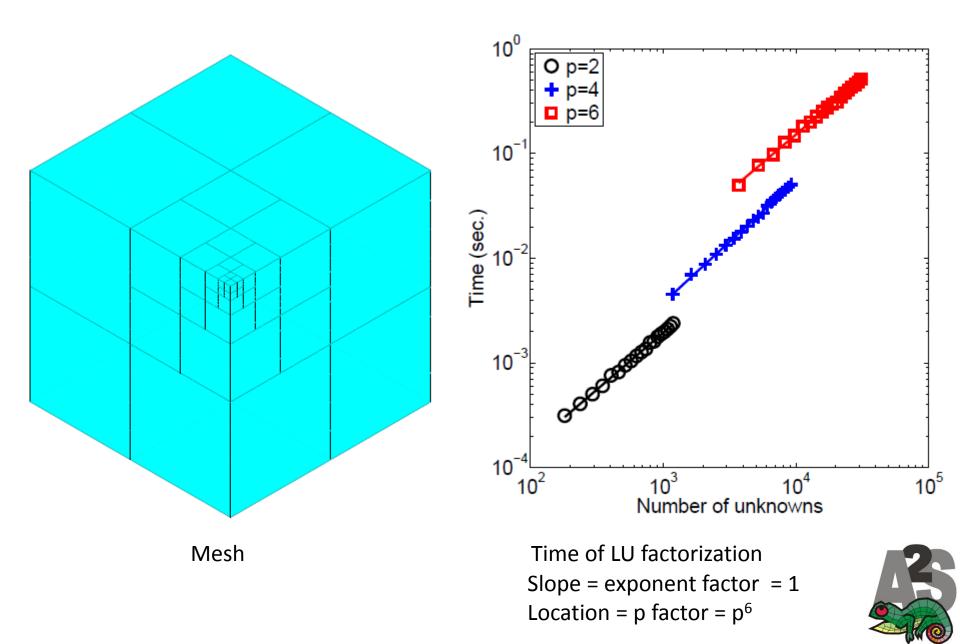
Total cost is $O(N^*p^6+N^2) = O(N^2)$

Static condensation

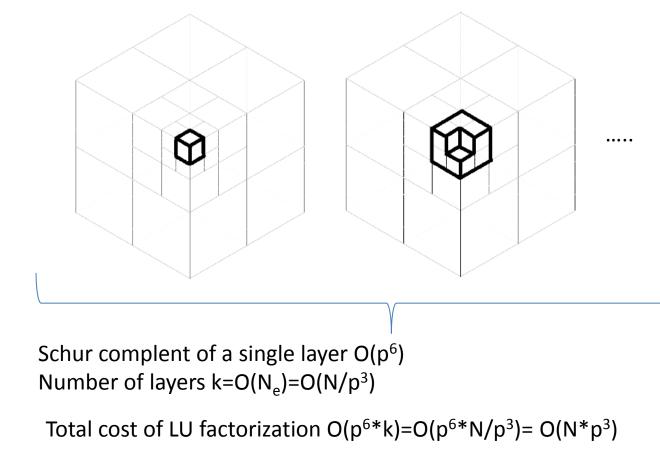
+

O(N*p⁶)

REFINEMENTS TOWARDS POINT SINGULARITY



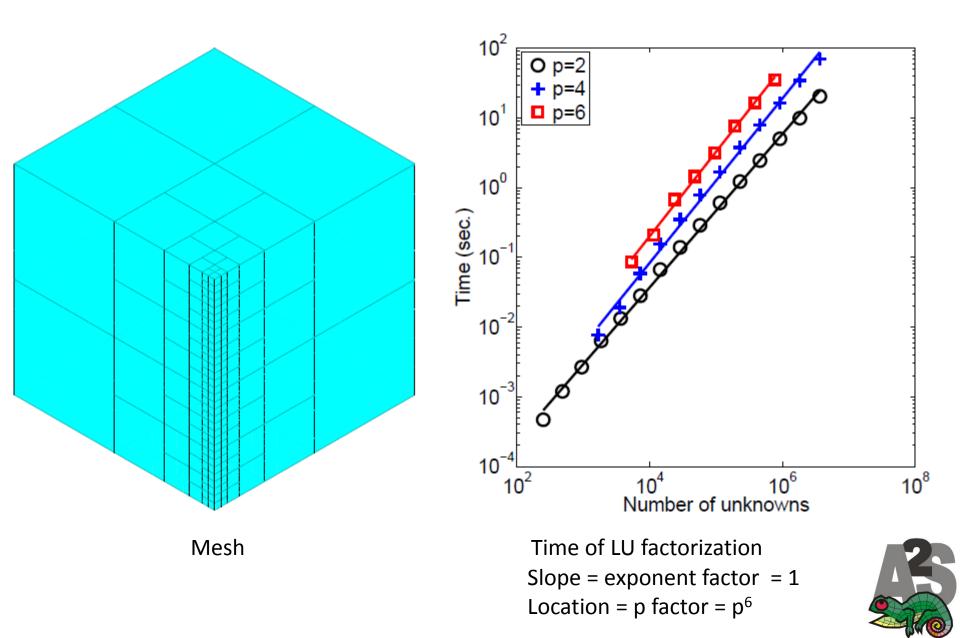
REFINEMENTS TOWARDS POINT SINGULARITY FRONTAL SOLVER APPROACH



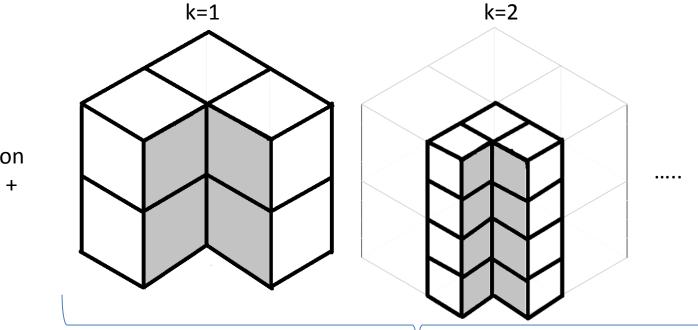
Total cost is $O(N^*p^6+N^*p^3) = O(N^*p^6)$

Static condensation O(N*p⁶) +

ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH

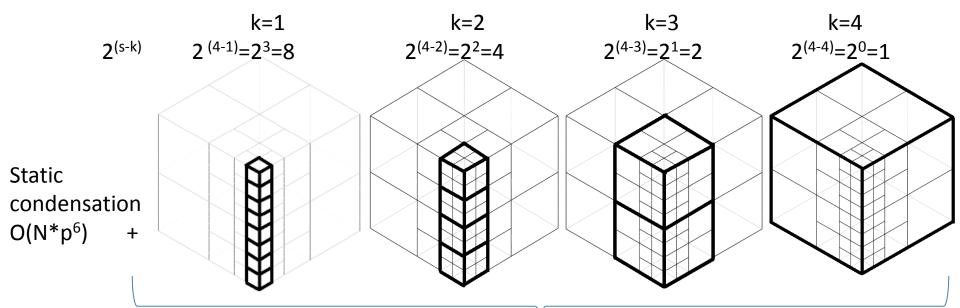


Static condensation O(N*p⁶) +

Number of dofs in a layer $3*2^{k}p^{2}=O(2^{k}p^{2})$ Number of interfaces dofs in a layer $2*2^{k}p^{2}=O(2^{k}p^{2})$ Cost of Schur complement of a single layer $O(2^{3k}p^{6})$

s=number of layers, N = O $\left(\sum_{k=1}^{s} 3 * 2^{k}p^{3}\right)$ = O $\left(\sum_{k=1}^{s} 2^{k}p^{3}\right)$ = O(p³2^s) Cost of LU factorization O $\left(\sum_{k=1}^{s} 2^{3k}p^{6}\right)$ = O(p⁶2^{3s})=O(N³/p³)

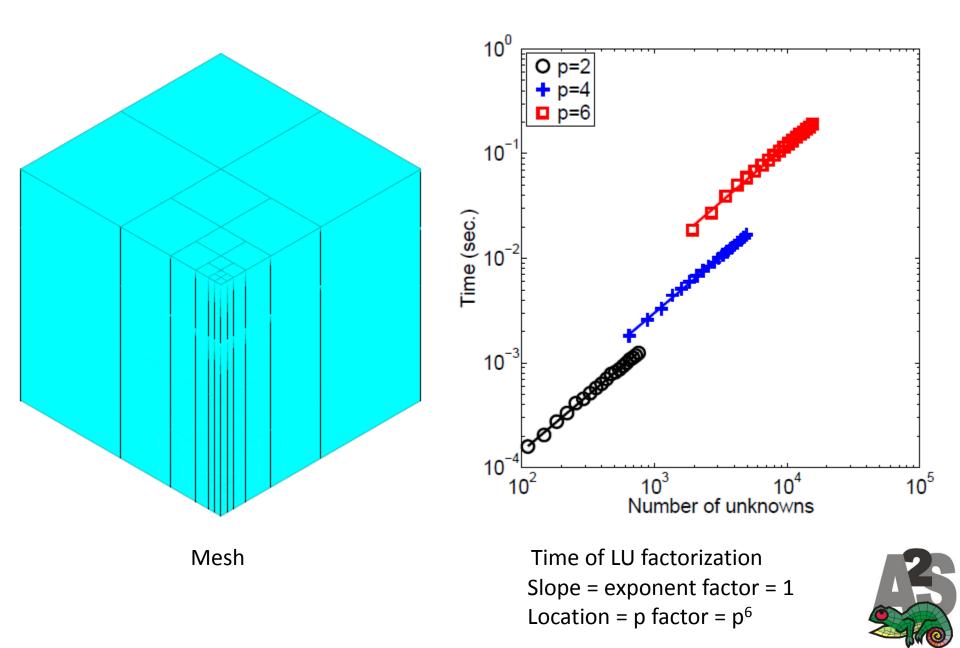
ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY MULTI-FRONTAL SOLVER APPROACH



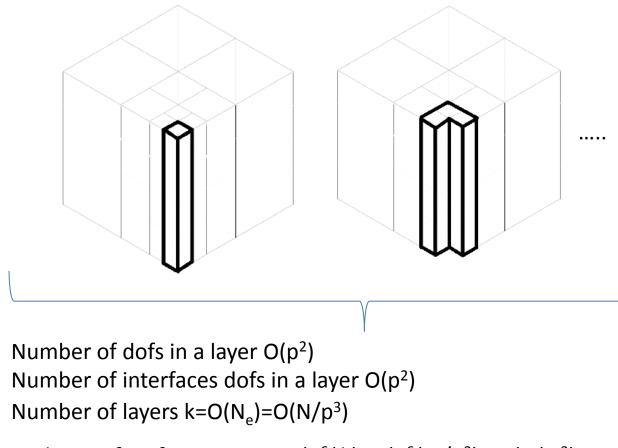
Number of dofs in a patch O(kp²) Number of patches in a single layer O(2^{s-k}) Number of interfaces dofs in a patch O(kp²) Cost of Schur complement of a single layer O(2^{s-k} k³p⁶)

s=number of layers, N = O $\left(\sum_{k=1}^{s} 3 * 2^{k} p^{3}\right) \left(\sum_{k=1}^{s} 2^{k} p^{3}\right) O(p^{3} 2^{s})$ Cost of LU factorization O $\left(\sum_{k=1}^{s} 2^{s-k} k^{3} p^{s}\right) O(s^{3} p^{6} 2^{s}) = O(Np^{3} (\log_{2}^{3} N_{e}))$ Total cost is < O(N*p⁶+Np³ (log₂³N_e))

ANISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH

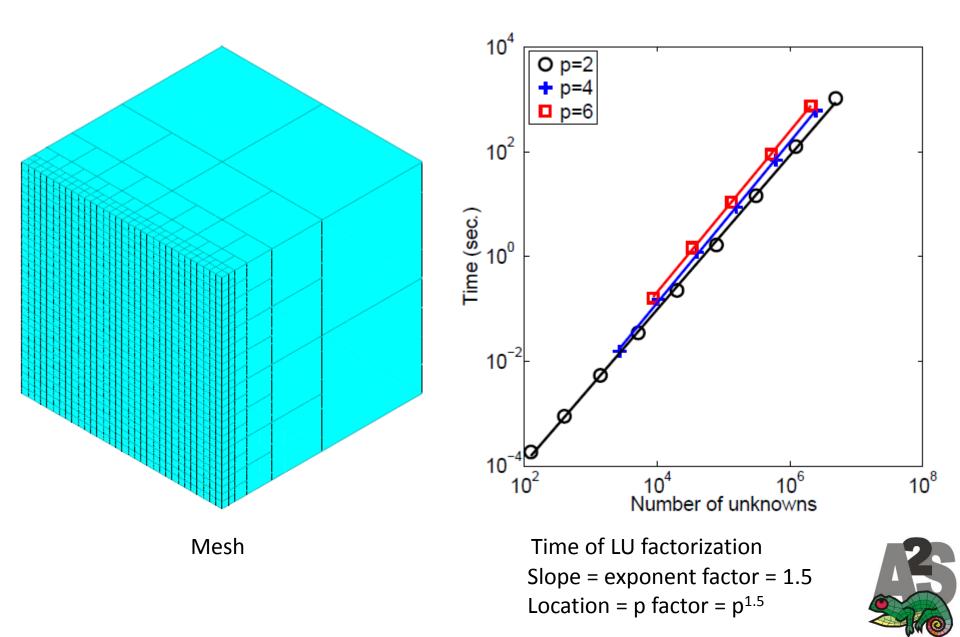


Total cost of LU factorization $O(p^{6*}k)=O(p^{6*}N/p^3)=O(N*p^3)$

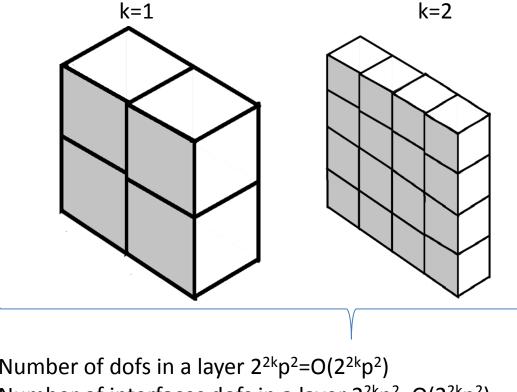
Total cost is $O(N*p^6+N*p^3) = O(Np^6)$

Static condensation O(N*p⁶) +

ISOTROPIC REFINEMENTS TOWARDS FACE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH



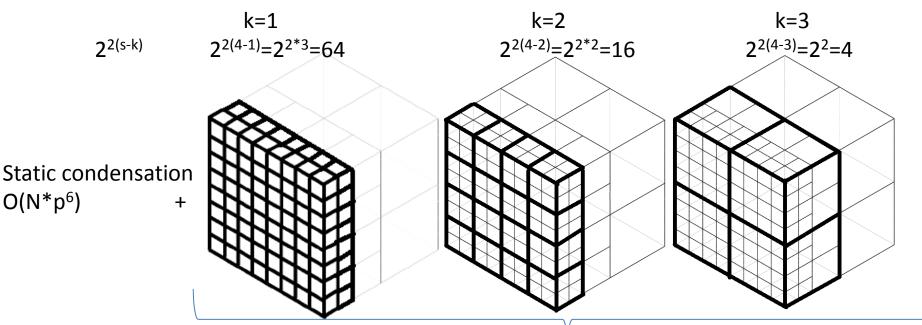
Static condensation O(N*p⁶) +

Number of dofs in a layer $2^{2k}p^2 = O(2^{2k}p^2)$ Number of interfaces dofs in a layer $2^{2k}p^2 = O(2^{2k}p^2)$ Cost of Schur complement of a single layer $O(2^{6k}p^6)$

s=number of layers, N = O $\left(\sum_{k=1}^{s} 2^{2k}p^3\right)$ = O(p³2^{2s}) Cost of LU factorization O $\left(\sum_{k=1}^{s} 2^{6k}p^3\right)$ = O(p⁶2^{6s})=O(N³/p³)

DO NOT USE FRONTAL SOLVER APPROACH

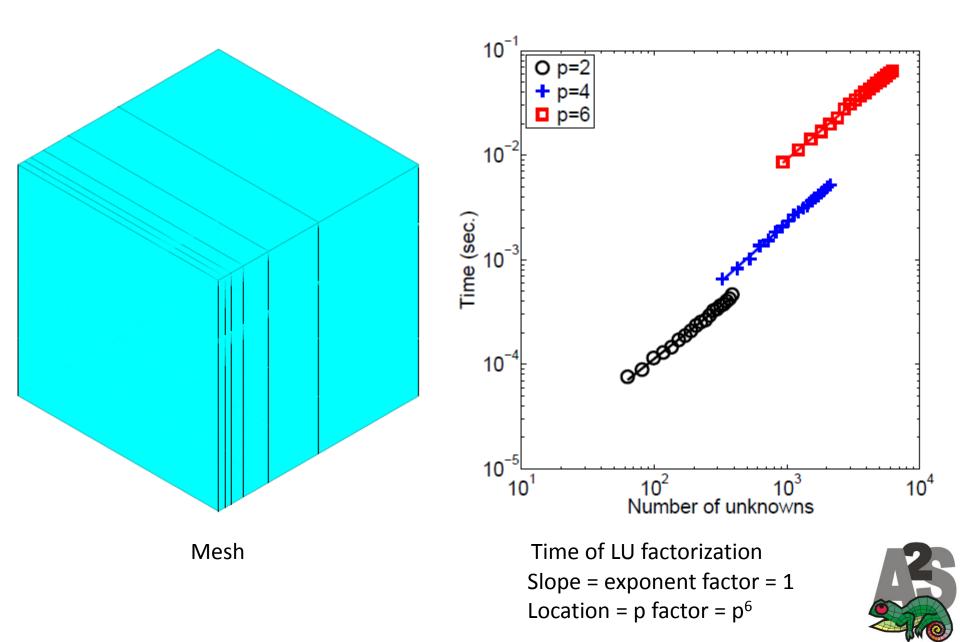
ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY MULTI-FRONTAL SOLVER APPROACH



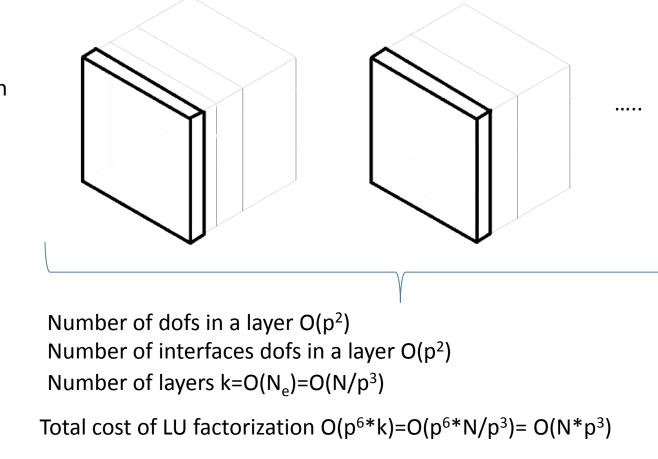
Number of dofs in a patch $O(2^k p^2)^{\prime}$ Numbers of patches in a layer $O(2^{2(s-k)})$ Number of interfaces dofs in a patch $O(2^k p^2)$ Cost of Schur complement of a single layer $O(2^{2(s-k)}2^{3k}p^6)$

s=number of layers, N = O $\left(\sum_{k=1}^{s} 2^{2k} p^{3}\right)$ = O(p³2^{2s}) Cost of LU factorization O $\left(\sum_{k=1}^{s} 2^{2(s-k)} 2^{3k} p^{6}\right)$ = O(p⁶2^{3s})=O(N^{1.5}*p^{1.5}) Total cost is O(N*p⁶+N^{1.5}*p^{1.5})

ANISOTROPIC REFINEMENTS TOWARDS FACE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH



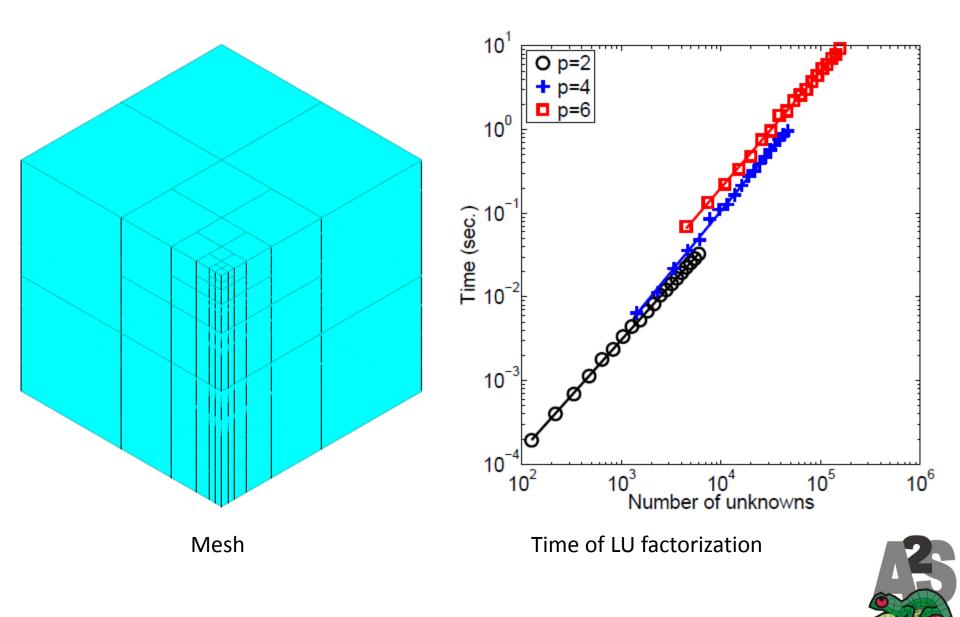
Total cost is $O(N^*p^6+N^*p^3) = O(Np^6)$

Static condensation O(N*p⁶) +

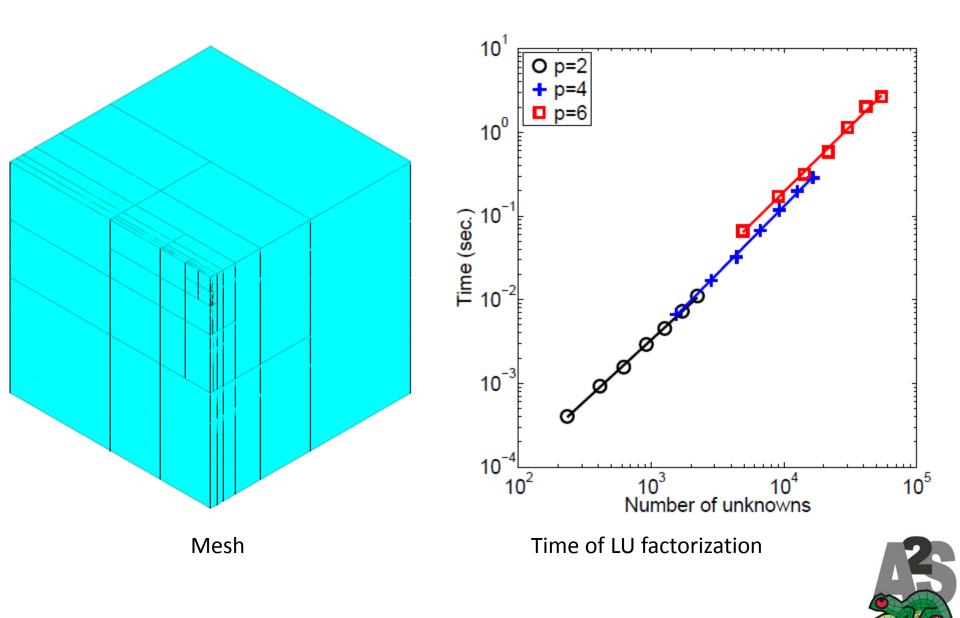
COMPARISON OF NUMERICAL AND THEORETICAL SCALABILITY EXPONENT FACTORS FOR REFINEMENTS TOWARDS A SINGLE ENTITY

	Uniform	Point	Edge	Edge	Face	Face
			Isotropic	Anisotropic	Isotropic	Anisotropic
p = 2	1.86	1.09	1.10	1.07	1.47	1.01
p = 4	1.86	1.17	1.18	1.07	1.47	1.12
p = 6	1.83	1.08	1.21	1.09	1.54	1.08
Theoretical	2	1	1	1	1.5	1

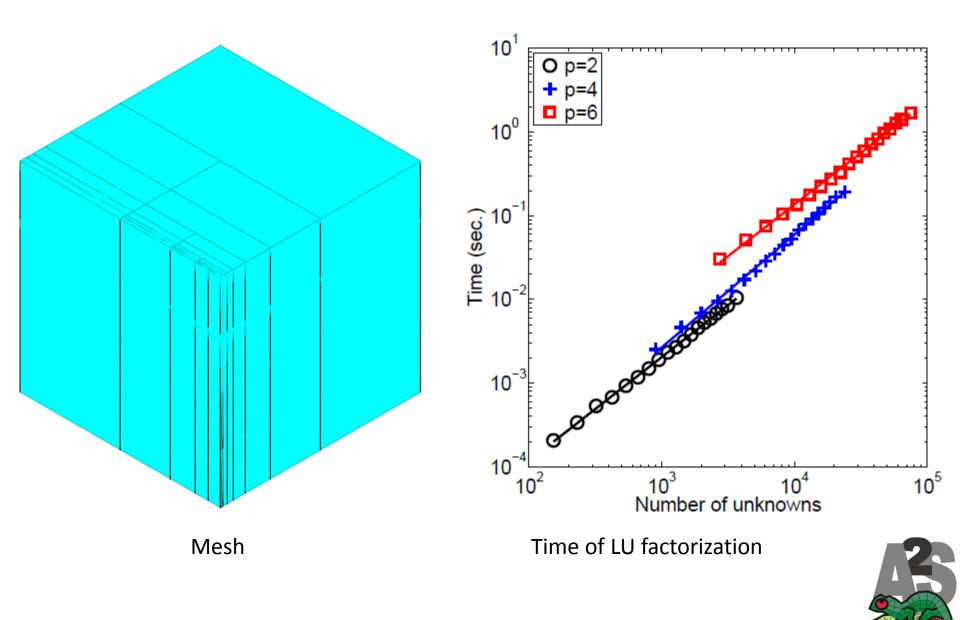
POINT + ANISOTROPIC EDGE SINGULARITY



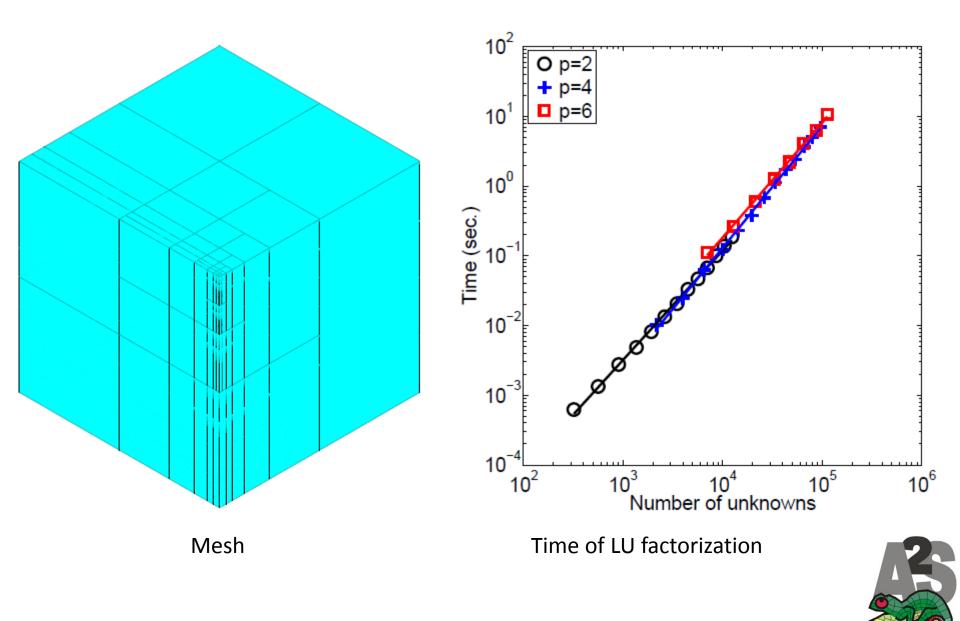
POINT + ANISOTROPIC FACE SINGULARITY



ANISOTROPIC EDGE + ANISOTROPIC FACE SINGULARITY



POINT + ANISOTROPIC EDGE + ANISOTROPIC FACE SINGULARITY



NUMERICAL SCALABILITY EXPONENT FACTORS FOR REFINEMENTS TOWARDS MULTIPLE SINGULARITIES

	Point + Edge	Point $+$ Face	Edge + Face	Point + Edge + Face
p=2	1.33	1.46	1.24	1.57
p = 4	1.45	1.60	1.35	1.75
p = 6	1.39	1.56	1.23	1.65

PAPERS

Maciej Paszyński, David Pardo, Damian Goik **PERFORMANCE OF DIRECT SOLVERS ON H-ADAPTED GRIDS** submitted to *SIAM Journal of Numerical Analysis*, 2013

