Frontal and multi-frontal solvers: Reutilization

Maciej Paszynski

Department of Computer Science

AGH University of Science and Technology, Krakow, Poland

maciej.paszynski@agh.edu.pl

http://home.agh.edu.pl/paszynsk

http://www.ki.agh.edu.pl/en/staff/paszynski-maciej

http://www.ki.agh.edu.pl/en/research-groups/a2s

Main collaborators

Victor Calo (KAUST) Leszek Demkowicz (ICES, UT) David Pardo (IKERBASQUE)

OUTLINE

- 1. Introduction
 - a) Frontal solver
 - b) Multi-frontal solver
 - c) Computational costs over regular grids
- How *h* refined grids with point singularities imply linear computational cost O(N) and linear memory usage O(N) of a direct solver algorithm
- 3. How to find an optimal elimination tree in an automatic way
- How to solve a sequence of computational grids refined towards point singularities with linear cost O(N) and memory O(N)

DIRECT SOLVER WITH LINEAR COMPUTATIONAL COST

DIRECT SOLVER FOR RADICAL MESH

The elimination tree constructed based level by level ordering

21 22

DIRECT SOLVER FOR RADICAL MESH

Interface size: green nodes

Constant matrix size \rightarrow linear cost of the direct solver

DIRECT SOLVER FOR RADICAL MESH

Interface size: green nodes

Constant matrix size \rightarrow linear cost of the direct solver

LINEAR COMPUTATIONAL COST

Lemma 2. Computational cost of the solver with respect to the number of degrees of freedom N and polynomial order of approximation is $T(p, N) = O(Np^3)$.

Proof.

$$\begin{split} T(p,k) &= \frac{16p^6 + 96p^5 + 264p^4 + 864p^3 + 533p^2 + 93p}{6} + \\ &k \frac{12p^6 + 72p^5 + 198p^4 + 1558p^3 - 291p^2 - 157p - 223}{6} \\ N &= kp^3 \\ T(p,N) &= t_{comp}(\frac{16p^6 + 96p^5 + 264p^4 + 864p^3 + 533p^2 + 93p}{6} + \\ &\frac{12Np^3 + 72Np^2 + 198Np + 1558N - 291\frac{N}{p} - 157\frac{N}{p^2} - 223\frac{N}{p^3}}{6}) = O(Np^3) \end{split}$$

L SHAPE DOMAIN PROBLEM

 Γ_N

$$\begin{cases} \Delta u = 0 \quad in \quad \Omega\\ u = 0 \quad on \quad \Gamma_D\\ \frac{\partial u}{\partial n} = g \quad on \quad \Gamma_N\\ g(r, \theta) = r^{\frac{2}{3}} \sin \frac{2}{3} \left(\theta + \frac{\Pi}{2} \right) \end{cases}$$

$$u \in V \subset H^{1}(\Omega)$$
$$b(u, v) = l(v) \quad \forall v \in V$$
$$b(u, v) = \int_{\Omega} \nabla u \nabla v dx$$
$$l(v) = \int_{\Gamma_{C}} gv dS$$

2D Lshape problem

2D Lshape problem

2D Lshape problem

2D Lshape problem

AUTOMATIC WAY OF FINDIND OPTIMAL ELIMINATION TREES

Computational cost for a leaf = cost of elimination of interior degrees of freedom

Computational cost for a node = cost for son1 + cost for son2 + cost of elimination of common interface

Optimal elimination tree = binary subtree with minimal cost

p=2, k=5

Optimal tree

Recursive bisections

1,3			1,5			1,6
2,2	2,	3	2	,5	2,6	1.7
2.1	3,2	3,3	3,5	3,6	2.7	.,.
_,.	3,1			3,7	_,.	
	1 , 2,2 2,1	1,3 2,2 2, 2,1 3,2 3,1	1,3 2,2 2,3 2,1 3,2 3,3 3,1	1,3 2,2 2,3 2 2,1 3,2 3,3 3,5 3,1 3 3	1,3 1, 2,2 2,3 2,5 2,1 3,2 3,3 3,5 3,6 3,1 3,7	1,3 1,5 2,2 2,3 2,5 2,6 2,1 3,2 3,3 3,5 3,6 3,1 3,7 2,7

p=2, k=5

Heuristic tree

Downside up, level by level

Downside up, level by level

REUTILIZATION

DOWNSIDE-UP ORDERING

The elimination tree constructed based on the unrefinement algorithm

21 22

DOWNSIDE-UP ORDERING

Interface size: green (nodes)

DOWNSIDE-UP ORDERING

Interface size: green (nodes)

Constant !!!

UPSIDE-DOWN ORDERING

UPSIDE-DOWN ORDERING

UPSIDE-DOWN ORDERING

Interface size: green (nodes)

Constant size!!!

REUTILIZATION OF PARTIAL LU FACTORIZATIONS

Interface size: green (nodes)

Constant size!!!

REDUCTION OF COMPUTATIONAL COST FOR A SQUENCE OF H REFINED GRIDS $O(N^2) \rightarrow O(N)$

Lemma 1.3

Computational cost for the solution over a sequence of h refined grids without the reutilization

 $\sum_{l=1}^{L} c(l) = \sum_{l=1}^{L} (a+n(l)d) = La + \sum_{l=1}^{L} n(l)d = La + d\sum_{l=1}^{L} (e+fl) = La + Lde + df \sum_{l=1}^{L} l = La + Lde + df \left(\frac{L(L+1)}{2}\right) = O(L(a+de+df) + L^2df = O(L+L^2) = O(N^2)$

Computational cost for the solution over a sequence of h refined grids with the reutilization The reutilization implies d=0 and we get

 $\sum_{l=1}^{L} c(l) = \sum_{l=1}^{L} a = L a = O(N)$

We conclude that the reutilization reduces the computational cost from $O(N^2)$ down to O(N).

NUMERICAL RESULTS – RADICAL GRID

NUMERICAL RESULTS – RADICAL GRID

NUMERICAL RESULTS – RADICAL GRID

	· · · · · · · · · · · · · · · · · · ·	

NON-ZERO ENTRIES

EXECUTION TIME

REUTILIZATION vs CLASSICAL APPROACH

NUMERICAL RESULTS – L SHAPE DOMAIN

NUMERICAL RESULTS – L SHAPE DOMAIN

NUMERICAL RESULTS – LSHAPE DOMAIN

NON-ZERO ENTRIES

EXECUTION TIME

EXECUTION TIME

REUTILIZATION vs CLASSICAL APPROACH

NUMERICAL RESULTS – TWO SINGULARITIES

-				
		 ┟──└		

REUTILIZATION vs CLASSICAL APPROACH

3D Fichera problem

$$\begin{cases} \Delta u = 0 \quad w \quad \Omega\\ u = 0 \quad na \quad \Gamma_D\\ \frac{\partial u}{\partial n} = g \quad na \quad \Gamma_N \end{cases}$$
$$g(r, \theta) = r^{\frac{2}{3}} \sin \frac{2}{3} \left(\theta + \frac{\Pi}{2} \right)$$

θ

 Γ_D

 Γ_N

Laplace equation

NUMERICAL RESULTS - FICHERA

NUMERICAL RESULTS – FICHERA

NUMERICAL RESULTS – FICHERA

NON-ZERO ENTRIES

NON-ZERO ENTRIES

EXECUTION TIME

REUTILIZATION vs CLASSICAL APPROACH

PAPERS

Maciej Paszyński, David Pardo, Victor Calo A DIRECT SOLVER WITH REUTILIZATION OF PREVIOUSLY-COMPUTED LU FACTORIZATIONS FOR H-ADAPTIVE FINITE ELEMENT GRIDS WITH POINT SINGULARITIES

Computers and Mathematics with Applications, 65, 8 (2013) 1140-1151

Hassan AbouEisha, Mikhail Moshkhov, Maciej Paszynski, Piotr Gurgul, Victor Calo ALGORITHM TO FIND AN OPTIMAL ELIMINATION TREE FOR A CLASS OF 2D FINITE ELEMENT GRIDS

submitted to SIAM Journal of Applied Mathematics, 2013

