

Maciej Paszynski

Department of Computer Science

AGH University of Science and Technology, Krakow, Poland

maciej.paszynski@agh.edu.pl

http://home.agh.edu.pl/paszynsk

http://www.ki.agh.edu.pl/en/staff/paszynski-maciej

http://www.ki.agh.edu.pl/en/research-groups/a2s

Main collaborators

Victor Calo (KAUST)
Leszek Demkowicz (ICES, UT)

David Pardo (IKERBASQUE)

Frontal and multi-frontal solvers:

Graph grammar based

model of concurrency

mailto:e-mail:maciej.paszynski@agh.edu.pl
http://home.agh.edu.pl/paszynsk
http://www.ki.agh.edu.pl/en/staff/paszynski-maciej
http://www.ki.agh.edu.pl/en/staff/paszynski-maciej
http://www.ki.agh.edu.pl/en/staff/paszynski-maciej
http://www.ki.agh.edu.pl/en/research-groups/a2s
http://www.ki.agh.edu.pl/en/research-groups/a2s
http://www.ki.agh.edu.pl/en/research-groups/a2s

GENERATION OF 1D ELIMINATION TREE

1D elimination tree obtained by executing productions (P1)-(P2)2-(P2)2-(P3)6

GRAPH GRAMMAR PRODUCTIONS AS ATOMIC TASKS

We assign indices to grammar productions in order to localize

the places where the graph grammar productions were fired

(P1)-(P2)1-(P2)2-(P2)3-(P2)4-(P3)1-(P3)2-(P3)3-(P3)4-(P3)5-(P3)6

TRACE THEORY BASED SCHEDULER

Dependency relation for construction of the elimination tree

(P1)D{(P2)1,(P2)2}

(P2)1D{(P2)3,(P2)4}

(P2)3D{(P3)1,(P3)2}

(P2)4D{(P3)3,(P3)4}

(P2)2D{(P3)5,(P3)6}

Alphabet:

A = {(P1) , (P2)1 , (P2)2 , (P2)3 , (P2)4 , (P3)1 , (P3)2 , (P3)3 , (P3)4 , (P3)5 , (P3)6 }

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

(P1)-(P2)1-(P2)2-(P2)3-(P2)4- (P3)1-(P3)2-(P3)3-(P3)4-(P3)5-(P3)6

[(P1)][(P2)1(P2)2][(P2)3(P2)4(P3)5(P3)6][(P3)1(P3)2(P3)3(P3)4]

Scheduling according to Foata Normal Form:

Thus, the execution of the solver consists of several steps, where independent

tasks are executed in concurrent, interchanged with the synchronization barriers.

    

 

    k
j

k
ikk

k
j

k
ik

k
i

n
l

nn
ll

Daaljlik

Iaaljik

Aa

aaaaaaaaa
n

1
1

21
22

2
2
1

11
2

1
1

,...,1,...,1

,...,1,

............
11








i<>j where I=AxA\D

Foata Normal Form

(alphabet)

PROCESS OF THE ELIMINATION

EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

Graph grammar production construction local matrix for the first sub-interval

Graph grammar production construction local matrix for the last sub-interval

Graph grammar production construction local matrix for the i-th sub-interval

PROCESS OF THE ELIMINATION

EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

Generation of frontal matrices at leaves of the eliminaton tree expressed as

the execution of graph grammar productions (A1)-(A)4-(AN)

Graph grammar production expressing the merging process

Exemplary merging of two internal contributions

PROCESS OF THE ELIMINATION

EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

ASSEMBLING AT PARENT LEVEL

Expression of the solver execution by graph grammar productions

(A1)-(A)4-(AN) (generation of frontal matrices at leaves of the elimination trees)

(A2)3 (merging contributions at father nodes)

After merging of the two internal contributions,

the i-th equation is fully assembled, and can be eliminated

PROCESS OF THE ELIMINATION

EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

Graph grammar production expressing the elimination process

Expression of the solver execution by graph grammar productions

(A1)-(A)4-(AN) (generation of frontal matrices at leaves of the elimination trees)

(A2)3 (merging contributions at father nodes)

(E2)3 (elimination of fully assembled nodes)

Finally, we reach the root of the elimination tree

PROCESS OF THE ELIMINATION

EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

At the root node, all three equations are fully assembled, and the local system

can be solved now

ELIMINATION OF FULLY ASSEMBLED NODES

Expression of the solver execution by graph grammar productions

(A1)-(A)4-(AN) (generation of frontal matrices at leaves of the elimination trees)

(A2)3 (merging contributions at father nodes)

(E2)3 (elimination of fully assembled nodes)

(A2) – (E2) (merging at parent node followed by elimination)

(Aroot) – (Eroot) (merging at root node followed by full forward elimination)

PROCESS OF THE BACKWARD SUBSTITUTIONS

EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

At the last stage of the solver execution, we execute partial backward substitutions

TRACE THEORY BASED SCHEDULER

Dependency relation for the solver algorithm

{(A1),(A)1}D(A2)1

{(A)2,(A)3}D(A2)2

{(A)4,(AN)}D(A2)3

(A2)1D(E2)1

(A2)2D(E2)2

(A2)3D(E2)3

{(E2)1,(E2)2}D(A2)4

(A2)4D(E2)4

{(E2)3(E2)4}D(Aroot)

(Aroot)D(Eroot)

(Eroot)D{(BS)1,(BS)2

(BS)1D{(BS)3,(BS)4}

Alphabet:

A={(A1), (A)1 , (A)2 , (A)3 , (A)4 , (AN), (A2)1 , (A2)2 , (A2)3 , (E2)1 , (E2)2 , (E2)3 , (A2)4 ,

(E2)4 , (Aroot) , (Eroot) , (BS)1 , (BS)2 , (BS)3 , (BS)4 }

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

Scheduling according to Foata Normal Form:

(A1)-(A)1-(A)2-(A)3-(A)4- (AN)-(A2)1-(A2)2- (A2)3-(E2)1-(E2)2-(E2)3- (A2)4- (E2)4-

(Aroot)-(Eroot)-(BS)1-(BS)2-(BS)3-(BS)4

[(A1)(A)1(A)2(A)3(A)4(AN)][(A2)1(A2)2(A2)3][(E2)1(E2)2(E2)3] [(A2)4][(E2)4]

[(Eroot)][(Aroot)][(Eroot)][(BS)1(BS)2][(BS)3(BS)4]

Thus, the execution of the solver consists of several steps, where independent

tasks are executed in concurrent, interchanged with the synchronization barriers.

    

 

    k
j

k
ikk

k
j

k
ik

k
i

n
l

nn
ll

Daaljlik

Iaaljik

Aa

aaaaaaaaa
n

1
1

21
22

2
2
1

11
2

1
1

,...,1,...,1

,...,1,

............
11








Foata Normal Form

(alphabet)

NUMERICAL EXPERIMENTS

NVIDIA GeForce 8800 gt with 16 multiprocessors, each having 8 cores

(128 cores total)

1D solver O(logN) 2D solver O(NlogN)

When the number of leaves n is larger than number of processors,

the execution time must be multiplied by n/p

PAPERS

Paweł Obrok, Paweł Pierzchała, Arkadiusz Szymczak, Maciej Paszyński

GRAPH GRAMMAR BASED MULTI-THREAD MULTI-FRONTAL PARALLEL

SOLVER WITH THRACE THEORY BASED SCHEDULER

Procedia Computer Science, 1, 1 (2010) 1993-2001

