Frontal and multi-frontal solvers:

 Graph grammar based model of concurrencyMaciej Paszynski
Department of Computer Science
AGH University of Science and Technology, Krakow, Poland

maciej.paszynski@agh.edu.pl

http://home.agh.edu.pl/paszynsk
http://www.ki.agh.edu.pl/en/staff/paszynski-maciej
http://www.ki.agh.edu.pl/en/research-groups/a2s
Main collaborators
Victor Calo (KAUST)
Leszek Demkowicz (ICES, UT) David Pardo (IKERBASQUE)

GENERATION OF 1D ELIMINATION TREE

1D elimination tree obtained by executing productions (P1)-(P2) ${ }^{2}$-(P2) ${ }^{2}$-(P3) ${ }^{6}$

GRAPH GRAMMAR PRODUCTIONS AS ATOMIC TASKS

(P1)

(P3)

We assign indices to grammar productions in order to localize the places where the graph grammar productions were fired
$(\mathrm{P} 1)-(\mathrm{P} 2)_{1}-(\mathrm{P} 2)_{2}-(\mathrm{P} 2)_{3}-(\mathrm{P} 2)_{4}-(\mathrm{P} 3)_{1}-(\mathrm{P} 3)_{2}-(\mathrm{P} 3)_{3}-(\mathrm{P} 3)_{4}-(\mathrm{P} 3)_{5}-(\mathrm{P} 3)_{6}$

TRACE THEORY BASED SCHEDULER

Alphabet:
$\mathrm{A}=\left\{(\mathrm{P} 1),(\mathrm{P} 2)_{1},(\mathrm{P} 2)_{2},(\mathrm{P} 2)_{3},(\mathrm{P} 2)_{4},(\mathrm{P} 3)_{1},(\mathrm{P} 3)_{2},(\mathrm{P} 3)_{3},(\mathrm{P} 3)_{4},(\mathrm{P} 3)_{5},(\mathrm{P} 3)_{6}\right\}$
Dependency relation for construction of the elimination tree $(\mathrm{P} 1) \mathrm{D}\left\{(\mathrm{P} 2)_{1},(\mathrm{P} 2)_{2}\right\}$ $(\mathrm{P} 2)_{1} \mathrm{D}\left\{(\mathrm{P} 2)_{3},(\mathrm{P} 2)_{4}\right\}$ $(\mathrm{P} 2)_{3} \mathrm{D}\left\{(\mathrm{P} 3)_{1},(\mathrm{P} 3)_{2}\right\}$ $(\mathrm{P} 2)_{4} \mathrm{D}\left\{(\mathrm{P} 3)_{3},(\mathrm{P} 3)_{4}\right\}$ $(\mathrm{P} 2)_{2} \mathrm{D}\left\{(\mathrm{P} 3)_{5},(\mathrm{P} 3)_{6}\right\}$

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

$(\mathrm{P} 1)-(\mathrm{P} 2)_{1}-(\mathrm{P} 2)_{2}-(\mathrm{P} 2)_{3}-(\mathrm{P} 2)_{4^{-}}-(\mathrm{P} 3)_{1}-(\mathrm{P} 3)_{2}-(\mathrm{P} 3)_{3}-(\mathrm{P} 3)_{4}-(\mathrm{P} 3)_{5}-(\mathrm{P} 3)_{6}$
Foata Normal Form
$\left[a_{1}^{1} a_{2}^{1} . . a_{l_{1}}^{1}\right]\left[a_{1}^{2} a_{2}^{2} . . a_{l_{1}}^{2}\right] .\left[a_{1}^{n} a_{2}^{n} . . a_{l_{n}}^{n}\right]$
$a_{i}^{k} \in A$ (alphabet)
$\forall k \forall i, j \in\left\{1, \ldots, l_{k}\right\} \quad a_{i}^{k} I a_{j}^{k} \quad \mathrm{i}<>\mathrm{j}$ where $I=A x A \backslash D$
$\forall k \forall i \in\left\{1, \ldots, l_{k}\right\} \exists j \in\left\{1, \ldots, l_{k-1}\right\} \quad a_{i}^{k-1} D a_{j}^{k}$

Scheduling according to Foata Normal Form:
$[(\mathrm{P} 1)]\left[(\mathrm{P} 2)_{1}(\mathrm{P} 2)_{2}\right]\left[(\mathrm{P} 2)_{3}(\mathrm{P} 2)_{4}(\mathrm{P} 3)_{5}(\mathrm{P} 3)_{6}\right]\left[(\mathrm{P} 3)_{1}(\mathrm{P} 3)_{2}(\mathrm{P} 3)_{3}(\mathrm{P} 3)_{4}\right]$

Thus, the execution of the solver consists of several steps, where independent tasks are executed in concurrent, interchanged with the synchronization barriers.

PROCESS OF THE ELIMINATION

EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

Graph grammar production construction local matrix for the first sub-interval

Graph grammar production construction local matrix for the i-th sub-interval

Graph grammar production construction local matrix for the last sub-interval

PROCESS OF THE ELIMINATION EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

Generation of frontal matrices at leaves of the eliminaton tree expressed as the execution of graph grammar productions (A1)-(A)4-(AN)

PROCESS OF THE ELIMINATION EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

$$
\begin{aligned}
{\left[\begin{array}{ll}
-\frac{1}{h^{2}} & \frac{1}{h^{2}} \\
\frac{1}{h^{2}} & -\frac{1}{h^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{i-1} \\
x_{i}
\end{array}\right]=} & {\left[\begin{array}{l}
0 \\
0
\end{array}\right] \bigoplus\left[\begin{array}{ll}
-\frac{1}{h^{2}} & \frac{1}{h^{2}} \\
\frac{1}{h^{2}} & -\frac{1}{h^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=} \\
& {\left[\begin{array}{lll}
-\frac{2}{h^{2}} & \frac{1}{h^{2}} & \frac{1}{h^{2}} \\
\frac{1}{h^{2}} & -\frac{1}{h^{2}} & 0 \\
\frac{1}{h^{2}} & 0 & -\frac{1}{h^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{i-1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Exemplary merging of two internal contributions

Graph grammar production expressing the merging process

ASSEMBLING AT PARENT LEVEL

Expression of the solver execution by graph grammar productions (A1)-(A)4-(AN) (generation of frontal matrices at leaves of the elimination trees)
(A2 3 (merging contributions at father nodes)

PROCESS OF THE ELIMINATION EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

$$
\begin{array}{r}
{\left[\begin{array}{ll}
-\frac{1}{h^{2}} & \frac{1}{h^{2}} \\
\frac{1}{h^{2}} & -\frac{1}{h^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{i-1} \\
x_{i}
\end{array}\right]=} \\
{\left[\begin{array}{l}
0 \\
0
\end{array}\right] \bigoplus\left[\begin{array}{lll}
-\frac{1}{h^{2}} & \frac{1}{h^{2}} \\
\frac{1}{h^{2}} & -\frac{1}{h^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=} \\
\\
{\left[\begin{array}{lll}
-\frac{2}{h^{2}} & \frac{1}{h^{2}} & \frac{1}{h^{2}} \\
\frac{1}{h^{2}} & -\frac{1}{h^{2}} & 0 \\
\frac{1}{h^{2}} & 0 & -\frac{1}{h^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{i-1} \\
x_{i+1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

After merging of the two internal contributions, $\left[x_{i-1}, x_{i}\right]$ and $\left[x_{i}, x_{i+1}\right]$ the i-th equation is fully assembled, and can be eliminated

Graph grammar production expressing the elimination process
Expression of the solver execution by graph grammar productions
(A1)-(A)4-(AN) (generation of frontal matrices at leaves of the elimination trees)
(A2) ${ }^{3}$ (merging contributions at father nodes)
(E2) ${ }^{3}$ (elimination of fully assembled nodes)

PROCESS OF THE ELIMINATION EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

Finally, we reach the root of the elimination tree

At the root node, all three equations are fully assembled, and the local system can be solved now

ELIMINATION OF FULLY ASSEMBLED NODES

Expression of the solver execution by graph grammar productions
(A1)-(A)4-(AN) (generation of frontal matrices at leaves of the elimination trees)
(A2) ${ }^{3}$ (merging contributions at father nodes)
(E2) ${ }^{3}$ (elimination of fully assembled nodes)
(A2) - (E2) (merging at parent node followed by elimination)
(Aroot) - (Eroot) (merging at root node followed by full forward elimination)

PROCESS OF THE BACKWARD SUBSTITUTIONS EXPRESSED BY GRAPH GRAMMAR PRODUCTIONS

(BS)

$$
\left[\begin{array}{ccc}
1 & \hat{a}_{12} & \hat{a}_{13} \\
0 & \hat{a}_{l l} & \hat{a}_{l r} \\
0 & \hat{a}_{r l} & \hat{a}_{r r}
\end{array}\right]\left\{\begin{array}{l}
\hat{b} \\
\hat{b}_{l} \\
\hat{b}_{r}
\end{array}\right\} \quad\left[\begin{array}{ccc}
1 & \tilde{a}_{12} & \tilde{a}_{13} \\
0 & \tilde{a}_{l l} & \tilde{a}_{l r} \\
0 & \tilde{a}_{r l} & \tilde{a}_{r r}
\end{array}\right]\left\{\begin{array}{c}
\tilde{b} \\
\tilde{b}_{l} \\
\widetilde{b}_{r}
\end{array}\right\}
$$

$$
\left[\begin{array}{ccc}
1 & \hat{a}_{12} & \hat{a}_{13} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
\hat{b} \\
\hat{u}_{l} \\
\hat{u}_{r}
\end{array}\right\}\left[\begin{array}{ccc}
1 & \tilde{a}_{12} & \tilde{a}_{13} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
\tilde{b}^{3} \\
\tilde{u}_{l} \\
\tilde{u}_{r}
\end{array}\right\}
$$

At the last stage of the solver execution, we execute partial backward substitutions

TRACE THEORY BASED SCHEDULER

Alphabet:
$A=\left\{(A 1),(A)_{1},(A)_{2},(A)_{3},(A)_{4},(A N),(A 2)_{1},(A 2)_{2},(A 2)_{3},(E 2)_{1},(E 2)_{2},(E 2)_{3},(A 2)_{4}\right.$, $(\mathrm{E} 2)_{4},($ Aroot $),($ Eroot $\left.),(\mathrm{BS})_{1},(\mathrm{BS})_{2},(\mathrm{BS})_{3},(\mathrm{BS})_{4}\right\}$

Dependency relation for the solver algorithm $\left\{(\mathrm{A} 1),(\mathrm{A})_{1}\right\} \mathrm{D}(\mathrm{A} 2)_{1}$ $\left\{(\mathrm{A})_{2},(\mathrm{~A})_{3}\right\} \mathrm{D}(\mathrm{A} 2)_{2}$ $\left\{(\mathrm{A})_{4},(\mathrm{AN})\right\} \mathrm{D}(\mathrm{A} 2)_{3}$ $(\mathrm{A} 2)_{1} \mathrm{D}(\mathrm{E} 2)_{1}$ $(\mathrm{A} 2)_{2} \mathrm{D}(\mathrm{E} 2)_{2}$ $(\mathrm{A} 2)_{3} \mathrm{D}(\mathrm{E} 2)_{3}$ $\left\{(\mathrm{E} 2)_{1},(\mathrm{E} 2)_{2}\right\} \mathrm{D}(\mathrm{A} 2)_{4}$ $(\mathrm{A} 2)_{4} \mathrm{D}(\mathrm{E} 2)_{4}$ $\left\{(\mathrm{E} 2)_{3}(\mathrm{E} 2)_{4}\right\} \mathrm{D}($ Aroot $)$ (Aroot)D(Eroot) (Eroot)D\{(BS),$(\mathrm{BS})_{2}$ $(\mathrm{BS})_{1} \mathrm{D}\left\{(\mathrm{BS})_{3},(\mathrm{BS})_{4}\right\}$

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

Dependency graph

TRACE THEORY BASED SCHEDULER

$\left.(\mathrm{A} 1)-(\mathrm{A})_{1}-(\mathrm{A})_{2^{-}}-(\mathrm{A})_{3}-(\mathrm{A})_{4^{-}}(\mathrm{AN})-(\mathrm{A} 2)_{1^{-}}-\mathrm{A} 2\right)_{2^{-}}(\mathrm{A} 2)_{3}-(\mathrm{E} 2)_{1^{-}}-(\mathrm{E} 2)_{2^{-}}-(\mathrm{E} 2)_{3^{-}}-(\mathrm{A} 2)_{4^{-}}-(\mathrm{E} 2)_{4^{-}}$ (Aroot)-(Eroot)-(BS) $)_{1}-(\mathrm{BS})_{2}-(\mathrm{BS})_{3}-(\mathrm{BS})_{4}$

Foata Normal Form
$\left[a_{1}^{1} a_{2}^{1} . . a_{l_{1}}^{1}\right]\left[a_{1}^{2} a_{2}^{2} . . a_{l_{1}}^{2}\right] .\left[a_{1}^{n} a_{2}^{n} . . a_{l_{n}}^{n}\right]$
$a_{i}^{k} \in A$ (alphabet)
$\forall k \forall i, j \in\left\{1, \ldots l_{k}\right\} \quad a_{i}^{k} I a_{j}^{k}$
$\forall k \forall i \in\left\{1, \ldots, l_{k}\right\} \exists j \in\left\{1, \ldots, l_{k-1}\right\} \quad a_{i}^{k-1} D a_{j}^{k}$

Scheduling according to Foata Normal Form:
$\left[(\mathrm{A} 1)(\mathrm{A})_{1}(\mathrm{~A})_{2}(\mathrm{~A})_{3}(\mathrm{~A})_{4}(\mathrm{AN})\right]\left[(\mathrm{A} 2)_{1}(\mathrm{~A} 2)_{2}(\mathrm{~A} 2)_{3}\right]\left[(\mathrm{E} 2)_{1}(\mathrm{E} 2)_{2}(\mathrm{E} 2)_{3}\right]\left[(\mathrm{A} 2)_{4}\right]\left[(\mathrm{E} 2)_{4}\right]$ $[($ Eroot $)][($ Aroot $)][($ (Eroot $)]\left[(\mathrm{BS})_{1}(\mathrm{BS})_{2}\right]\left[(\mathrm{BS})_{3}(\mathrm{BS})_{4}\right]$

Thus, the execution of the solver consists of several steps, where independent tasks are executed in concurrent, interchanged with the synchronization barriers.

NUMERICAL EXPERIMENTS

NVIDIA GeForce 8800 gt with 16 multiprocessors, each having 8 cores (128 cores total)

1D solver $O(\log N)$
2D solver $O(\operatorname{Mog} N)$
When the number of leaves n is larger than number of processors, the execution time must be multiplied by n / p

PAPERS

Paweł Obrok, Paweł Pierzchała, Arkadiusz Szymczak, Maciej Paszyński GRAPH GRAMMAR BASED MULTI-THREAD MULTI-FRONTAL PARALLEL SOLVER WITH THRACE THEORY BASED SCHEDULER
Procedia Computer Science, 1, 1 (2010) 1993-2001

