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EXEMPLARY SIMPLE 1D NUMERICAL PROBLEM 

Find temperature distribution                                            such that 

Finite difference disretization 



  

  

TRIDIAGONAL MATRIX FOR EXEMPLARY 1D PROBLEM 



  

  

FRONTAL SOLVER 

Front matrix 

Frontal matrix focuses on forward elimination of the first row 



  

  

FRONTAL SOLVER 

Front matrix 

2nd row = 2nd row – 1/h2 * 1st row 



  

  

FRONTAL SOLVER 

Front matrix 

2nd row = 2nd row – 1/h2 * 1st row 



  

  

FRONTAL SOLVER 

Front matrix 

The first row has been eliminated 

Frontral matrix focuses on the elimination of the second row 



  

  

FRONTAL SOLVER 

Front matrix 

3rd row = 3nd row – [1/h2] / [-2/h2] * 2nd row 



  

  

FRONTAL SOLVER 

Front matrix 

3rd row = 3nd row – [1/h2] / [-2/h2] * 2nd row 



  

  

ELEMENT-WISE DECOMPOSITION 

Construct multiple 

frontal matrices  

in such a way 

so they sum up  

to the full matrix 

Variables must be split  

into parts 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

First all frontal matrices are constructed 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

First and second frontal matrices are sum up into new 3x3 frontal matrix 

Its first and second rows are fully assembled 

+ 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

+ 

First column is eliminated by using first row 

2nd row = 2nd row – [1/h2] * 1st row 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

+ 

2nd row = 2nd row – [1/h2] * 1st row 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

Third and fourth frontal matrices are sum up into new 3x3 frontal matrix 

Now only the second row is fully assembled 

+ + 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

Change of the ordering 

+ + 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

+ + 

Eliminate entries below the diagonal 

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row 

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

+ + 

Why can I substract fully assembled 1st  row  

from not fully assemled rows 2nd and 3rd ? 

Eliminate entries below the diagonal 

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row 

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

+ + 

This is because substraction and addition are interchangable 

(now I am substructing from the 2nd not fully assembled row,  

and later I will add the remaining part) 

Moreover the 1st row which is utilized for the substractions 

in other columns contains only zeros 

Eliminate entries below the diagonal 

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row 

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

+ + 

Eliminate entries below the diagonal 

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row 

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row 



  

  

MULTI-FRONTAL SOLVER ALGORITHM 

Fifth and sixth frontal matrices are sum up into new 3x3 frontal matrix 

Now the second and third rows are fully assembled 

… 

+ + + 



  

  
+ + + 

Continue until root node 

MULTI-FRONTAL SOLVER ALGORITHM 

+ 

node 

+ 

root 



  

  

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM 

All frontal matrices are generated at the same time 

Procesor 1      Procesor 2     Procesor 3       Procesor 4       Procesor 5     Procesor 6 



  

  

Summing up and elimination are executed at the same time  

over different pairs of frontal matrices 

+ + + 

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM 

Procesor 1      Procesor 2     Procesor 3       Procesor 4       Procesor 5     Procesor 6 



  

  
+ + + 

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM 

Procesor 1      Procesor 2     Procesor 3       Procesor 4       Procesor 5     Procesor 6 

Summing up and elimination are executed at the same time  

over different pairs of frontal matrices 



  

  
+ + + 

The agorithm is recursively repeated until we reach the root of the tree 

The algorithm results in upper trianguler matrix stored in distributed manner 

Computational complexity = height of the tree = logN (where N = #unknowns-1) 

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM 

Procesor 1      Procesor 2     Procesor 3       Procesor 4       Procesor 5     Procesor 6 

+ 

node 

+ 

root 



  

GENERALIZATION TO 1D FINITE ELEMENT METHOD 
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GENERALIZATION TO 1D FINITE ELEMENT METHOD 

Finite element method disretization 
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Exemplary basis functions for [0,l] = [0,1], for two finite elements 
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GENERALIZATION TO 1D FINITE ELEMENT METHOD 
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Exemplary basis functions for [0,l] = [0,1], for two finite elements 
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GENERALIZATION TO 1D FINITE ELEMENT METHOD 
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Exemplary basis functions for [0,l] = [0,1], for two finite elements 
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GENERALIZATION TO 1D FINITE ELEMENT METHOD 
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Notice that when we switch from finite difference to finite elements, 

it only changes the local systems of equations at tree nodes 



GENERALIZATION TO 1D FINITE ELEMENT METHOD 
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Local system of equations generated over the element K  
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Notice that when we switch from finite difference to finite elements, 

it only changes the local systems of equations at tree nodes 

GENERALIZATION TO 1D FINITE ELEMENT METHOD 
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Generates frontal matrix for the first element, 

eliminates fully assembled degrees of freedom 

FRONTAL SOLVER 

SOLUTION BASED ON LINEAR ORDER OF ELEMENTS 

Partial  

forward elimination 

O(6*9^2) 



  

Generates frontal matrix for the second element, 

merges with the current frontal matrix 

eliminates fully assembled degrees of freedom 

FRONTAL SOLVER 

SOLUTION BASED ON LINEAR ORDER OF ELEMENTS 

Full  

forward elimination 



MULTI-FRONTAL SOLVER 

SOLUTION BASED ON THE ELIMINATION TREE 

Partial  

forward elimination 



Partial  

forward elimination 

MULTI-FRONTAL SOLVER 

SOLUTION BASED ON THE ELIMINATION TREE 



Full forward elimination  

of the interface problem matrix 

MULTI-FRONTAL SOLVER 

SOLUTION BASED ON THE ELIMINATION TREE 



Number of operations for partial forward elimination 

COMPARISON OF COSTS 



CONSTRUCTION OF THE ELIMINATION TREE  

BASED ON THE HISTORY OF MESH REFINEMENTS 

For any initial mesh, the elimination tree can be created based on 

nested dissection algorithm. 



CONSTRUCTION OF THE ELIMINATION TREE  

 BASED ON THE HISTORY OF MESH REFINEMENTS 

The elimination tree created for the initial mesh is updated when the mesh is refined 

(elimination tree is constructed dynamically, during mesh refinements) 



CONSTRUCTION OF THE ELIMINATION TREE  

 BASED ON THE HISTORY OF MESH REFINEMENTS 

The elimination tree created for the initial mesh is updated when the mesh is refined 

(elimination tree is constructed dynamically, during mesh refinements) 



CONSTRUCTION OF THE REFINEMENT TREES 



CONSTRUCTION OF THE REFINEMENT TREES 



CONSTRUCTION OF THE REFINEMENT TREES 



CONSTRUCTION OF THE REFINEMENT TREES 



ELIMINATIONS BASED ON REFINEMENT TREES 

• Local matrices for active elements – leaves of the elimination tree –

are created 

Level of  

initial mesh elements 

Level of  

refinement trees 



• Interior degrees of freedom are eliminated at every leaf

Level of 

initial mesh elements 

Level of  

refinement trees 

ELIMINATIONS BASED ON REFINEMENT TREES 



  

  

• Schur complement contributions are merged at parent level 

Level of 

initial mesh elements 

Level of  

refinement trees 

ELIMINATIONS BASED ON REFINEMENT TREES 



  

  

• Fully assembled degrees of freedom are eliminated at parent nodes level 

(degrees of freedom related to common edges shared by both son elements 

can be eliminated now) 

Level of  

initial mesh elements 

Level of  

refinement trees 

ELIMINATIONS BASED ON REFINEMENT TREES 



• Contributions to Schur complement are merged again at the next level

Level of  

initial mesh elements 

Level of  

refinement trees 

ELIMINATIONS BASED ON REFINEMENT TREES 



  

  

• Fully assembled degrees of freedom are eliminated 

Level of  

initial mesh elements 

Level of  

refinement trees 

ELIMINATIONS BASED ON REFINEMENT TREES 



  

  

• Finally, Schur complement contributions are merged at the tree root node 

Level of  

initial mesh elements 

Level of  

refinement trees 

ELIMINATIONS BASED ON REFINEMENT TREES 



• The common interface problem is solved at the tree root node

(The size of the common interface problem corresponds to the size of 

crossection of the entire domain) 

Level of 

initial mesh elements 

Level of  

refinement trees 

ELIMINATIONS BASED ON REFINEMENT TREES 



 

Level of  

initial mesh elements 

Level of  

refinement trees 

• The solution obtained at root node is utilized at son nodes.

• The backward substitution is executed

ELIMINATIONS BASED ON REFINEMENT TREES 



Level of  

initial mesh elements 

Level of  

refinement trees 

• The solution utilized at the second level nodes is utilizes at their sone nodes.

• The backward substitution is executed

ELIMINATIONS BASED ON REFINEMENT TREES 



Level of 

initial mesh elements 

Level of  

refinement trees 

• The solution obtained at the third level nodes is utilized at leaf nodes.

• The backward substitution is executed on the level of leaf nodes

ELIMINATIONS BASED ON REFINEMENT TREES 



PERFORMANCE OF THE 1st VERSION OF THE DISTRIBUTED 

MEMORY MULTI-FRONTAL PARALLEL SOLVER 

- Embeded into hp code

+ Outperforms MUMPS for large number of processors

- Slower than MUMPS for low number of processors

Profiling showed that the time consuming part for low number of processors 

was actually process of merging of matrices –  

performed on the level of unknowns, with moving of matrix entries. 

Switch to the level of nodes, do not touch matrix entries –work with pointers 

1,482,570 degrees of freedom (68,826,475 non-zeros) 
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