Frontal and multi-frontal solvers: orderings, elimination trees, refinement trees

Maciej Paszynski
Department of Computer Science
AGH University of Science and Technology, Krakow, Poland
maciej.paszynski@agh.edu.pl
http://www.ki.agh.edu.pl/en/research-groups/a2s

EXEMPLARY SIMPLE 1D NUMERICAL PROBLEM

Find temperature distribution $R \ni x \mapsto u(x) \in R$ such that

$$
\frac{d^{2} u}{d x^{2}}=0 \text { for } x \in[0,1] \quad u(0)=0 \quad u(1)=20
$$

Finite difference disretization

$$
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=0 \text { for } i=1, \ldots, N-1
$$

$$
u_{N}=20
$$

$$
\begin{aligned}
& h=\frac{1}{N} \\
& u_{i}=u\left(x_{i}\right)=u\left(\frac{i}{N}\right) \\
& {[0,1]=\bigcup_{i=1}^{N}\left[x_{i-1}, x_{i}\right]}
\end{aligned}
$$

TRIDIAGONAL MATRIX FOR EXEMPLARY 1D PROBLEM

$$
\begin{aligned}
& u_{0}=0 \\
& \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=0 \text { for } i=1, \ldots, N-1 \\
& {\left[\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
1 / h^{2} & -2 / h^{2} & 1 / h^{2} & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 1 / h^{2} & -2 / h^{2} & 1 / h^{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & 1 / h^{2} & -2 / h^{2} & 1 / h^{2} \\
0 & 0 & \cdots & 0 & \cdots & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{i} \\
\cdots \\
x_{N-1} \\
x_{N}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
\cdots \\
0 \\
\cdots \\
0 \\
20
\end{array}\right\}}
\end{aligned}
$$

FRONTAL SOLVER

Frontal matrix focuses on forward elimination of the first row

FRONTAL SOLVER

$2^{\text {nd }}$ row $=2^{\text {nd }}$ row $-1 / h^{2}$ * $1^{\text {st }}$ row

FRONTAL SOLVER

\(\left[\begin{array}{ccccccc}\hline 1 \& 0 \& \cdots \& 0 \& \cdots \& 0 \& 0

0 \& -2 / h^{2} \& 1 / h^{2}\end{array}\right]\)| 0 | \cdots | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | $1 / h^{2}$ | $-2 / h^{2}$ | $1 / h^{2}$ |
| 0 | 0 | \cdots | 0 |
| 0 | \cdots | $1 / h^{2}$ | $-2 / h^{2}$ |
| $1 / h^{2}$ | \cdots | 0 | |
| 0 | \cdots | 0 | $1 / h^{2}$ |
| | $-2 / h^{2}$ | $1 / h^{2}$ | 0 |
| 0 | 0 | \cdots | 0 |
| $1 / h^{2}$ | $-2 / h^{2}$ | $1 / h^{2}$ | |
| 0 | 0 | \cdots | 0 |

$2^{\text {nd }}$ row $=2^{\text {nd }}$ row $-1 / h^{2}$ * $1^{\text {st }}$ row

FRONTAL SOLVER

The first row has been eliminated
Frontral matrix focuses on the elimination of the second row

FRONTAL SOLVER

$3^{\text {rd }}$ row $=3^{\text {nd }}$ row $-\left[1 / h^{2}\right] /\left[-2 / h^{2}\right] * 2^{\text {nd }}$ row

FRONTAL SOLVER

$3^{\text {rd }}$ row $=3^{\text {nd }}$ row $-\left[1 / h^{2}\right] /\left[-2 / h^{2}\right] * 2^{\text {nd }}$ row

ELEMENT-WISE DECOMPOSITION

1	0	...	0	\ldots	0	0		
$1 / h^{2}$	- $2 / h^{2}$	$1 / h^{2}$	0	...	0	0	$\int \begin{aligned} & x_{1} \\ & x_{2}\end{aligned}$	$\left(\begin{array}{l}0 \\ 0\end{array}\right]$
0	$1 / h^{2}$	$-2 / h^{2}$	$1 / h^{2}$	0	\ldots	0		-
0	...	$1 / h^{2}$	$-2 / h^{2}$	$1 / h^{2}$	\ldots	0	x_{i}	$=00$
0	\ldots	0	$1 / h^{2}$	$-2 / h^{2}$	$1 / h^{2}$	0	x_{6}	\cdots
0	0	\cdots	0	$1 / h^{2}$	$-2 / h^{2}$	$1 / h^{2}$		20
0	0	...	0	...	0	1		

Construct multiple frontal matrices in such a way so they sum up to the full matrix

Variables must be split into parts

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}^{\mathrm{I}}+{ }^{+} \mathrm{x}_{\mathrm{i}}^{\mathrm{II}}
$$

$$
\begin{aligned}
& \left.\begin{array}{cc}
1 & 0 \\
1 / h^{2} & -1 / h^{2}
\end{array}\right\}\left\{\begin{array}{l}
x_{1} \\
x_{2}^{1}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\} \\
& \begin{array}{cc}
-1 / h^{2} & 1 / h^{2} \\
1 / h^{2} & -1 / h^{2}
\end{array} \left\lvert\,\left\{\begin{array}{l}
x_{4}^{11} \\
x_{5}^{1}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}\right. \\
& \begin{array}{|cc|}
\hline-1 / h^{2} & 1 / h^{2} \\
1 / h^{2} & -1 / h^{2} \\
\hline
\end{array} \\
& \left\{\begin{array}{l}
x_{2}^{I I} \\
x_{3}^{1}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\} \\
& \begin{array}{|cc|}
\hline-1 / h^{2} & 1 / h^{2} \\
1 / h^{2} & -1 / h^{2}
\end{array} \left\lvert\,\left\{\begin{array}{l}
x_{5}^{11} \\
x_{6}^{1}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}\right. \\
& \begin{array}{|cc|}
\hline 1 / h^{2} & 1 / h^{2} \\
1 / h^{2} & -1 / h^{2}
\end{array} \left\lvert\,\left\{\begin{array}{l}
x_{3}^{\mathrm{I}} \\
x_{4}^{\frac{1}{4}}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\} \quad\left[\begin{array}{cc}
-1 / h^{2} & 1 / h^{2} \\
0 & 1
\end{array}\right\}\left[\begin{array}{l}
x_{8}^{I I} \\
x_{7}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
20
\end{array}\right\}\right.
\end{aligned}
$$

MULTI-FRONTAL SOLVER ALGORITHM

First all frontal matrices are constructed

MULTI-FRONTAL SOLVER ALGORITHM

$$
\begin{array}{|}
\begin{array}{|ccc|}
\hline \begin{array}{ccc}
1 & 0 & 0 \\
1 / h^{2} & -2 / h^{2} & 1 / h^{2} \\
0 & 1 / h^{2} & -1 / h^{2}
\end{array} \\
+\quad
\end{array}\left\{\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}^{\mathrm{I}}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\} \\
\hline
\end{array}
$$

First and second frontal matrices are sum up into new 3×3 frontal matrix Its first and second rows are fully assembled

MULTI-FRONTAL SOLVER ALGORITHM

$$
\begin{array}{||ccc|}
\hline \hline 1 & 0 & 0 \\
1 / h^{2} & -2 / h^{2} & 1 / h^{2} \\
\hline 0 & 1 / h^{2} & -1 / h^{2}
\end{array} \left\lvert\,\left\{\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}^{\mathrm{I}}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}\right.
$$

First column is eliminated by using first row
$2^{\text {nd }}$ row $=2^{\text {nd }}$ row $-\left[1 / h^{2}\right]$ * $1^{\text {st }}$ row

MULTI-FRONTAL SOLVER ALGORITHM

$$
\begin{array}{|ccc|}
\hline \hline \begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 / h^{2} & 1 / h^{2} \\
\hline 0 & 1 / h^{2} & -1 / h^{2}
\end{array}
\end{array}\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}^{I}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

$$
2^{\text {nd }} \text { row }=2^{\text {nd }} \text { row }-\left[1 / h^{2}\right] \text { * } 1^{\text {st }} \text { row }
$$

MULTI-FRONTAL SOLVER ALGORITHM

Third and fourth frontal matrices are sum up into new 3×3 frontal matrix
Now only the second row is fully assembled

MULTI-FRONTAL SOLVER ALGORITHM

Change of the ordering

MULTI-FRONTAL SOLVER ALGORITHM

Eliminate entries below the diagonal

$$
\begin{aligned}
& 2^{\text {nd }} \text { row }=2^{\text {nd }} \text { row }-\left[1 / \mathrm{h}^{2}\right] /[-2 / \mathrm{h} 2]^{*} 1^{\text {st }} \text { row } \\
& \left.3^{\text {rd }} \text { row }=3^{\text {rd }} \text { row }-[1 / \mathrm{h} 2] /[-2 / \mathrm{h} 2]\right]^{\text {st }} \text { re }
\end{aligned}
$$

MULTI-FRONTAL SOLVER ALGORITHM

Why can I substract fully assembled $1^{\text {st }}$ row from not fully assemled rows $2^{\text {nd }}$ and $3^{\text {rd }}$?

Eliminate entries below the diagonal
$2^{\text {nd }}$ row $=2^{\text {nd }}$ row $-\left[1 / h^{2}\right] /\left[-2 / h_{2}\right] * 1^{\text {st }}$ row
$3^{\text {rd }}$ row $=3^{\text {rd }}$ row $-[1 / \mathrm{h} 2] /[-2 / \mathrm{h} 2]^{*} 1^{\text {st }}$ row

MULTI-FRONTAL SOLVER ALGORITHM

This is because substraction and addition are interchangable (now I am substructing from the $2^{\text {nd }}$ not fully assembled row, and later I will add the remaining part)
Moreover the $1^{\text {st }}$ row which is utilized for the substractions in other columns contains only zeros

Eliminate entries below the diagonal
$2^{\text {nd }}$ row $=2^{\text {nd }}$ row $-\left[1 / \mathrm{h}^{2}\right] /[-2 / \mathrm{h} 2]$ * $1^{\text {st }}$ row
$3^{\text {rd }}$ row $=3^{\text {rd }}$ row $-[1 / \mathrm{h} 2] /[-2 / \mathrm{h} 2]$ * $1^{\text {st }}$ row

MULTI-FRONTAL SOLVER ALGORITHM

Eliminate entries below the diagonal
$2^{\text {nd }}$ row $=2^{\text {nd }}$ row $-\left[1 / \mathrm{h}^{2}\right] /[-2 / \mathrm{h} 2]$ * $1^{\text {st }}$ row
$3^{\text {rd }}$ row $=3^{\text {rd }}$ row $-[1 / \mathrm{h} 2] /[-2 / \mathrm{h} 2]$ * $1^{\text {st }}$ row

MULTI-FRONTAL SOLVER ALGORITHM

Fifth and sixth frontal matrices are sum up into new 3×3 frontal matrix Now the second and third rows are fully assembled

MULTI-FRONTAL SOLVER ALGORITHM

Continue until root node

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

All frontal matrices are generated at the same time

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6
Summing up and elimination are executed at the same time over different pairs of frontal matrices

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6
Summing up and elimination are executed at the same time over different pairs of frontal matrices

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6
The agorithm is recursively repeated until we reach the root of the tree
The algorithm results in upper trianguler matrix stored in distributed manner
Computational complexity $=$ height of the tree $=\log N($ where $N=$ \#unknowns-1)

GENERALIZATION TO 1D FINITE ELEMENT METHOD

Strong formulation

Find $u \in C^{2}(0, l)$ such that

$$
\begin{aligned}
& -\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=f(x) \\
& \quad u(0)=0 \\
& a(l) u^{\prime}(l)+\beta u(l)=\gamma
\end{aligned}
$$

Weak formulation

Find $u \in V$ such that

$$
\underbrace{\int_{0}^{l}\left\{a u^{\prime} v^{\prime}+b u^{\prime} v+c u v\right\} d x+\beta u(l) v(l)}_{b(u, v)}=\underbrace{\int_{0}^{l} f v d x+\gamma v(l)}_{l(v)}
$$

$$
\forall v \in V=\left\{v \in H^{1}(0, l): v(0)=0\right\}
$$

GENERALIZATION TO 1D FINITE ELEMENT METHOD

Finite element method disretization

$$
\begin{gathered}
u=\sum_{i=1}^{N} a_{i} e_{i} \quad v=e_{j} \quad \sum_{i=1}^{N} a_{i} b\left(e_{i}, e_{j}\right)=l\left(e_{j}\right) \\
j=1, \ldots, N \\
b\left(e_{i}, e_{j}\right)=\int_{0}^{l}\left\{a e_{i}^{\prime} e_{j}^{\prime}+b e_{i}^{\prime} e_{j}+c e_{i} e_{j}\right\} d x+\beta e_{i}(l) e_{j}(l)
\end{gathered} l\left(e_{j}\right)=\int_{0}^{l} f e_{j} d x+\gamma e_{j}(l) .
$$

Exemplary basis functions for $[0,1]=[0,1]$, for two finite elements

$e_{1}(x)=\left\{\begin{array}{cc}1-2 x & \text { for } x \in(0,0.5) \\ 0 & \text { for } x \in(0.5,1)\end{array}\right.$

$$
\frac{d e_{1}(x)}{d x}=\left\{\begin{array}{cc}
-2 & \text { for } x \in(0,0.5) \\
0 & \text { for } x \in(0.5,1)
\end{array}\right.
$$

$\frac{d e_{1}(x)}{d x}=\left\{\begin{array}{cc}-2 & \text { for } x \in(0,0.5) \\ 0 & \text { for } x \in(0.5,1)\end{array}\right.$

$$
\frac{d e_{2}(x)}{d x}=\left\{\begin{array}{cc}
2 & \text { for } x \in(0,0.5) \\
-2 & \text { for } x \in(0.5,1)
\end{array}\right.
$$

$$
\frac{d e_{3}(x)}{d x}= \begin{cases}0 & \text { for } x \in(0,0.5) \\ 2 & \text { for } x \in(0.5,1)\end{cases}
$$

$$
\begin{aligned}
& u=\sum_{i=1}^{N} a_{i} e_{i} \quad v=e_{j} \quad\left[\begin{array}{lll}
b\left(e_{1}, e_{1}\right) & b\left(e_{2}, e_{1}\right) & b\left(e_{3}, e_{1}\right) \\
b\left(e_{1}, e_{2}\right) & b\left(e_{2}, e_{2}\right) & b\left(e_{3}, e_{2}\right) \\
b\left(e_{1}, e_{3}\right) & b\left(e_{2}, e_{3}\right) & b\left(e_{3}, e_{3}\right)
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\left\{\begin{array}{l}
l\left(e_{1}\right) \\
l\left(e_{2}\right) \\
l\left(e_{3}\right)
\end{array}\right\} \\
& b\left(e_{i}, e_{j}\right)=\int_{0}^{l}\left\{a e_{i}{ }^{\prime} e_{j}{ }^{\prime}+b e_{i}{ }^{\prime} e_{j}+c e_{i} e_{j}\right\} d x+\beta e_{i}(l) e_{j}(l) \quad l\left(e_{j}\right)=\int_{0}^{l} f e_{j} d x+\gamma e_{j}(l)
\end{aligned}
$$

Exemplary basis functions for $[0,1]=[0,1]$, for two finite elements

GENERALIZATION TO 1D FINITE ELEMENT METHOD

$$
\left.\begin{array}{c}
u=\sum_{i=1}^{N} a_{i} e_{i} \quad v=e_{j} \quad\left[\begin{array}{ll}
b\left(e_{1}, e_{2}\right) & b\left(e_{2}, e_{2}\right) \\
b\left(e_{1}, e_{3}\right) & b\left(e_{2}, e_{3}\right) \\
b\left(e_{3}, e_{3}\right)
\end{array}\right]
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\left\{\begin{array}{l}
l\left(e_{2}\right) \\
l\left(e_{3}\right)
\end{array}\right\}
$$

Exemplary basis functions for $[0,1]=[0,1]$, for two finite elements

$$
\begin{aligned}
& b\left(e_{1}, e_{1}\right)=\int_{Q}^{1}\left\{a e_{1}{ }^{\prime} e_{1}{ }^{\prime}+b e_{1}{ }^{\prime} e_{1}+c e_{1} e_{1}\right\} d x+\beta e_{1}(l) e_{1}(l)=\int_{0}^{0.5}\left\{a \frac{d \chi_{1}^{K_{1}}}{d x} \frac{d \chi_{1}^{K_{1}}}{d x}+b \frac{d \chi_{1}^{K_{1}}}{d x} \chi_{1}^{K_{1}}+c\left(\chi_{1}^{K_{1}}\right)^{2}\right\} d x \\
& b\left(e_{2}, e_{2}\right)=\int_{0}^{0}\left\{a e_{2}{ }^{\prime} e_{2}{ }^{\prime}+b e_{2}{ }^{\prime} e_{2}+c e_{2} e_{2}\right\} d x+\beta e_{2}(l) e_{2}(l)= \\
& 0.5\left\{a \frac{d \chi_{2}^{K_{1}}}{d x} \frac{d \chi_{2}^{K_{1}}}{d x}+b \frac{d \chi_{2}^{K_{1}}}{d x} \chi_{2}^{K_{1}}+c\left(\chi_{2}^{K_{1}}\right)^{2}\right\} d x+\int_{0.5}^{1}\left\{a \frac{d \chi_{1}^{K_{2}}}{d x} \frac{d \chi_{1}^{K_{2}}}{d x}+b \frac{d \chi_{1}^{K_{2}}}{d x} \chi_{1}^{K_{2}}+c\left(\chi_{1}^{K_{2}}\right)^{2}\right\} d x \\
& b\left(e_{3}, e_{3}\right)=\int_{0}^{1}\left\{a e_{3}{ }^{\prime} e_{3}{ }^{\prime}+b e_{3}{ }^{\prime} e_{3}+c e_{3} e_{3}\right\} d x+\beta e_{3}(l) e_{3}(l)=\int_{0.5}^{1}\left\{a \frac{d \chi_{2}^{K_{2}}}{d x} \frac{d \chi_{2}^{K_{2}}}{d x}+b \frac{d \chi_{2}^{K_{2}}}{d x} \chi_{2}^{K_{2}}+c\left(\chi_{2}^{K_{2}}\right)^{2}\right\} d x+\beta
\end{aligned}
$$

GENERALIZATION TO 1D FINITE ELEMENT METHOD

$$
\left[\begin{array}{ccc}
b\left(\chi_{1}^{K_{1}}, \chi_{1}^{K_{1}}\right) & b\left(\chi_{2}^{K_{1}}, \chi_{1}^{K_{1}}\right) & 0 \\
b\left(\chi_{1}^{K_{1}}, \chi_{2}^{K_{1}}\right) & b\left(\chi_{2}^{K_{1}}, \chi_{2}^{K_{1}}\right)+b\left(\chi_{1}^{K_{2}}, \chi_{1}^{K_{2}}\right) & b\left(\chi_{2}^{K_{2}}, \chi_{1}^{K_{2}}\right) \\
0 & b\left(\chi_{1}^{K_{2}}, \chi_{2}^{K_{2}}\right) & b\left(\chi_{2}^{K_{2}}, \chi_{2}^{K_{2}}\right)
\end{array}\right]\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\left\{\begin{array}{c}
l\left(\chi_{1}^{K_{1}}\right) \\
l\left(\chi_{2}^{K_{1}}\right)^{2}+l\left(\chi_{1}^{K_{2}}\right) \\
l\left(\chi_{2}^{K_{2}}\right)
\end{array}\right\}
$$

Notice that when we switch from finite difference to finite elements, it only changes the local systems of equations at tree nodes

$$
\left.\left.\left[\begin{array}{ll}
b\left(\chi_{1}^{K}, \chi_{1}^{K}\right) & b\left(\chi_{2}^{K}, \chi_{1}^{K}\right) \\
b\left(\chi_{1}^{K}, \chi_{2}^{K}\right.
\end{array}\right) b\left(\chi_{2}^{K}, \chi_{2}^{K}\right) ~\right) ~\left(\begin{array}{l}
x_{1}^{K} \\
x_{2}^{K}
\end{array}\right\}=\left\{\begin{array}{l}
l\left(\chi_{1}^{K}\right) \\
l\left(\chi_{2}^{K}\right)
\end{array}\right)\right\}
$$

GENERALIZATION TO 1D FINITE ELEMENT METHOD

Global basis functions are composed with local shape functions, e.g.

$$
e_{2}=\chi_{1}^{K_{2}}+\chi_{2}^{K_{1}}
$$

$$
\begin{aligned}
& b\left(\chi_{i}^{K}, \chi_{j}^{K}\right)=\int_{K}\left\{a \chi_{i}^{K '} \chi_{j}^{K}{ }^{\prime}+b \chi_{i}^{K '} \chi_{j}^{K}+c \chi_{i}^{K} \chi_{j}^{K}\right\} d x+\beta \chi_{i}^{K}(l) \chi_{i}^{K}(l) \\
& l\left(e_{j}\right)=\int_{K} f \chi_{j}^{K} d x+\gamma \chi_{j}^{K}(l)
\end{aligned}
$$

Local system of equations generated over the element K

$$
\left.\left[\begin{array}{ll}
b\left(\chi_{1}^{K}, \chi_{1}^{K}\right) & b\left(\chi_{2}^{K}, \chi_{1}^{K}\right. \\
b\left(\chi_{1}^{K}, \chi_{2}^{K}\right) & b\left(\chi_{2}^{K}, \chi_{2}^{K}\right)
\end{array}\right)\right]\left\{\begin{array}{l}
x_{1}^{K} \\
x_{2}^{K}
\end{array}\right\}=\left\{\begin{array}{l}
l\left(\chi_{1}^{K}\right) \\
l\left(\chi_{2}^{K}\right)
\end{array}\right\}
$$

GENERALIZATION TO 1D FINITE ELEMENT METHOD

Notice that when we switch from finite difference to finite elements, it only changes the local systems of equations at tree nodes

2D hp FINITE ELEMENT METHOD

$u=\sum_{i=1}^{15} u_{h p}^{i} e_{h p}^{i} \quad \begin{aligned} & \text { We seek the solution } \boldsymbol{u} \text { of some weak form of PDE as a linear } \\ & \text { combination of shape functions } e_{h p}^{i} \text { spread over finite element mesh }\end{aligned}$

2D hp FINITE ELEMENT METHOD

The coefficients $u_{h p}^{i}$ (called „degrees of freedom" d.o.f.) are obtained by solving system of linear equations -
finite element disecretization
of a weak (variational) form of PDE
$\sum_{i=1}^{15} u_{h p}^{i} b\left(e_{h p}^{i}, e_{h p}^{j}\right)=l\left(e_{h p}^{j}\right) \quad j=1, \ldots, 15$
where $b\left(e_{h p}^{i}, e_{h p}^{j}\right)$ and $l\left(e_{h p}^{j}\right)$
are some integrals of shape functions $e_{h p}^{i}, e_{h p}^{j}$

FRONTAL SOLVER SOLUTION BASED ON LINEAR ORDER OF ELEMENTS

Generates frontal matrix for the first element, eliminates fully assembled degrees of freedom

FRONTAL SOLVER SOLUTION BASED ON LINEAR ORDER OF ELEMENTS

Generates frontal matrix for the second element, merges with the current frontal matrix eliminates fully assembled degrees of freedom

MULTI-FRONTAL SOLVER SOLUTION BASED ON THE ELIMINATION TREE

MULTI-FRONTAL SOLVER SOLUTION BASED ON THE ELIMINATION TREE

MULTI-FRONTAL SOLVER SOLUTION BASED ON THE ELIMINATION TREE

Full forward elimination of the interface problem matrix

COMPARISON OF COSTS

Number of operations for partial forward elimination

$$
\sum_{m=1}^{b} m^{2}-\sum_{m=1}^{(b-a)} m^{2}=\frac{a\left(6 b^{2}-6 a b+6 b+2 a^{2}-3 a+1\right)}{6}
$$

Frontal solver

Step	a	b	computational cost $=\frac{a\left(6 b^{2}-6 a b+6 b+2 a^{2}-3 a+1\right)}{6}$
1	6	9	271
2	9	9	729
Total			1000

Multi-frontal solver

Step	a	b	computational cost $=\frac{a\left(6 b^{2}-6 a b+6 b+2 a^{2}-3 a+1\right)}{6}$
1	6	9	271
2	6	9	271
3	3	3	27
Total			569

CONSTRUCTION OF THE ELIMINATION TREE BASED ON THE HISTORY OF MESH REFINEMENTS

For any initial mesh, the elimination tree can be created based on nested dissection algorithm.

CONSTRUCTION OF THE ELIMINATION TREE BASED ON THE HISTORY OF MESH REFINEMENTS

The elimination tree created for the initial mesh is updated when the mesh is refined （elimination tree is constructed dynamically，during mesh refinements）

田田田

CONSTRUCTION OF THE ELIMINATION TREE BASED ON THE HISTORY OF MESH REFINEMENTS

The elimination tree created for the initial mesh is updated when the mesh is refined （elimination tree is constructed dynamically，during mesh refinements）

$$
\begin{array}{l|l|}
\hline+\frac{++}{1++} \\
+++
\end{array}
$$

\qquad
$+$

田田田田

CONSTRUCTION OF THE REFINEMENT TREES

1

CONSTRUCTION OF THE REFINEMENT TREES

CONSTRUCTION OF THE REFINEMENT TREES

CONSTRUCTION OF THE REFINEMENT TREES

ELIMINATIONS BASED ON REFINEMENT TREES

Level of
refinement trees
Level of initial mesh elements

- Local matrices for active elements - leaves of the elimination tree are created

ELIMINATIONS BASED ON REFINEMENT TREES

Level of
refinement trees
Level of
initial mesh elements

- Interior degrees of freedom are eliminated at every leaf

ELIMINATIONS BASED ON REFINEMENT TREES

Level of
refinement trees

- Schur complement contributions are merged at parent level

ELIMINATIONS BASED ON REFINEMENT TREES

Level of initial mesh elements

Level of refinement trees

- Fully assembled degrees of freedom are eliminated at parent nodes level (degrees of freedom related to common edges shared by both son elements can be eliminated now)

ELIMINATIONS BASED ON REFINEMENT TREES

Level of initial mesh elements

Level of
refinement trees

- Contributions to Schur complement are merged again at the next level

ELIMINATIONS BASED ON REFINEMENT TREES

Level of refinement trees
Level of initial mesh elements

- Fully assembled degrees of freedom are eliminated

ELIMINATIONS BASED ON REFINEMENT TREES

Level of initial mesh elements

Level of
refinement trees

- Finally, Schur complement contributions are merged at the tree root node

ELIMINATIONS BASED ON REFINEMENT TREES

Level of initial mesh elements

Level of
refinement trees

- The common interface problem is solved at the tree root node (The size of the common interface problem corresponds to the size of crossection of the entire domain)

ELIMINATIONS BASED ON REFINEMENT TREES

Level of initial mesh elements

Level of
refinement trees

- The solution obtained at root node is utilized at son nodes.
- The backward substitution is executed

ELIMINATIONS BASED ON REFINEMENT TREES

Level of initial mesh elements

Level of
refinement trees

- The solution utilized at the second level nodes is utilizes at their sone nodes.
- The backward substitution is executed

ELIMINATIONS BASED ON REFINEMENT TREES

Level of initial mesh elements

Level of
refinement trees

- The solution obtained at the third level nodes is utilized at leaf nodes.
- The backward substitution is executed on the level of leaf nodes

PERFORMANCE OF THE $1^{\text {st }}$ VERSION OF THE DISTRIBUTED MEMORY MULTI-FRONTAL PARALLEL SOLVER

$1,482,570$ degrees of freedom ($68,826,475$ non-zeros)

- Embeded into hp code
+ Outperforms MUMPS for large number of processors
- Slower than MUMPS for low number of processors

Profiling showed that the time consuming part for low number of processors was actually process of merging of matrices performed on the level of unknowns, with moving of matrix entries.

Switch to the level of nodes, do not touch matrix entries -work with pointers

PAPERS

http://home.agh.edu.pl/~paszynsk/Publications.html

Maciej Paszyński, David Pardo, Carlos Torres-Verdin, Leszek Demkowicz, Victor Calo
A PARALLEL DIRECT SOLVER FOR SELF-ADAPTIVE HP FINITE ELEMENT METHOD
Journal of Parallel and Distributed Computing, 70, 3 (2013) 270-281
Anna Paszynska, Maciej Paszynski, Konrad Jopek, Maciej Wozniak, Damian Goik, Piotr Gurgul, Hassan AbouEisha, Mikhail Moshkov, Victor Calo, Andrew Lenharth, Donald Nguyen, Keshav Pingali

QUASI-OPTIMAL ELIMINATION TREES FOR 2D GRIDS WITH SINGULARITIES

Scientiffic Programming, (2015) Article ID 303024, 1-18
Maciej Paszynski, David Pardo, Anna Paszynska, Leszek Demkowicz
OUT-OF-CORE MULTI-FRONTAL SOLVER FOR MULTIPHYSICS HP ADAPTIVE PROBLEMS

Procedia Computer Science, 4 (2011) 1788-1797

