

Maciej Paszynski

Department of Computer Science

AGH University of Science and Technology, Krakow, Poland

maciej.paszynski@agh.edu.pl

http://www.ki.agh.edu.pl/en/research-groups/a2s

Frontal and multi-frontal solvers:

orderings, elimination trees,

refinement trees

mailto:e-mail%3Amaciej.paszynski@agh.edu.pl
http://www.ki.agh.edu.pl/en/research-groups/a2s
http://www.ki.agh.edu.pl/en/research-groups/a2s
http://www.ki.agh.edu.pl/en/research-groups/a2s

EXEMPLARY SIMPLE 1D NUMERICAL PROBLEM

Find temperature distribution such that

Finite difference disretization

TRIDIAGONAL MATRIX FOR EXEMPLARY 1D PROBLEM

FRONTAL SOLVER

Front matrix

Frontal matrix focuses on forward elimination of the first row

FRONTAL SOLVER

Front matrix

2nd row = 2nd row – 1/h2 * 1st row

FRONTAL SOLVER

Front matrix

2nd row = 2nd row – 1/h2 * 1st row

FRONTAL SOLVER

Front matrix

The first row has been eliminated

Frontral matrix focuses on the elimination of the second row

FRONTAL SOLVER

Front matrix

3rd row = 3nd row – [1/h2] / [-2/h2] * 2nd row

FRONTAL SOLVER

Front matrix

3rd row = 3nd row – [1/h2] / [-2/h2] * 2nd row

ELEMENT-WISE DECOMPOSITION

Construct multiple

frontal matrices

in such a way

so they sum up

to the full matrix

Variables must be split

into parts

MULTI-FRONTAL SOLVER ALGORITHM

First all frontal matrices are constructed

MULTI-FRONTAL SOLVER ALGORITHM

First and second frontal matrices are sum up into new 3x3 frontal matrix

Its first and second rows are fully assembled

+

MULTI-FRONTAL SOLVER ALGORITHM

+

First column is eliminated by using first row

2nd row = 2nd row – [1/h2] * 1st row

MULTI-FRONTAL SOLVER ALGORITHM

+

2nd row = 2nd row – [1/h2] * 1st row

MULTI-FRONTAL SOLVER ALGORITHM

Third and fourth frontal matrices are sum up into new 3x3 frontal matrix

Now only the second row is fully assembled

+ +

MULTI-FRONTAL SOLVER ALGORITHM

Change of the ordering

+ +

MULTI-FRONTAL SOLVER ALGORITHM

+ +

Eliminate entries below the diagonal

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row

MULTI-FRONTAL SOLVER ALGORITHM

+ +

Why can I substract fully assembled 1st row

from not fully assemled rows 2nd and 3rd ?

Eliminate entries below the diagonal

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row

MULTI-FRONTAL SOLVER ALGORITHM

+ +

This is because substraction and addition are interchangable

(now I am substructing from the 2nd not fully assembled row,

and later I will add the remaining part)

Moreover the 1st row which is utilized for the substractions

in other columns contains only zeros

Eliminate entries below the diagonal

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row

MULTI-FRONTAL SOLVER ALGORITHM

+ +

Eliminate entries below the diagonal

2nd row = 2nd row – [1/h2] / [-2/h2] * 1st row

3rd row = 3rd row – [1/h2] / [-2/h2] * 1st row

MULTI-FRONTAL SOLVER ALGORITHM

Fifth and sixth frontal matrices are sum up into new 3x3 frontal matrix

Now the second and third rows are fully assembled

…

+ + +

+ + +

Continue until root node

MULTI-FRONTAL SOLVER ALGORITHM

+

node

+

root

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

All frontal matrices are generated at the same time

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6

Summing up and elimination are executed at the same time

over different pairs of frontal matrices

+ + +

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6

+ + +

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6

Summing up and elimination are executed at the same time

over different pairs of frontal matrices

+ + +

The agorithm is recursively repeated until we reach the root of the tree

The algorithm results in upper trianguler matrix stored in distributed manner

Computational complexity = height of the tree = logN (where N = #unknowns-1)

PARALLEL MULTI-FRONTAL SOLVER ALGORITHM

Procesor 1 Procesor 2 Procesor 3 Procesor 4 Procesor 5 Procesor 6

+

node

+

root

GENERALIZATION TO 1D FINITE ELEMENT METHOD

 )()()()(')(')(')(xfxuxcxuxbxuxa 

 lCu ,02Find such that

0)0(u

 )()(')(lulula

Strong formulation

Weak formulation

 )()()('''

00

lvdxvflvludxcuvvbuvau

ll

  

Find such thatVu

  0)0(:,01  vlHvVv

   vlvub ,

GENERALIZATION TO 1D FINITE ELEMENT METHOD

Finite element method disretization

    Njeleeba jji

N

i

i ,...,1,

1









N

i

ii eau

1

jev 

 
 
 









1,5.00

5.0,021
1

xfor

xforx
xe

   
 









1,5.00

5.0,02
1

xfor

xfor

dx

xde

 
 
 









1,5.022

5.0,02
2

xforx

xforx
xe

   
 









1,5.02

5.0,02
2

xfor

xfor

dx

xde

 
 
 









1,5.012

5.0,00
3

xforx

xfor
xe

   
 









1,5.02

5.0,00
3

xfor

xfor

dx

xde

Exemplary basis functions for [0,l] = [0,1], for two finite elements

   )()(''',

0

leledxeceebeeaeeeb ji

l

jijijiji    )(

0

ledxefel j

l

jj  

GENERALIZATION TO 1D FINITE ELEMENT METHOD

     
     
     

 
 
 















































3

2

1

3

2

1

333231

232221

131211

,,,

,,,

,,,

el

el

el

a

a

a

eebeebeeb

eebeebeeb

eebeebeeb






N

i

ii eau

1

jev 

Exemplary basis functions for [0,l] = [0,1], for two finite elements

   )()(''',

0

leledxeceebeeaeeeb ji

l

jijijiji    )(

0

ledxefel j

l

jj  

1

11
K

e 

12

212
KK

e   2

23
K

e 

    0)()(''', 31

1

0

31313131   leledxeceebeeaeeeb 

     













5.0

0

212
121

11

1

0

21212121
111

111

)()(''', dxc
dx

d
b

dx

d

dx

d
aleledxeceebeeaeeeb

KKK
KKK






     













1

5.0

212
121

32

1

0

32323232
222

222

)()(''', dxc
dx

d
b

dx

d

dx

d
aleledxeceebeeaeeeb

KKK
KKK






GENERALIZATION TO 1D FINITE ELEMENT METHOD

     
     
     

 
 
 















































3

2

1

3

2

1

333231

232221

131211

,,,

,,,

,,,

el

el

el

a

a

a

eebeebeeb

eebeebeeb

eebeebeeb






N

i

ii eau

1

jev 

Exemplary basis functions for [0,l] = [0,1], for two finite elements

   )()(''',

0

leledxeceebeeaeeeb ji

l

jijijiji    )(

0

ledxefel j

l

jj  

1

11
K

e 

12

212
KK

e   2

23
K

e 

      













5.0

0

2

11
111

11

1

0

11111111
11

111

)()(''', dxc
dx

d
b

dx

d

dx

d
aleledxeceebeeaeeeb

KK
KKK






   

   
































1

5.0

2

11
111

5.0

0

2

22
222

22

1

0

22222222

22

222

11

111

)()(''',

dxc
dx

d
b

dx

d

dx

d
adxc

dx

d
b

dx

d

dx

d
a

leledxeceebeeaeeeb

KK
KKK

KK
KKK









      


 












 
1

5.0

2

22
222

33

1

0

33333333
22

222

)()(''', dxc
dx

d
b

dx

d

dx

d
aleledxeceebeeaeeeb

KK
KKK

   
       

   

 
   

  


















































2

21

1

2222

22221111

1111

2

12

1

3

2

1

2221

12112221

1211

,,0

,,,,

0,,

K

KK

K

KKKK

KKKKKKKK

KKKK

l

ll

l

a

a

a

bb

bbbb

bb













   
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,









GENERALIZATION TO 1D FINITE ELEMENT METHOD

     
     
     

 
 
 















































3

2

1

3

2

1

333231

232221

131211

,,,

,,,

,,,

el

el

el

a

a

a

eebeebeeb

eebeebeeb

eebeebeeb

Notice that when we switch from finite difference to finite elements,

it only changes the local systems of equations at tree nodes

GENERALIZATION TO 1D FINITE ELEMENT METHOD

   )()(''', lldxcbab K
i

K
i

K

K
j

K
i

K
j

K
i

K
j

K
i

K
j

K
i   

 )(ldxfel K
j

K

K
jj   

12

212
KK

e  

Global basis functions

are composed with

local shape functions,

e.g.

   
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,









Local system of equations generated over the element K

   )()(''', lldxcbab K
i

K
i

K

K
j

K
i

K
j

K
i

K
j

K
i

K
j

K
i   

 )(ldxfel K
j

K

K
jj   

   
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,







    
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,







    
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,









   
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,







   
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,







    
   

 
 




































K

K

K

K

KKKK

KKKK

l

l

x

x

bb

bb

2

1

2

1

2221

1211

,,

,,









Notice that when we switch from finite difference to finite elements,

it only changes the local systems of equations at tree nodes

GENERALIZATION TO 1D FINITE ELEMENT METHOD

1

hpe 3

hpe 5

hpe

7

hpe 9

hpe
8

hpe





15

1i

i

hp

i

hpeuu
We seek the solution u of some weak form of PDE as a linear

combination of shape functions spread over finite element mesh
i

hpe

2D hp FINITE ELEMENT METHOD

4

hpe
2

hpe

1

hpe 3

hpe 5

hpe

2

hpe 4

hpe
7

hpe 9

hpe

8

hpe

    15,...,1,
15

1




jeleebu j

hp

i

j

hp

i

hp

i

hp

The coefficients

(called „degrees of freedom” d.o.f.)

are obtained by solving

system of linear equations –

finite element disecretization

 of a weak (variational) form of PDE

i

hpu

 j

hp

i

hp eeb ,  j

hpelwhere and

are some integrals of shape functions

j

hp

i

hp ee ,

2D hp FINITE ELEMENT METHOD

 j

hp

i

hp eeb ,

Generates frontal matrix for the first element,

eliminates fully assembled degrees of freedom

FRONTAL SOLVER

SOLUTION BASED ON LINEAR ORDER OF ELEMENTS

Partial

forward elimination

O(6*9^2)

Generates frontal matrix for the second element,

merges with the current frontal matrix

eliminates fully assembled degrees of freedom

FRONTAL SOLVER

SOLUTION BASED ON LINEAR ORDER OF ELEMENTS

Full

forward elimination

MULTI-FRONTAL SOLVER

SOLUTION BASED ON THE ELIMINATION TREE

Partial

forward elimination

Partial

forward elimination

MULTI-FRONTAL SOLVER

SOLUTION BASED ON THE ELIMINATION TREE

Full forward elimination

of the interface problem matrix

MULTI-FRONTAL SOLVER

SOLUTION BASED ON THE ELIMINATION TREE

Number of operations for partial forward elimination

COMPARISON OF COSTS

CONSTRUCTION OF THE ELIMINATION TREE

BASED ON THE HISTORY OF MESH REFINEMENTS

For any initial mesh, the elimination tree can be created based on

nested dissection algorithm.

CONSTRUCTION OF THE ELIMINATION TREE

 BASED ON THE HISTORY OF MESH REFINEMENTS

The elimination tree created for the initial mesh is updated when the mesh is refined

(elimination tree is constructed dynamically, during mesh refinements)

CONSTRUCTION OF THE ELIMINATION TREE

 BASED ON THE HISTORY OF MESH REFINEMENTS

The elimination tree created for the initial mesh is updated when the mesh is refined

(elimination tree is constructed dynamically, during mesh refinements)

CONSTRUCTION OF THE REFINEMENT TREES

CONSTRUCTION OF THE REFINEMENT TREES

CONSTRUCTION OF THE REFINEMENT TREES

CONSTRUCTION OF THE REFINEMENT TREES

ELIMINATIONS BASED ON REFINEMENT TREES

• Local matrices for active elements – leaves of the elimination tree –

are created

Level of

initial mesh elements

Level of

refinement trees

• Interior degrees of freedom are eliminated at every leaf

Level of

initial mesh elements

Level of

refinement trees

ELIMINATIONS BASED ON REFINEMENT TREES

• Schur complement contributions are merged at parent level

Level of

initial mesh elements

Level of

refinement trees

ELIMINATIONS BASED ON REFINEMENT TREES

• Fully assembled degrees of freedom are eliminated at parent nodes level

(degrees of freedom related to common edges shared by both son elements

can be eliminated now)

Level of

initial mesh elements

Level of

refinement trees

ELIMINATIONS BASED ON REFINEMENT TREES

• Contributions to Schur complement are merged again at the next level

Level of

initial mesh elements

Level of

refinement trees

ELIMINATIONS BASED ON REFINEMENT TREES

• Fully assembled degrees of freedom are eliminated

Level of

initial mesh elements

Level of

refinement trees

ELIMINATIONS BASED ON REFINEMENT TREES

• Finally, Schur complement contributions are merged at the tree root node

Level of

initial mesh elements

Level of

refinement trees

ELIMINATIONS BASED ON REFINEMENT TREES

• The common interface problem is solved at the tree root node

(The size of the common interface problem corresponds to the size of

crossection of the entire domain)

Level of

initial mesh elements

Level of

refinement trees

ELIMINATIONS BASED ON REFINEMENT TREES

Level of

initial mesh elements

Level of

refinement trees

• The solution obtained at root node is utilized at son nodes.

• The backward substitution is executed

ELIMINATIONS BASED ON REFINEMENT TREES

Level of

initial mesh elements

Level of

refinement trees

• The solution utilized at the second level nodes is utilizes at their sone nodes.

• The backward substitution is executed

ELIMINATIONS BASED ON REFINEMENT TREES

Level of

initial mesh elements

Level of

refinement trees

• The solution obtained at the third level nodes is utilized at leaf nodes.

• The backward substitution is executed on the level of leaf nodes

ELIMINATIONS BASED ON REFINEMENT TREES

PERFORMANCE OF THE 1st VERSION OF THE DISTRIBUTED

MEMORY MULTI-FRONTAL PARALLEL SOLVER

- Embeded into hp code

+ Outperforms MUMPS for large number of processors

- Slower than MUMPS for low number of processors

Profiling showed that the time consuming part for low number of processors

was actually process of merging of matrices –

performed on the level of unknowns, with moving of matrix entries.

Switch to the level of nodes, do not touch matrix entries –work with pointers

1,482,570 degrees of freedom (68,826,475 non-zeros)

PAPERS

http://home.agh.edu.pl/~paszynsk/Publications.html

Maciej Paszyński, David Pardo, Carlos Torres-Verdin, Leszek Demkowicz,

Victor Calo

A PARALLEL DIRECT SOLVER FOR SELF-ADAPTIVE HP FINITE

ELEMENT METHOD

Journal of Parallel and Distributed Computing, 70, 3 (2013) 270-281

Anna Paszynska, Maciej Paszynski, Konrad Jopek, Maciej Wozniak, Damian Goik,
Piotr Gurgul, Hassan AbouEisha, Mikhail Moshkov, Victor Calo, Andrew Lenharth,
Donald Nguyen, Keshav Pingali

QUASI-OPTIMAL ELIMINATION TREES FOR 2D GRIDS WITH
SINGULARITIES

Scientiffic Programming, (2015) Article ID 303024, 1-18

Maciej Paszynski, David Pardo, Anna Paszynska, Leszek Demkowicz
OUT-OF-CORE MULTI-FRONTAL SOLVER FOR MULTI-
PHYSICS HP ADAPTIVE PROBLEMS

Procedia Computer Science, 4 (2011) 1788-1797

