Frontal and multi-frontal solvers: Dealing with singularities

Maciej Paszynski

Department of Computer Science

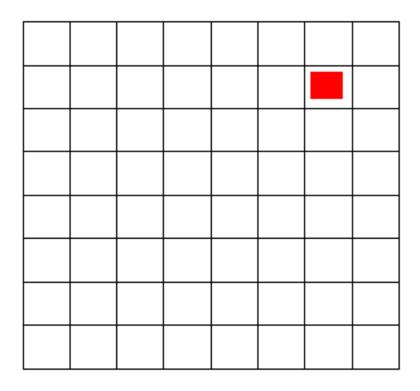
AGH University of Science and Technology, Krakow, Poland

maciej.paszynski@agh.edu.pl

http://home.agh.edu.pl/paszynsk

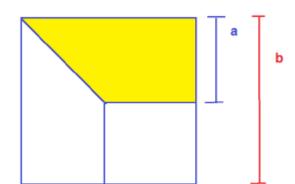
http://www.ki.agh.edu.pl/en/staff/paszynski-maciej

http://www.ki.agh.edu.pl/en/research-groups/a2s



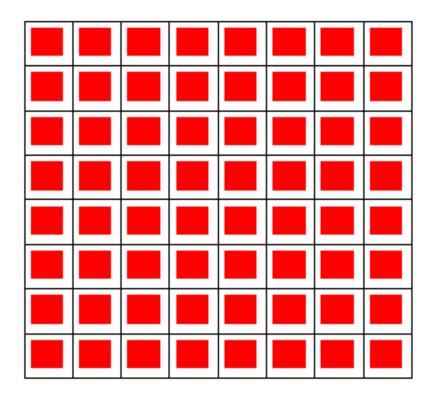
FLOPS(2D)= p^6 . FLOPS(3D)= p^9 .

Number of operations for partial forward elimination (Schur complement computations)



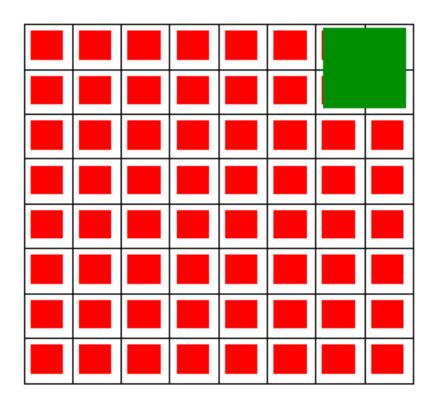
$$\sum_{m=1}^{b} m^2 - \sum_{m=1}^{(b-a)} m^2 = \frac{a(6b^2 - 6ab + 6b + 2a^2 - 3a + 1)}{6}$$

Computational complexity O(ab²)

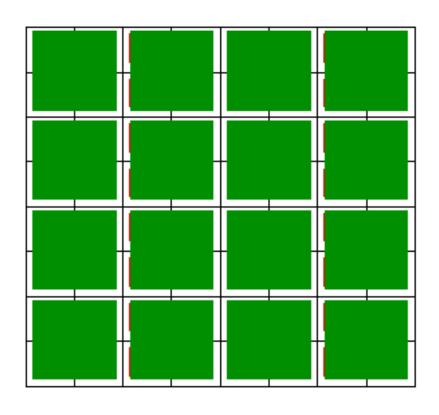


FLOPS(2D)=
$$2^{2s}p^6$$
.
FLOPS(3D)= $2^{3s}p^9$.

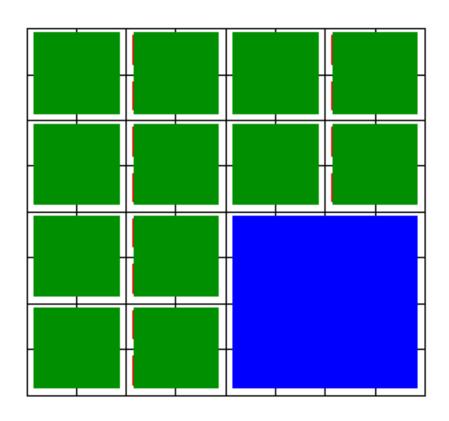
NOTE: $2^s =$ Number of elements in each direction (s = 3 here)



FLOPS(2D)=
$$2^{2s}p^6 + 2^4p^3$$
.
FLOPS(3D)= $2^{3s}p^9 + 2^6p^6$.

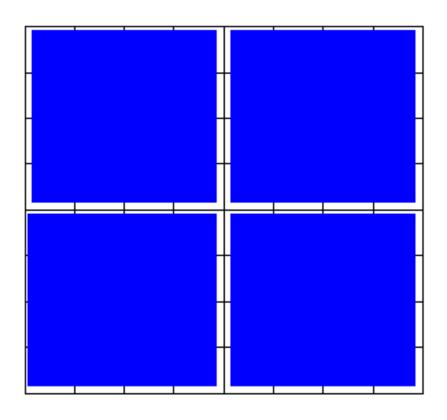


$$\begin{aligned} & \mathsf{FLOPS(2D)=2^{2s}p^6} + 2^{2(s-1)}2^4p^3. \\ & \mathsf{FLOPS(3D)=2^{3s}p^9} + 2^{3(s-1)}2^6p^6. \end{aligned}$$

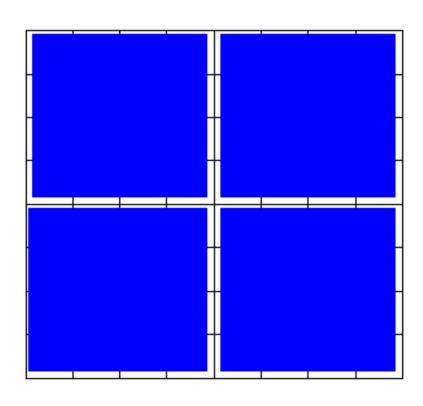


FLOPS(2D)=
$$2^{2s}p^6 + 2^{2(s-1)}2^4p^3 + 2^8p^3$$

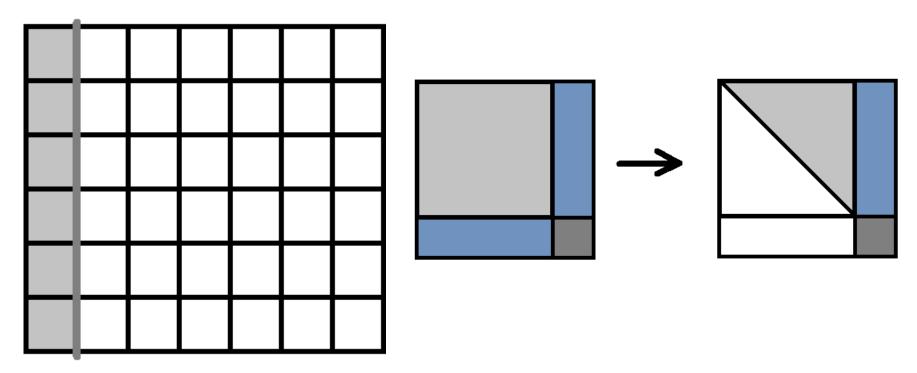
FLOPS(3D)= $2^{3s}p^9 + 2^{3(s-1)}2^6p^6 + 2^{12}p^6$



$$\begin{array}{l} {\sf FLOPS(2D)=} 2^{2s}p^6 + 2^{2(s-1)}2^4p^3 + 2^{2(s-2)}2^8p^3 \\ {\sf FLOPS(3D)=} 2^{3s}p^9 + 2^{3(s-1)}2^6p^6 + 2^{3(s-2)}2^{12}p^6 \end{array}$$



$$\begin{aligned} & \mathsf{FLOPS(2D)=2^{2s}p^6} + 2^{2(s-1)}2^4p^4 + 2^{2(s-2)}2^8p^4 + ... = \mathcal{O}(Np^4) + \mathcal{O}(N^{1.5}) \\ & \mathsf{FLOPS(3D)=2^{3s}p^9} + 2^{3(s-1)}2^6p^6 + 2^{3(s-2)}2^{12}p^6 + ... = \mathcal{O}(Np^6) + \mathcal{O}(N^2) \end{aligned}$$

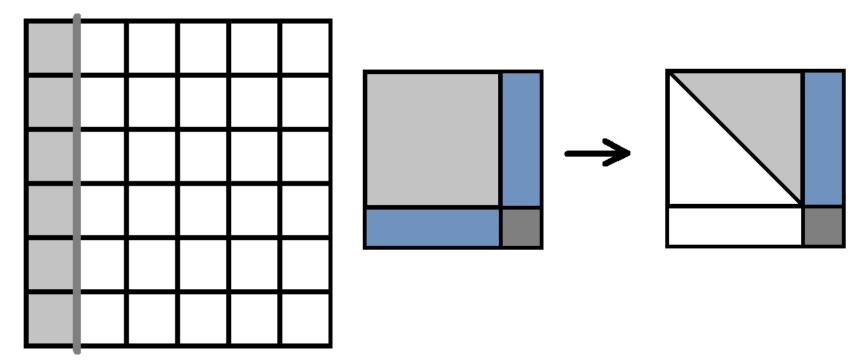


Computational cost of elimination of a single layer $O((N^{0.5})^3)=O(N^{3/2})$ Number of layers = $O(N^{0.5})$

Computational cost of elimination of entire mesh = computational cost of elimination of a single layer * number of layers

$$O(N^{0.5}N^{3/2})=O(N^2)$$
 in 2D

$$O(N^{1/3}N^{6/3})=O(N^{7/3})$$
 in 3D

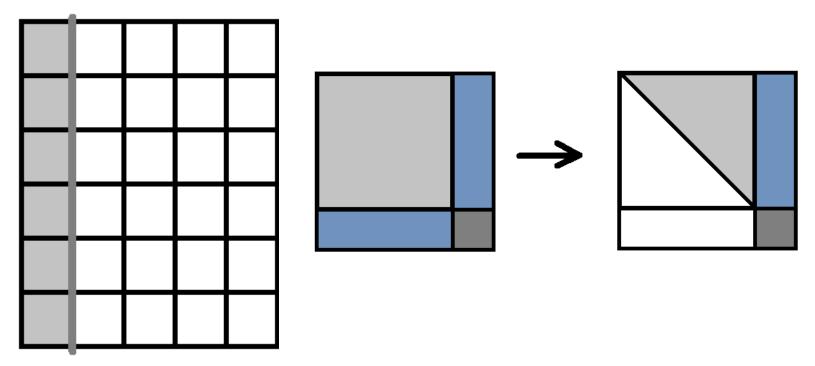


Computational cost of elimination of a single layer $O((N^{0.5})^3)=O(N^{3/2})$ Number of layers = $O(N^{0.5})$

Computational cost of elimination of entire mesh = computational cost of elimination of a single layer * number of layers

 $O(N^{0.5}N^{3/2})=O(N^2)$ in 2D

 $O(N^{1/3}N^{6/3})=O(N^{7/3})$ in 3D



Computational cost of elimination of a single layer $O((N^{0.5})^3)=O(N^{3/2})$ Number of layers = $O(N^{0.5})$

Computational cost of elimination of entire mesh = computational cost of elimination of a single layer * number of layers

$$O(N^{0.5}N^{3/2})=O(N^2)$$
 in 2D

$$O(N^{1/3}N^{6/3})=O(N^{7/3})$$
 in 3D

MODEL ELIPTIC PROBLEM

Find
$$u = u(x, y, z) \in H^1(\Omega)$$
 such that $\Delta u = 0$ where $\Omega = (0, 1)^3$, with boundary conditions

$$\begin{split} u\left(:,:,0\right) &= 0\\ u\left(:,:,1\right) &= 1\\ \frac{\partial u}{\partial x}\left(0,:,:\right) &= \frac{\partial u}{\partial x}\left(1,:,:\right) = \frac{\partial u}{\partial y}\left(:,0,:\right) = \frac{\partial u}{\partial y}\left(:,1,:\right) = 0 \end{split}$$

Find
$$u \in V = \{u \in H^1(\Omega) : u(:,:,0) = u(:,:,1) = 0\}$$

such that $b(u,v) = l(v), \forall v \in V$

$$b(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dV \qquad l(v) = -\int_{\Omega} \frac{\partial v}{\partial z} dV$$

COMPUTATIONAL COST OF 3D DIRECT SOLVER

Notation:

N = number of degrees of freedom N_e = number of elements p = polynomial order of approximation $O(N)=O(N_e*p^3)$

Computational cost of direct solvers = cost of static condensation + cost of LU factorization

Static condensation $O(N_e^*p^9)=O(N^*p^6)$

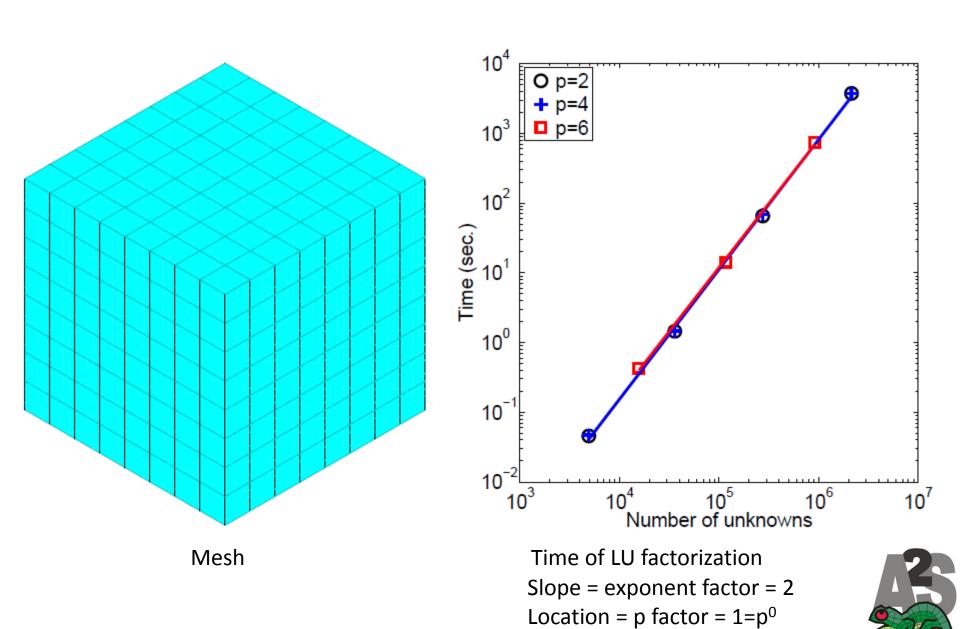
Cost of LU factorization over regular grid O(N²)

CONCLUSIONS:

For regular grid total cost is $O(N*p^6+N^2) = O(N^2)$

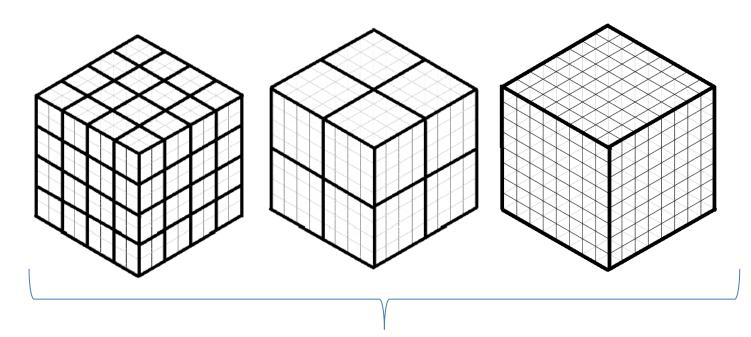
For other grids it is not always the case (static condensation may dominate)

UNIFORM REFINEMENTS



UNIFORM REFINEMENTS MULTI-FRONTAL SOLVER APPROACH

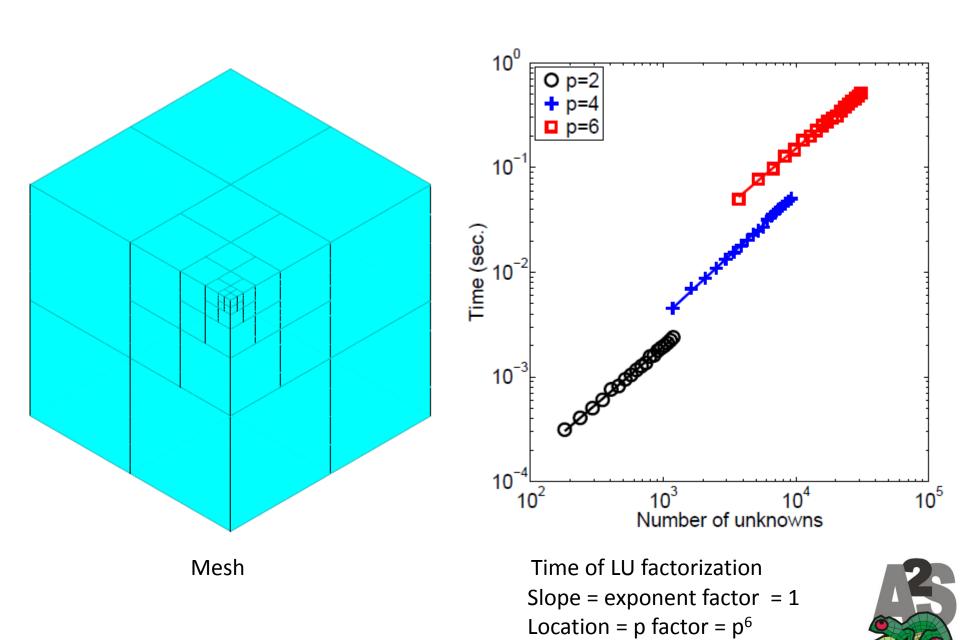
Static condensation O(N*p⁶) +



LU factorization O(N²)

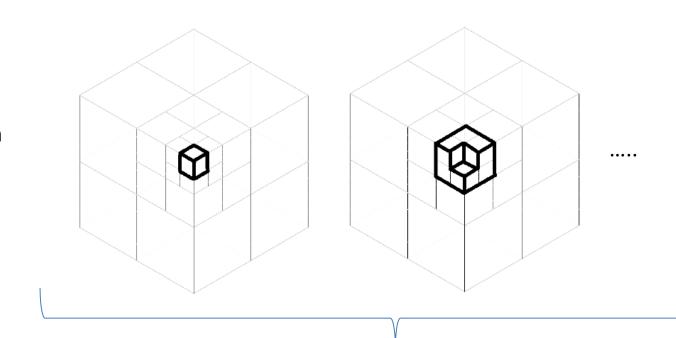
Total cost is $O(N*p^6+N^2) = O(N^2)$

REFINEMENTS TOWARDS POINT SINGULARITY



REFINEMENTS TOWARDS POINT SINGULARITY FRONTAL SOLVER APPROACH

Static condensation $O(N*p^6)$ +

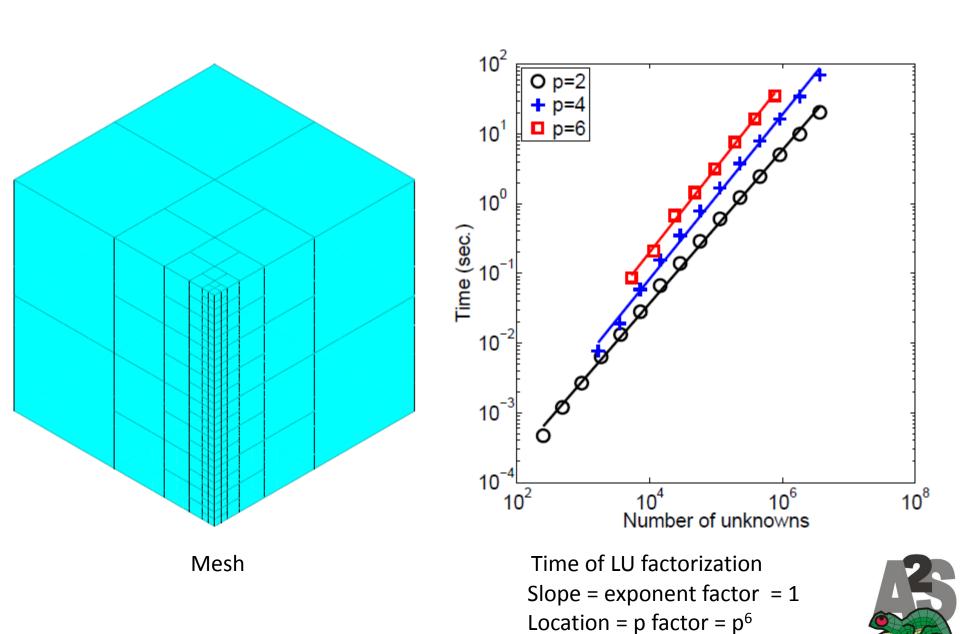


Schur complent of a single layer $O(p^6)$ Number of layers $k=O(N_e)=O(N/p^3)$

Total cost of LU factorization $O(p^6*k)=O(p^6*N/p^3)=O(N*p^3)$

Total cost is $O(N*p^6+N*p^3) = O(N*p^6)$

ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH

k=2

k=1

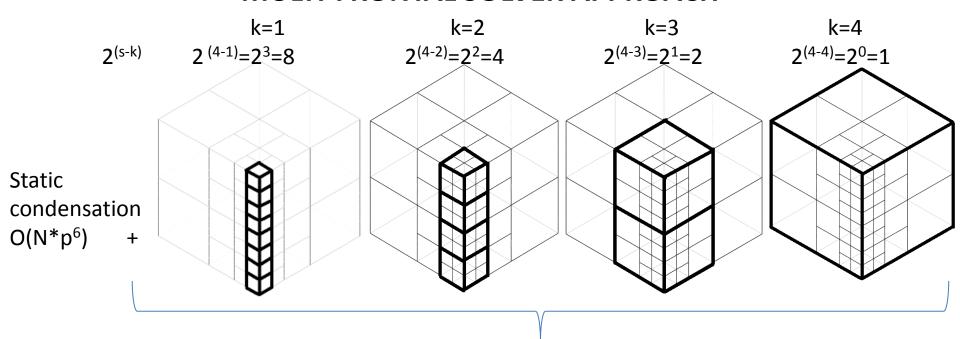
Static condensation $O(N*p^6)$

> Number of dofs in a layer $3*2^kp^2=O(2^kp^2)$ Number of interfaces dofs in a layer 2*2^kp²=O(2^kp²) Cost of Schur complement of a single layer O(2^{3k}p⁶)

s=number of layers, N =
$$O\left(\sum_{k=1}^{s} 3 * 2^{k} p^{3}\right) = O\left(\sum_{k=1}^{s} 2^{k} p^{3}\right) = O(p^{3} 2^{s})$$

Cost of LU factorization
$$O\left(\sum_{k=1}^{s} 2^{3k} p^{6}\right) = O(p^{6}2^{3s}) = O(N^{3}/p^{3})$$

ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY MULTI-FRONTAL SOLVER APPROACH



Number of dofs in a patch O(kp²)

Number of patches in a single layer O(2^{s-k})

Number of interfaces dofs in a patch O(kp²)

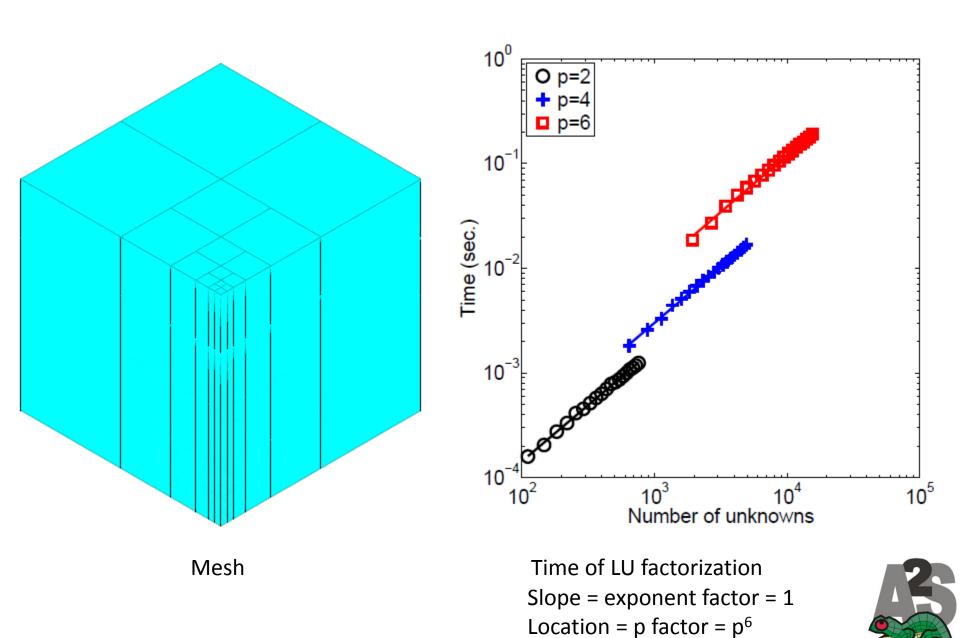
Cost of Schur complement of a single layer O(2^{s-k} k³p⁶)

s=number of layers, N = O
$$\left(\sum_{k=1}^{s} 3*2^{k}p^{3}\right)$$
 = O $\left(\sum_{k=1}^{s} 2^{k}p^{3}\right)$ = O(p³2^s)

Cost of LU factorization O
$$\left(\sum_{k=1}^{s} 2^{s-k} k^3 p^6\right) < O(s^3 p^6 2^s) = O(Np^3 (log_2^3 N_e))$$

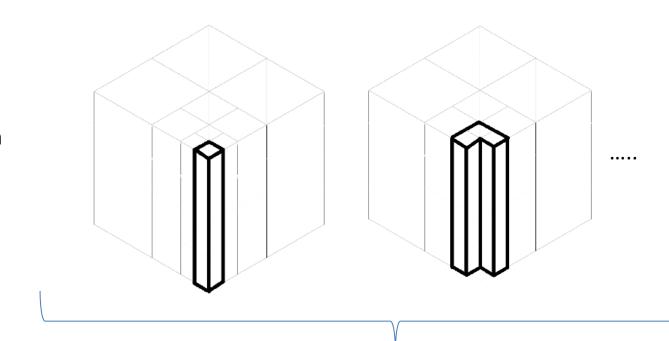
Total cost is $< O(N*p^6+Np^3 (log_2^3N_e))$

ANISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH

Static condensation O(N*p⁶) +

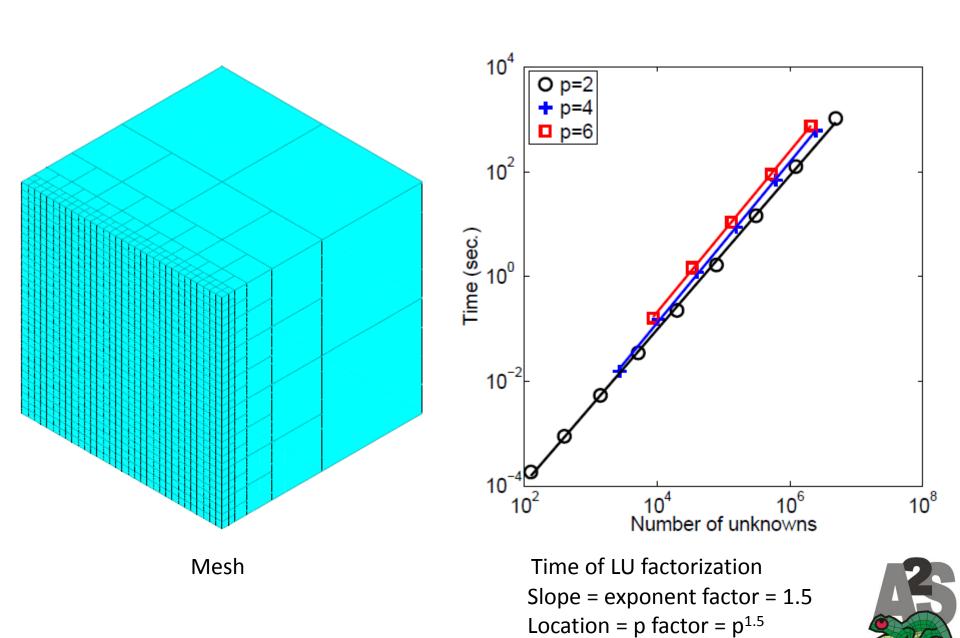


Number of dofs in a layer $O(p^2)$ Number of interfaces dofs in a layer $O(p^2)$ Number of layers $k=O(N_e)=O(N/p^3)$

Total cost of LU factorization $O(p^6*k)=O(p^6*N/p^3)=O(N*p^3)$

Total cost is $O(N^*p^6+N^*p^3) = O(Np^6)$

ISOTROPIC REFINEMENTS TOWARDS FACE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH

k=1 k=2

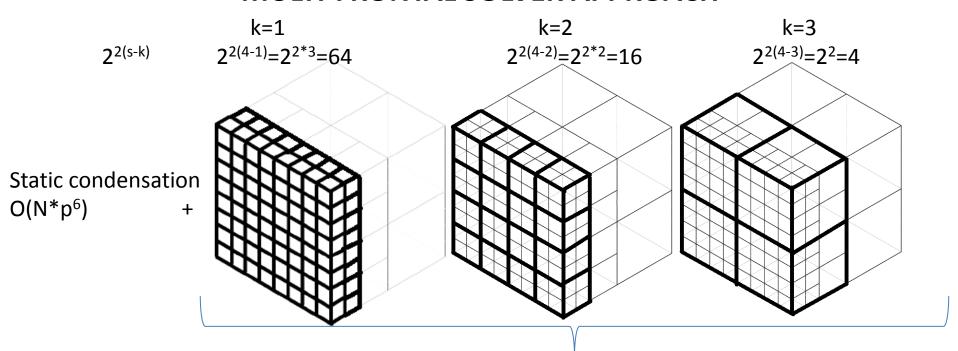
Static condensation O(N*p⁶) +

Number of dofs in a layer $2^{2k}p^2 = O(2^{2k}p^2)$ Number of interfaces dofs in a layer $2^{2k}p^2 = O(2^{2k}p^2)$ Cost of Schur complement of a single layer $O(2^{6k}p^6)$

s=number of layers, N =
$$O(\sum_{k=1}^{s} 2^{2k} p^3)$$
 = $O(p^3 2^{2s})$

Cost of LU factorization
$$O\left(\sum_{k=1}^{s} 2^{6k} p^3\right) = O(p^6 2^{6s}) = O(N^3/p^3)$$

ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY MULTI-FRONTAL SOLVER APPROACH



Number of dofs in a patch O(2^kp²)

Numbers of patches in a layer O(2^{2(s-k)})

Number of interfaces dofs in a patch O(2^kp²)

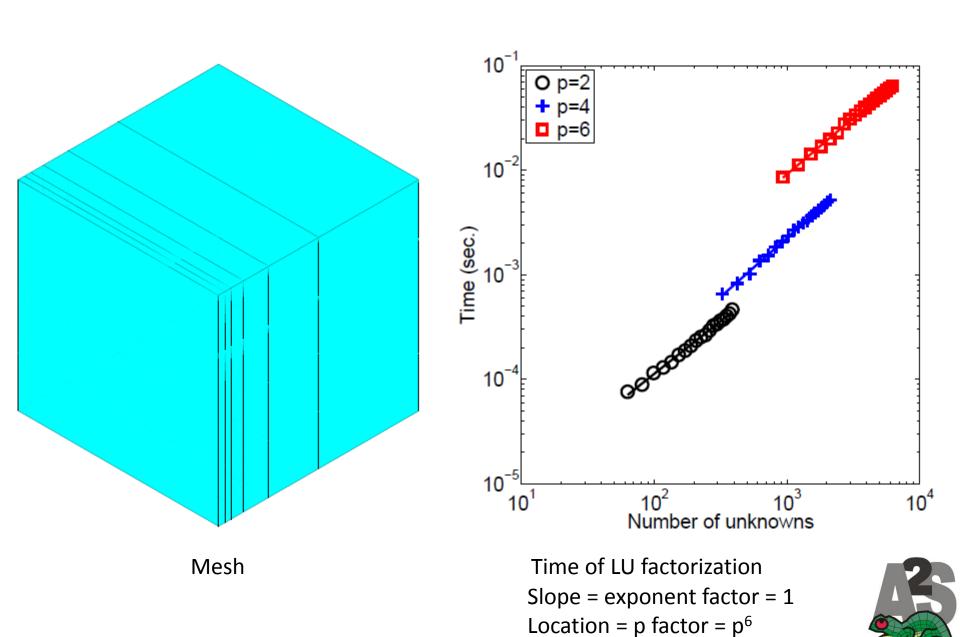
Cost of Schur complement of a single layer O(2^{2(s-k)}2^{3k}p⁶)

s=number of layers, N =
$$O(\sum_{k=1}^{s} 2^{2k} p^3)$$
 = $O(p^3 2^{2s})$

Cost of LU factorization
$$O\left(\sum_{k=1}^{s} 2^{2(s-k)} 2^{3k} p^{6}\right) = O(p^{6}2^{3s}) = O(N^{1.5} * p^{1.5})$$

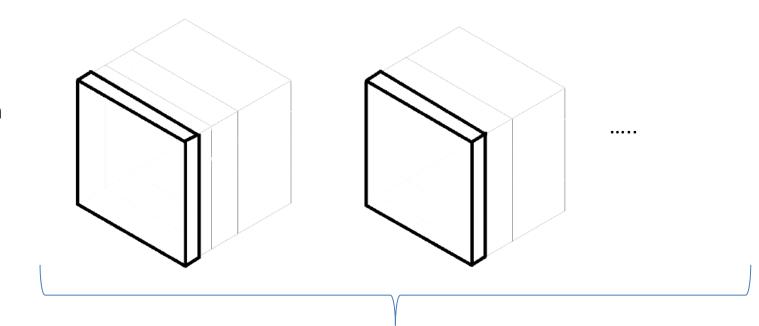
Total cost is $O(N*p^6+N^{1.5}*p^{1.5})$

ANISOTROPIC REFINEMENTS TOWARDS FACE SINGULARITY



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY FRONTAL SOLVER APPROACH

Static condensation $O(N*p^6)$ +

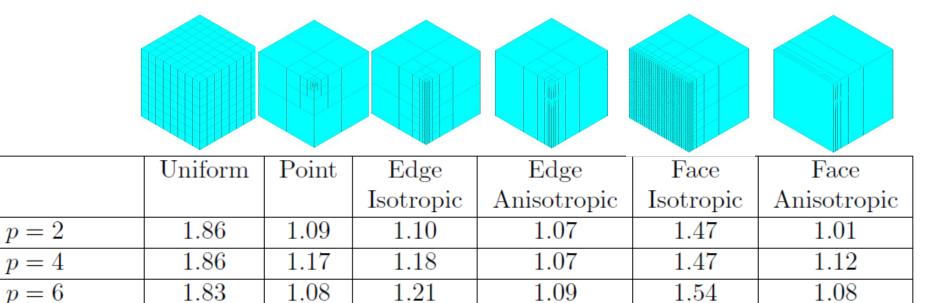


Number of dofs in a layer $O(p^2)$ Number of interfaces dofs in a layer $O(p^2)$ Number of layers $k=O(N_e)=O(N/p^3)$

Total cost of LU factorization $O(p^6*k)=O(p^6*N/p^3)=O(N*p^3)$

Total cost is $O(N^*p^6+N^*p^3) = O(Np^6)$

COMPARISON OF NUMERICAL AND THEORETICAL SCALABILITY EXPONENT FACTORS FOR REFINEMENTS TOWARDS A SINGLE ENTITY

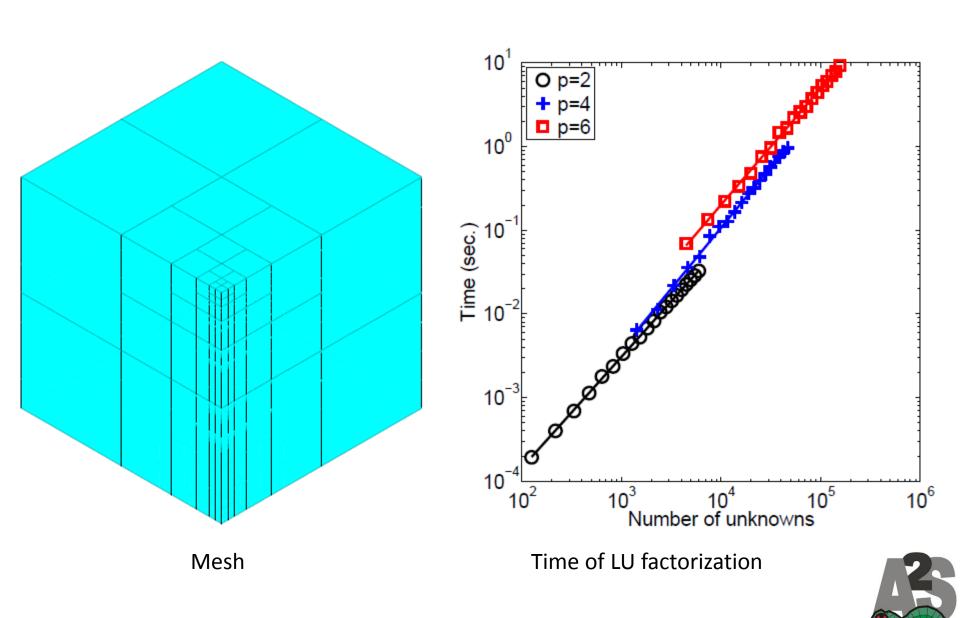


Theoretical

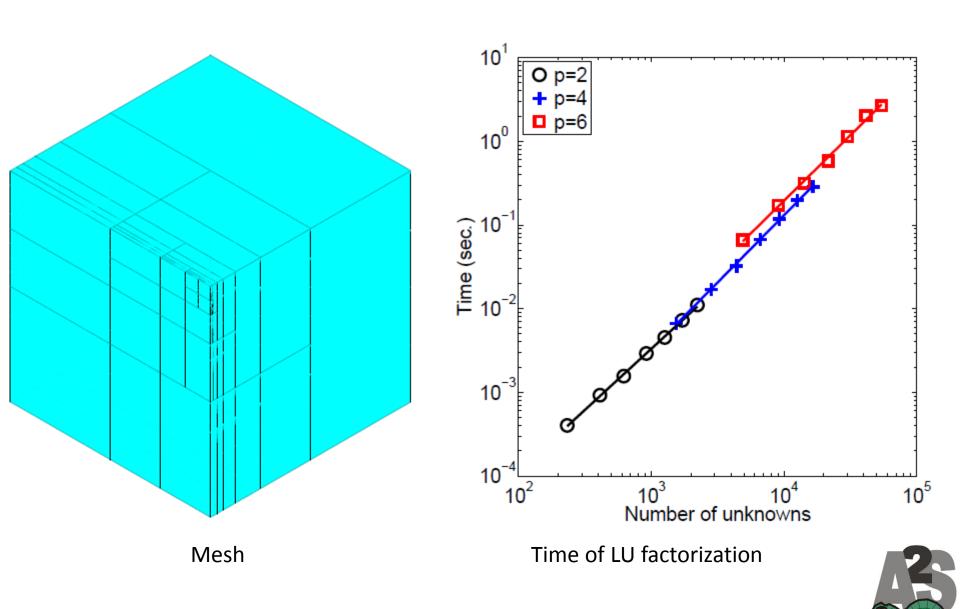
 2

1.5

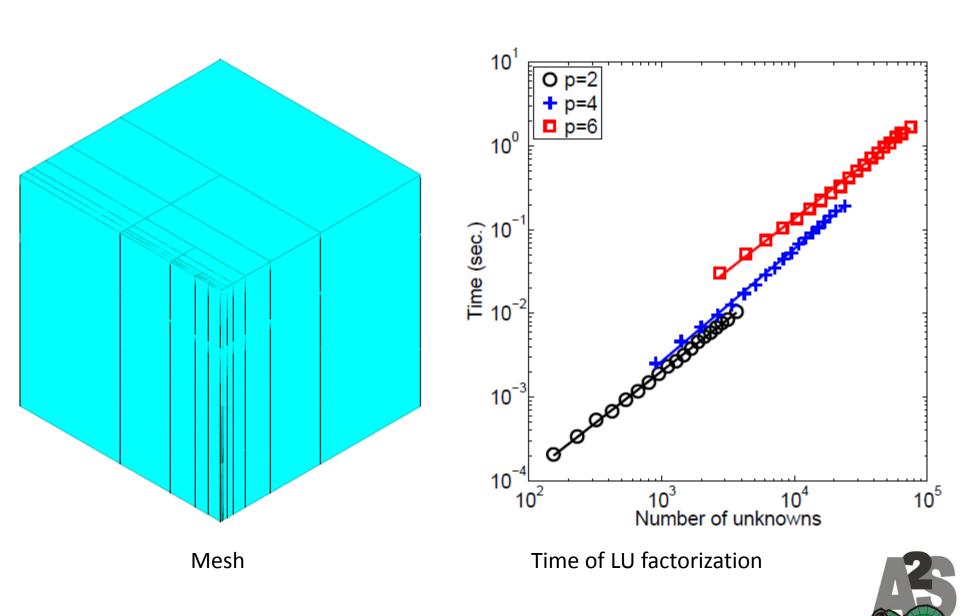
POINT + ANISOTROPIC EDGE SINGULARITY



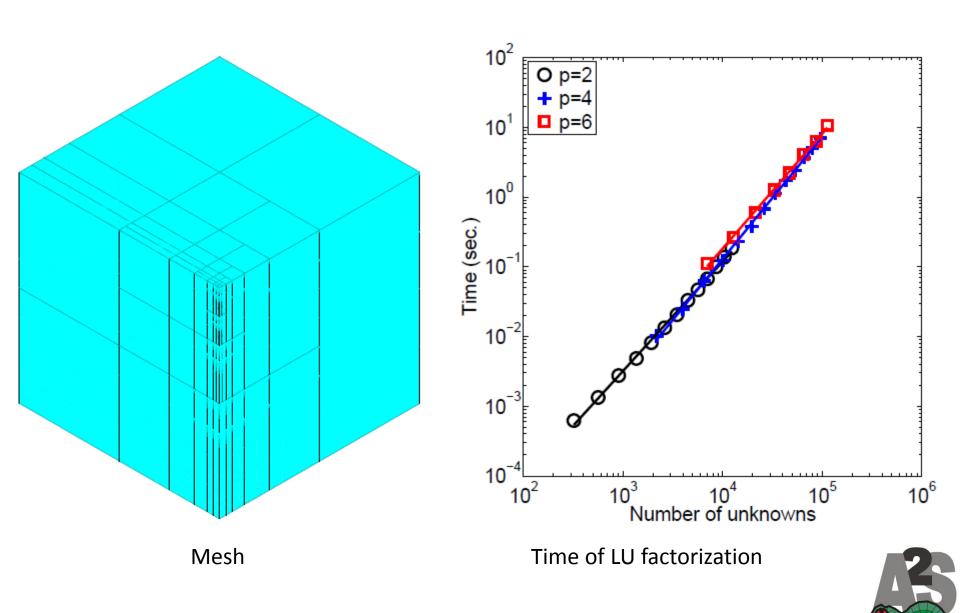
POINT + ANISOTROPIC FACE SINGULARITY



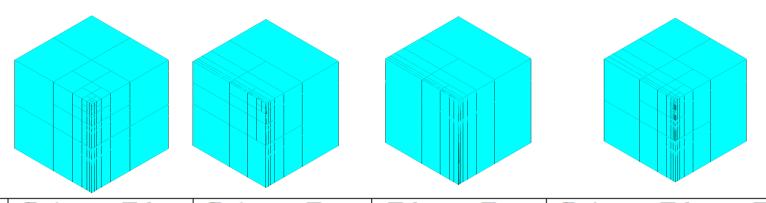
ANISOTROPIC EDGE + ANISOTROPIC FACE SINGULARITY



POINT + ANISOTROPIC EDGE + ANISOTROPIC FACE SINGULARITY



NUMERICAL SCALABILITY EXPONENT FACTORS FOR REFINEMENTS TOWARDS MULTIPLE SINGULARITIES



	Point + Edge	Point + Face	Edge + Face	Point + Edge + Face
p=2	1.33	1.46	1.24	1.57
p=4	1.45	1.60	1.35	1.75
p=6	1.39	1.56	1.23	1.65

PAPERS

Maciej Paszyński, David Pardo, Victor Calo

PERFORMANCE OF DIRECT SOLVERS ON H-ADAPTED GRIDS
submitted to Computers and Mathematics with Applications, 2014

Damian Goik, Konrad Jopek, Maciej Paszynski, Andrew Lenharth, Donald Nguyen, Keshav Pingali

GRAPH GRAMMAR BASED MULTI-THREAD MULTI-FRONTAL DIRECT SOLVER WITH GALOIS SCHEDULER

Procedia Computer Science, 29 (2014) 960-969

Maciej Wozniak, Krzysztof Kuznik, Maciej Paszynski, Victor Calo, David Pardo COMPUTATIONAL COST ESTIMATES FOR PARALLEL SHARED MEMORY ISOGEOMETRIC MULTI-FRONTAL SOLVERS,

Computers and Mathematics with Applications, 67(10) (2014) 1864-1883.

Maciej Wozniak, Maciej Paszynski, David Pardo, Lisandro Dalcin, Victor Calo, COMPUTATIONAL COST OF ISOGEOMETRIC MULTI-FRONTAL SOLVERS ON PARALLEL DISTRIBUTED MEMORY MACHINES,

Computer Methods in Applied Mechanics and Engineering, 284 (2015) 971-987.