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COMPUTATIONAL COST OF MULTI-FRONTAL SOLVER 



COMPUTATIONAL COST OF MULTI-FRONTAL SOLVER 

Number of operations for partial forward elimination 
(Schur complement computations) 

Computational complexity O(ab2) 
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COMPUTATIONAL COST OF FRONTAL SOLVER 

Computational cost  of elimination of a single layer O((N0.5)3)=O(N3/2) 
Number of layers = O(N0.5) 
 
Computational cost of elimination of entire mesh 
 = computational cost of elimination of a single layer    *  number of layers 
 
O(N0.5N3/2)=O(N2) in 2D 
 
O(N1/3N6/3)=O(N7/3) in 3D 
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MODEL ELIPTIC PROBLEM 



COMPUTATIONAL COST OF 3D DIRECT SOLVER 

  

  

Notation: 
 
N = number of degrees of freedom 
Ne = number of elements 
p = polynomial order of approximation 
O(N)=O(Ne*p3) 
 
Computational cost of direct solvers    =  
 cost of static condensation   +   cost of LU factorization 
 
Static condensation O(Ne*p9)=O(N*p6) 
 
Cost of LU factorization over regular grid O(N2) 
 
CONCLUSIONS:  
For regular grid total cost is O(N*p6+N2) = O(N2) 
 
For other grids it is not always the case (static condensation may dominate) 



  

  

UNIFORM REFINEMENTS 

             Mesh                                                    Time of LU factorization 

Slope = exponent factor = 2   
Location = p factor = 1=p0 



  

  

UNIFORM REFINEMENTS 
MULTI-FRONTAL SOLVER APPROACH 

Total cost is O(N*p6+N2) = O(N2) 

Static condensation 
O(N*p6)                 + 

LU factorization O(N2)  



REFINEMENTS TOWARDS POINT SINGULARITY 

   Mesh       Time of LU factorization 

Slope = exponent factor  = 1 
Location = p factor = p6



REFINEMENTS TOWARDS POINT SINGULARITY 
FRONTAL SOLVER APPROACH 

Total cost is O(N*p6+N*p3) = O(N*p6) 

Static condensation 
O(N*p6)                 + 

Schur complent of a single layer O(p6) 
Number of layers k=O(Ne)=O(N/p3)

….. 

Total cost of LU factorization O(p6*k)=O(p6*N/p3)= O(N*p3) 



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 

   Mesh       Time of LU factorization 

Slope = exponent factor  = 1 
Location = p factor = p6



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 
FRONTAL SOLVER APPROACH 

DO NOT USE FRONTAL SOLVER APPROACH 

Static condensation 
O(N*p6)                 + 

Number of dofs in a layer 3*2kp2=O(2kp2) 
Number of interfaces dofs in a layer 2*2kp2=O(2kp2) 
Cost of Schur complement of a single layer O(23kp6) 

s=number of layers, N = O   = O    = O(p32s) 

Cost of LU factorization  O      = O(p623s)=O(N3/p3) 

….. 

k=1                                                k=2 



 

ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 
MULTI-FRONTAL SOLVER APPROACH 

Static  
condensation 
O(N*p6)       + 

Number of dofs in a patch O(kp2) 
Number of patches in a single layer O(2s-k) 
Number of interfaces dofs in a patch O(kp2) 
Cost of Schur complement of a single layer O(2s-k k3p6) 

s=number of layers, N = O   = O    = O(p32s) 

Cost of LU factorization  O    <O(s3p62s)=O(Np3 (log2
3Ne)) 

Total cost is < O(N*p6+Np3 ( log2
3Ne)) 

       k=1                              k=2                             k=3           k=4 
 2(s-k)    2 (4-1)=23=8                    2(4-2)=22=4                  2(4-3)=21=2      2(4-4)=20=1 



ANISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 

   Mesh       Time of LU factorization 

Slope = exponent factor = 1 
Location = p factor = p6



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 
FRONTAL SOLVER APPROACH 

Total cost is O(N*p6+N*p3) = O(Np6) 

Static condensation 
O(N*p6)                 + 

Number of dofs in a layer O(p2) 
Number of interfaces dofs in a layer O(p2) 
 

….. 

Number of layers k=O(Ne)=O(N/p3)

Total cost of LU factorization O(p6*k)=O(p6*N/p3)= O(N*p3) 



ISOTROPIC REFINEMENTS TOWARDS FACE SINGULARITY 

   Mesh       Time of LU factorization 

Slope = exponent factor = 1.5  
Location = p factor = p1.5



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 
FRONTAL SOLVER APPROACH 

Static condensation 
O(N*p6)                 + 

Number of dofs in a layer 22kp2=O(22kp2) 
Number of interfaces dofs in a layer 22kp2=O(22kp2) 
Cost of Schur complement of a single layer O(26kp6) 

s=number of layers, N = O    = O(p322s) 

Cost of LU factorization  O      = O(p626s)=O(N3/p3) 

….. 

k=1                                                k=2 

DO NOT USE FRONTAL SOLVER APPROACH 



  

ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 
MULTI-FRONTAL SOLVER APPROACH 

Static condensation 
O(N*p6)                 + 

Number of dofs in a patch O(2kp2) 
Numbers of patches in a layer O(22(s-k)) 
Number of interfaces dofs in a patch O(2kp2) 
Cost of Schur complement of a single layer O(22(s-k)23kp6) 

s=number of layers, N = O    = O(p322s) 

Cost of LU factorization  O      = O(p623s)=O(N1.5*p1.5) 

Total cost is O(N*p6+N1.5*p1.5) 

       k=1                                              k=2           k=3      
 22(s-k)  22(4-1)=22*3=64                            22(4-2)=22*2=16    22(4-3)=22=4  



  

  

ANISOTROPIC REFINEMENTS TOWARDS FACE SINGULARITY 

             Mesh                                                    Time of LU factorization 

Slope = exponent factor = 1   
Location = p factor = p6 



ISOTROPIC REFINEMENTS TOWARDS EDGE SINGULARITY 
FRONTAL SOLVER APPROACH 

Total cost is O(N*p6+N*p3) = O(Np6) 

Static condensation 
O(N*p6)                 + 

Number of dofs in a layer O(p2) 
Number of interfaces dofs in a layer O(p2) 
 

….. 

Number of layers k=O(Ne)=O(N/p3)

Total cost of LU factorization O(p6*k)=O(p6*N/p3)= O(N*p3) 



COMPARISON OF NUMERICAL AND THEORETICAL 
SCALABILITY EXPONENT FACTORS  

FOR REFINEMENTS TOWARDS A SINGLE ENTITY 



POINT + ANISOTROPIC EDGE SINGULARITY 

   Mesh    Time of LU factorization 



  

  

POINT + ANISOTROPIC FACE SINGULARITY 

             Mesh                                                    Time of LU factorization 



  

  

ANISOTROPIC EDGE + ANISOTROPIC FACE SINGULARITY 

             Mesh                                                    Time of LU factorization 



  

  

POINT + ANISOTROPIC EDGE + ANISOTROPIC FACE SINGULARITY 

             Mesh                                                    Time of LU factorization 



  
  

NUMERICAL SCALABILITY EXPONENT FACTORS  
FOR REFINEMENTS TOWARDS MULTIPLE SINGULARITIES 
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