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ABSTRACT. In this paper a dynamical model of propagation of pollutants in a river with
M point controls in the form of aerators and K point measurements is being transformed
to an abstract model on a suitably chosen Hilbert space. Our model belongs to the class
of abstract models of the factor–type.

It is shown that the semigroup generated by the state operator A has a property of
decaying in a finite–time, the observation operator is admissible, and the system transfer

function is in the space H∞(C+, L(CM, CK)).
In the final part we also formulate the LQ problem with infinite–time horizon.

1. INTRODUCTION

The biochemical oxygen demand (BOD) and the dissolved oxygen (DO) are basic oxy-
gen indices which allow to evaluate the river water quality [3]. The time–varying values
of BOD and DO are described by the so–called advection–diffusion partial differential
equations. In practice, for headwaters and rivers in theirs middle course, it is being
regarded that the advection term dominated the diffusion component. Hence in what
follows we shall assume that the diffusion process in negligible (absence of the second
order partial derivatives with respect to a spatial variable).

In order to improve the water quality it is being proposed to set aerators on a river
[10]. Clearly, this only supports the wastes purification and compensates the results
of pollution but it does not cancel its sources. The point waste waters are registered
and if they exceed some admissible standards then they have to be purified. However,
the surface waste waters run down to a river without any limitations and they may
represent even 50% of the whole wastes. Therefore it seems to be reasonable that the
aeration would be helpful in keeping oxygen indices within the standards.

Suppose that a number of aerators are working on a river and we have a steady-state.
Of course, it has to be proved that it is worth to set aerators, i.e., that they significantly
improve the water quality. For that the system has to be identified and some numerical
experiments are in order. This can be done with the aid of some computer software
like, e.g., WODA package [12], [11], [16]. Now suppose that the equilibrium is lost, e.g.,
by introducing of an additional amount of waste waters. An idea is then to steer the
aerators is such a way that the balance will be recovered under some minimal costs.

This problem is of practical importance and it is also interesting from the control
theory viewpoint, if it is formulated as a linear–quadratic (LQ) problem with infinite–
time horizon on a Hilbert state space. In [9], a problem of the water quality control
has been formulated for the first time as the LQ problem with distributed control and
distributed observation which are mathematically modeled by bounded control and
output operators.

Key words and phrases. control of infinite–dimensional systems, semigroups, water–quality control.
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In a real world the control action and measurements are rather of point nature and,
mathematically, they can be expressed in terms of unbounded operators.

Recently, a large number of, especially theoretical, publications devoted to LQ prob-
lem with infinite–time horizon and with unbounded control and observation operators
is available, e.g., [13], [22], however there are only a few papers in which some examples
are completely treated. To our knowledge, the first paper providing an example with a
complete solution of such a LQ problem (for a distortionless electric RLCG transmission
line) was [4]. This example was also studied in [17] and [18]. An another example can be
found in [23]. The LQ problem for the first order hyperbolic equations with unbounded
control and observation has been treated too in [20] and [2, 14].

The paper is organized as follows. In Section 2 we recall a dynamical model of the
water quality control in a form of partial differential equations of the advective–type, an
equilibrium point of which has been established for a given nominal control and waste
waters. Next step is to translate this equilibrium to the origin. In Section 3 the system

dynamics is written in its abstract factor form on the Hilbert state space H = L2[0, a] ⊕
L2[0, a]. It is also shown that the semigroup generated by the state operator A decays to
zero in a finite time. Further, we prove that our observation operator is A–bounded and
admissible and that the system transfer functions is in the space H∞(C+, L(CM, CK)). In
conclusions (Section 4), we present some conclusions and formulate the LQ problem LQ
with infinite–time horizon a solution of which is a prospect for further investigations.

2. DYNAMICAL MODEL

Following [15], [19], consider a dynamical model of the river water quality control
governed by the equations

(2.1)






∂L
∂t

= −v
∂L
∂θ

− (K1 + K3)L + J

∂D
∂t

= −v
∂D
∂θ

− K2D + K1L + DB + R − P − U





, t ≥ 0, θ ∈ [0, a]

where:
a – the length of a given river interval [m]
t – time [s]

L(θ, t) – BOD concentration [mg/m3]
C(θ, t) – DO concentration (dissolved oxygen) [mg/m3]
CS(θ, t) – saturated value of dissolved oxygen [mg/m3]
D(θ, t) = CS(θ, t) − C(θ, t)

v – velocity of the water flow in a river [m/s]
K1 – coefficient of biochemical degradation of organic matters [1/s]
K2 – coefficient of reaeration [1/s]
K3 – coefficient of sedimentation [1/s]
J – waste waters - index of BDO emission [mg/(m3s)]

U – control function – aeration [mg/(m3s)]
DB – oxygen consumption by sludge1 [mg/(m3s)]
R – oxygen consumption by respiration of plants [mg/(m3s)]
P – oxygen concentration increase due to photosynthesis [mg/(m3s)].

1The parameter DB is difficult to be determined and in majority of references it is ignored.
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The initial condition are zero

L(θ, 0) = 0, D(θ, 0) = 0, θ ∈ [0, a] ,

whilst the boundary conditions are of the form

L(0, t) = 0, D(0, t) = 0, t ≥ 0 .

The waste waters are given by

J(θ) = p +
N

∑
j=1

qjδ(θ − ξ j), p, qj ∈ R, (j = 1, . . . , N)

where p stands for the surface wastes (uniform along the whole river length), and the
sum represents the point wastes, δ is the Dirac–delta pseudo-function.

Out of technological realization the control is assumed to be exclusively of the point–
type

U(t, θ) =
M

∑
n=1

αn(t)δ(θ − ηn), 0 < η1 < η2 < . . . ηM < a .

In order to determine the equilibria L∗(θ) and D∗(θ) of the system (2.1) one has to
solve the system of equations

(2.2)






L∗′ = −
(K1 + K3)

v
L∗ +

1

v
J(θ)

D∗′ = −
K2

v
D∗ +

K1

v
L∗ +

1

v
W +

1

v
U2(θ)






where we assumed for simplicity W = DB + R − P while the control U2(θ) is given by

U2(θ) =
M

∑
n=1

βnδ(θ − ηn) .

Solving the first equation with initial condition L∗(0) = 0 one obtains

L∗(θ) =
∫ θ

0
e−

K1+K3
v (θ−x̃) 1

v
J(x̃)dx̃ .

Inserting the expression describing the waste waters we get

L∗(θ) =
1

v

∫ θ

0
e−

K1+K3
v (θ−x̃)

(
p +

N

∑
j=1

qjδ(x̃ − ξ j)

)
dx̃ =

=
1

v

∫ θ

0
e
−

K1 + K3

v
(θ−x̃)

pdx̃ +
1

v

∫ θ

0
e
−

K1 + K3

v
(θ−x̃)

(
N

∑
j=1

qjδ(x̃ − ξ j)

)
dx̃ ,

whence

L∗(θ) =
p

K1 + K3

(
1 − e−

K1+K3
v θ

)
+

1

v

N

∑
j=1

1l(θ − ξ j)qje
−

K1+K3
v (θ−ξ j)

where 1l denotes the Heaviside step function. The solution of the second equation of
(2.2) with initial condition D∗(0) = 0 is

D∗(θ) =
∫ θ

0
e−

K2
v (θ−x̃)

[
K1

v
L∗(x̃) +

W
v

+
U2(x̃)

v

]
dx̃ ,
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whence

D∗(θ) =
K1p

K2(K1 + K3)

(
1 − e−

K2
v θ

)
−

K1p
(K1 + K3)(K2 − (K1 + K3))

(
e−

K1+K3
v θ − e−

K2
v θ

)
+

+
N

∑
j=1

1l(θ − ξ j)qj
K1

v(K2 − (K1 + K3))

(
e−

K1+K3
v (θ−ξ j) − e−

K2
v (θ−ξ j)

)
+

+
W
K2

(
1 − e−

K2
v θ

)
+

1

v

M

∑
n=1

1l(θ − ηn)βne−
K2
v (θ−ηn) .

Making translations

x1(t, θ) := L(t, θ) − L∗(θ), x2(t, θ) := D(t, θ) − D∗(θ) ,

introducing the deviated control

V(θ, t) := U(θ, t) − U2(θ) =
M

∑
n=1

un(t)δ(θ − ηn), un(t) := αn(t) − βn

and recalling the definitions of L∗ and D∗ we get

(2.3)






∂x1

∂t
= −v

∂x1

∂θ
− (K1 + K3)x1

∂x2

∂t
= −v

∂x2

∂θ
− K2x2 + K1x1 + V(t, θ)

x1(0, t) = 0

x2(0, t) = 0

x1(θ, 0) = −L∗(θ)

x2(θ, 0) = −D∗(θ)






, t ≥ 0, θ ∈ [0, a] .

3. ABSTRACT MODEL

Assuming the translated distribution functions (profiles) of BDO and DO in a fixed

time t ≥ 0 as components of the state vector x(t) =
[

x1(·, t) x2(·, t)
]T

from the space

H = L2(0, a) ⊕ L2(0, a) ,

equipped in the standard scalar product

〈x, w〉H =
∫ a

0

[
x1(θ)
x2(θ)

]T [ w1(θ)
w2(θ)

]
dθ = 〈x1, w1〉L2(0,a) + 〈x2, w2〉L2(0,a) ,

we can rewrite (2.3) into its abstract additive form

(3.1)





ẋ(t) = Ax(t) +

M

∑
n=1

bnun(t)

y(t) = (c#x)(t)
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with unbounded linear operator A : (D(A) ⊂ H) → H,





Ax = −vx
′
+ Qx, Q =

[
−(K1 + K3) 0

K1 −K2

]

D(A) = {x ∈ H : x′ ∈ H, x(0) = 0} = W1,2
0 [0, a] ⊕ W1,2

0 [0, a]





,

control vectors

bn =

[
0

δ(θ − ηn)

]
/∈ H, n = 1, . . . , M

and the vector of linear unbounded functionals of observation at the points {γi}
K
i=1 ⊂

(0, a),

(3.2)






c#x =





c#
1x

c#
2x
...

c#
Kx




, c#

i x = x2(γi)

D(c#) = {x ∈ H : x2 is continuous at γi, i = 1, . . . , K}






.

Definition 3.1. A family {T(t)}t≥0 ⊂ L(H) is called the C0–semigroup on the space H
if the following conditions hold

T(0) = I, T(t + τ) = T(t)T(τ) ∀t, τ ≥ 0

lim
t→0+

T(t)x = x ∀x ∈ H .

The linear operator

Ax := lim
t→0+

1

t
[T(t)x − x] , D(A) =

{
x ∈ H : ∃ lim

t→0+

1

t
[T(t)x − x]

}

is said to be the infinitesimal generator of the C0–semigroup {T(t)}t≥0.

From the semigroup theory (e.g., [21, 6]) we know that the Laplace transform of a
semigroup is the resolvent of its infinitesimal generator A, i.e.,

∫ ∞

0
e−stT(t)xdt = (sI − A)−1x, x ∈ H .

Theorem 3.1. The operator A is the infinitesimal generator of a C0–semigroup {T(t)}t≥0

with the property: T(t) = 0 for each t ≥ a
v .

Proof. Since the matrix Q is diagonally dissipative, i.e., there exists a diagonal matrix

H > 0 such that QT H + HQ < 0 (e.g., H = diag{ 1
K2(K1+K3)

, 1
K2

1
}), then the fact that A

generates an exponentially stable semigroup {T(t)}t≥0 immediately follows from the
result of [7].

This result can be sharpened by representing A as the sum of the generator of scaled
(t replaced by vt) semigroup of right–shifts {S(t)}t≥0 ,

S(t)xi =

{
xi(θ − vt) if a ≥ θ ≥ vt
0 if θ < vt

}
, i = 1, 2 ,
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and the operator of multiplication by the matrix Q. Due to this the following represen-
tation is valid

T(t)x = eQt
[

S(t)x1

S(t)x2

]
, eQt =




e−(K1+K3)t 0

K1
K2−(K1+K3)

[
e−(K1+K3)t − e−K2t

]
e−K2t



 ,

and consequently, since S(t) = 0 for t ≥ a
v , then also T(t) = 0 for t ≥ a

v . �

For every λ ∈ C and y ∈ H the equation

λx(θ) − Ax(θ) = y(θ) ,

taking in H the particular form,





λx1(θ) + vx
′

1(θ) + (K1 + K3)x1(θ) = y1(θ)

λx2(θ) + vx
′

2(θ) − K1x1(θ) + K2x2(θ) = y2(θ)

x1(0) = 0, x2(0) = 0.

has a unique solution in D(A) with components

(3.3) x1(θ) =
∫ θ

0

1

v
e−

λ+K1+K3
v (θ−x̃)y1(x̃)dx̃ ,

(3.4) x2(θ) =
∫ θ

0
e−

λ+K2
v (θ−w)

[
K1

v2

∫ w

0
e−

λ+K1+K3
v (w−x̃)y1(x̃)dx̃ +

1

v
y2(w)

]
dw .

Formulae (3.3) and (3.4) define for any λ ∈ C the resolvent of A and, consequently, the
operator A has empty spectrum.

Actually, making use of some results presented in [1], it can be shown even more –
the resolvent (λI − A)−1 is a compact Volterra operator.

Substituting λ = 0 in (3.3) and (3.4) we obtain the inverse of A:

A−1

[
Y1

Y2

]
= −

1

v





∫ θ

0
e−

K1+K3
v (θ−x̃)Y1(x̃)dx̃

∫ θ

0
e−

K2
v (θ−w)

[
K1

∫ w

0
e−

K1+K3
v (w−x̃)Y1(x̃)dx̃ + Y2(w)

]
dw



 .

The abstract model (3.1) can be analysed in the frames of the so–called well–posed,
regular linear systems developed by Salamon and Weiss [22]. In this theory, the state
equation is being interpreted as an equation on a larger space than the state space H
(usually denotes as H−1 or [D(A∗)]′), to which all control vectors bn belong. An impor-
tant ingredient of the theory is a proof that the state operator A naturally extends, onto
this larger space, to a linear unbounded operator Aext with the domain D(Aext) = H.

An alternative approach is the theory of the so–called abstract factor models devel-
oped by Grabowski and Callier [8], [5]. In this theory all objects of the abstract model
are defined within the state space H, but a price paid for this simplification is that now

the control action does not enter the model in an additive form “+ ∑
M
n=1 bnun(t)” but in

the factor form and the resulting state equation is

ẋ = A

[

x +
M

∑
n=1

dnun(t)

]

.
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In order to ensure a consistency of both two models one has to assume dn := A−1
extbn,

and dn ∈ H are so–called factor control vectors which generally do not satisfy dn /∈
D(A). Since A−1 is an integral operator then it has a natural extension to the Dirac–
delta distribution in the form commonly known as the Dirac–delta “sifting property”

A−1
extbn = −

1

v




0

∫ θ

0
e−

K2
v (θ−w)δ(w − ηn)dw



 = −
1

v

[
0

1l(θ − ηn)e−
K2
v (θ−ηn)

]

:= dn(θ)

and all elements of the factor model with observation

(3.5)






ẋ = A

[
x +

M

∑
n=1

dnun(t)

]

y(t) = (c#x)(t)






are now determined.

Definition 3.2. An observation operator c# ∈ L(D(A), R
K) is called admissible if there

exists ε > 0 such that

(3.6)
∫ ∞

0
|c#T(t)x0|

2dt ≤ ε‖x0‖
2
H ∀x0 ∈ D(A) .

Theorem 3.2. The observation operator c# is admissible.

Proof. For a proof that c# ∈ L(D(A), R
K) it suffices to demonstrate that there exist hi ∈

W1,2(0, a) ⊕ L2(0, a), i = 1, 2, . . . K,

hi =

[
hi1

hi2

]

, hi2(θ) =

{
h−i2(θ) ∈ W1,2[0, γi], 0 ≤ θ ≤ γi

h+
i2(θ) ∈ W1,2[γi, a], γi ≤ θ ≤ a

}

such that

(3.7) c#
i x = x2(γi) = 〈Ax, hi〉H ∀x ∈ D(A) ,

i.e., c#
i

∣∣
D(A) = h∗i A. If x ∈ D(A) then integrating–by–parts we obtain

〈Ax, hi〉H =
∫ a

0

[
−vx

′

1(θ) − (K1 + K3)x1(θ)
]

hi1(θ)dθ−

−
∫ γi

0
vx

′

2(θ)h−i2(θ)dθ −
∫ a

γi

vx
′

2(θ)h+
i2(θ)dθ−

−
∫ a

0
K2x2(θ)hi2(θ)dθ +

∫ a

0
K1x1(θ)hi2(θ)dθ =

= −vhi1(a)x1(a) + vhi1(0) x1(0)︸ ︷︷ ︸
=0

+
∫ a

0
x1(θ)

[
vh

′

i1(θ) − (K1 + K3)hi1(θ)
]

dθ

−vh−i2(γi)x2(γi) + vh−i2(0) x2(0)︸ ︷︷ ︸
=0

+
∫ γi

0
x2(θ)v

d

dθ

[
h−i2(θ)

]
dθ−

−vh+
i2(a)x2(a) + vh+

i2(γi)x2(γi) +
∫ a

γi

x2(θ)v
d

dθ

[
h+

i2(θ)
]

dθ+

+
∫ a

0
K1x1(θ)hi2(θ)dθ −

∫ a

0
K2x2(θ)hi2(θ)dθ .
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Hence the condition (3.7) would hold if

vh
′

i1(θ) − (K1 + K3)hi1(θ) + K1hi2(θ) = 0, 0 ≤ θ ≤ a(3.8)

vh
′−
i2 (θ) − K2h−i2(θ) = 0, 0 ≤ θ ≤ γi(3.9)

vh
′+
i2 (θ) − K2h+

i2(θ) = 0, γi ≤ θ ≤ a(3.10)

−vh−i2(γi) + vh+
i2(γi) = 1,(3.11)

hi1(a) = 0,(3.12)

h+
i2(a) = 0.(3.13)

From (3.10) and (3.13) we get hi2 on the interval γi ≤ θ ≤ a while from (3.9) and (3.11)
we determine hi2 on 0 ≤ θ ≤ γi. Hence

hi2(θ) =

{
− 1

v e
K2
v (θ−γi), 0 ≤ θ ≤ γi

0, γi ≤ θ ≤ a

}
.

Employing the solution hi2 jointly with (3.8) and (3.12) we find

hi1(θ) =






K1
v(K1+K3−K2)

(
e

K1+K3
v (θ−γi) − e

K2
v (θ−γi)

)
, 0 ≤ θ ≤ γi

0, γi ≤ θ ≤ a




 .

Hence there exists a uniquely determined vector hi ∈ H satisfying (3.7).
By (3.7),

∥∥∥c#x
∥∥∥

2

RK
=

K

∑
i=1

∣∣∣c#
i x
∣∣∣
2

=
K

∑
i=1

|〈Ax, hi〉H|
2 ≤ ‖Ax‖2

H

K

∑
i=1

‖hi‖
2
H , x ∈ D(A)

which means that c# ∈ L(D(A), RK).
Now we show the admissibility of c#. Let x0 ∈ D(A). Making use of the explicit

expression for the semigroup and employing evident inequalities
∣∣∣e−(K1+K3)t − e−K2t

∣∣∣ ≤ 1,
∣∣∣e−K2t

∣∣∣ ≤ 1 ∀t ≥ 0 ,

we have

∫ ∞

0

∣∣∣c#
i T(t)x0

∣∣∣
2

dt =
∫ γi/v

0

∣∣∣∣∣
K1

(
e−(K1+K3)t − e−K2t

)

K2 − (K1 + K3)
x1

0(γi − vt)
︸ ︷︷ ︸

Ξ

+ e−K2tx2
0(γi − vt)︸ ︷︷ ︸

Υ

∣∣∣∣∣

2

dt ≤

≤ 2
∫ γi/v

0

(
|Ξ|2 + |Υ|2

)
dt ≤ 2k̃

[∫ γi/v

0

∣∣∣x1
0(γi − vt)

∣∣∣
2

dt +
∫ γi/v

0

∣∣∣x2
0(γi − vt)

∣∣∣
2

dt
]
≤

≤
2k̃
v

∫ γi

0

[∣∣∣x1
0(θ)

∣∣∣
2
+
∣∣∣x2

0(θ)
∣∣∣
2
]

dθ ≤
2k̃
v
‖x0‖

2
H ,

where k̃ := max

{(
K1

K2−(K1+K3)

)2
, 1

}
. Hence

∫ ∞

0

∥∥∥c#T(t)x0

∥∥∥
2

RK
dt =

K

∑
i=1

∫ ∞

0

∣∣∣c#
i T(t)x0

∣∣∣
2

dt ≤
2Kk̃

v
‖x0‖

2
H

and c# is admissible with the admissibility constant ε of Definition 3.2 equal to 2Kk̃
v . �
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Since in the examined system the spaces of controls and outputs are, respectively, RM

and RK, i.e., they are finite–dimensional, then to describe influence of the n-th com-
ponent un of the control vector u onto i-th component yi of the output (observation)
vector y one can apply the theory of SISO abstract factor control systems presented in
[8] with some complements in [5]. In accordance with this theory, for every x0 ∈ H and

un ∈ W1,2(0, ∞) the following version of the variation–of–constants formula

x(t) = T(t)x0 +
M

∑
n=1

A
∫ t

0
T(t − τ)dnun(τ)dτ

expresses a weak solution to the initial–value problem associated with (3.5)2





ẋ = A

[
x +

M

∑
n=1

dnun

]

x(0) = x0





,

i.e., x is a continuous function of t taking values in H and such that for every w ∈ D(A∗),
the domain of the adjoint operator A∗, the scalar function t 7−→ 〈x(t), w〉H is absolutely
continuous and for almost all t there holds

d

dt
〈x(t), w〉H =

〈

x(t) +
M

∑
n=1

dnun(t),A∗w

〉

H

.

Thanks to this the Laplace transform of the state vector reads as

x̂(s) = (sI − A)−1x0 +
M

∑
n=1

A(sI − A)−1dnûn(s) =

= (sI − A)−1x0 +
M

∑
n=1

[
s(sI − A)−1dn − dn

]
ûn(s) .

Continuing the construction presented in [8], we have to verify whether the so–called
compatibility conditions holds: dn ∈ D(c#

i ) for i = 1, . . . , K, n = 1, . . . , M. Directly by

definitions of c#
i and dn,

dn ∈ D(c#
i ) ⇐⇒ γi 6= ηn, i = 1, . . . , K, n = 1, . . . , M ,

i.e., the observations are not driven in the same points as controls are applied. Then

c#
i dn =

{
− 1

v e−
K2
v (γi−ηn), γi > ηn

0, γi < ηn

}
.

The compatibility conditions enables us to determine the Laplace transform of the out-
put y,

ŷ(s) = c#x̂(s) = c#(sI − A)−1x0 +
M

∑
n=1

[
sc#(sI − A)−1dn − c#dn

]
û(s), s ∈ C .

With x0 = 0 we can define the matrix–valued transfer function of (3.5):

Ĝ(s) =
[

Ĝin(s)
]

i=1,...,K, n=1,...,M
,

2Conditions under which x is the classical solution are given in [5].
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where
Ĝin(s) = sc#

i (sI − A)−1dn − c#
i dn .

Applying (3.3) and (3.4) we find

Ĝin(s) =

{
1
v e−

s+K2
v (γi−ηn), γi > ηn

0, γi < ηn

}
.

Ĝin ∈ H∞(C+, L(CM, CK)), where H∞(C+, L(CM, CK)) denotes the Hardy space of

functions analytic and bounded on C+. This is the case, as Ĝin are entire functions
of s ∈ C and for s ∈ C+ ∪ jR we clearly have

∣∣∣Ĝin(s)
∣∣∣ <

1

v
e−

K2
v (γi−ηn) .

4. CONCLUSIONS

We have shown that the dynamical model of propagation of pollutants in a river with
M point controls realized by aerators and with K measurement points can be trans-
formed into its abstract factor control form on a suitable Hilbert state space. The semi-
group generated by the state operator A decays in a finite-time, the observation operator
is admissible, the system transfer functions belongs to the space H∞(C+, L(CM, CK)).

The results we have obtained are, in the prospect of further studies, a starting point
to solve the standard LQ problem of minimization the quadratic performance index

‖y‖2
L2(0,∞;RK) + ‖u‖2

L2(0,∞;RM)

over trajectories of (3.5), jointly with a construction of an optimal linear feedback con-
troller.

Such a performance index has a reasonable interpretation: its first component rep-
resent a penalty that the values of D deviate, in some selected measurement points,
from its nominal state D∗, while the second component represents control costs (costs
of aeration).
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