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IN FACTOR FORM: LYAPUNOV APPROACH

PIOTR GRABOWSKI AND FRANK M. CALLIER

Abstract. A Lur’e feedback control system consisting of a nonlinear static sector type
controller and a linear, infinite–dimensional system of boundary control in factor form is
considered. Some criteria of absolute weak or strong asymptotic stability of the null equi-
librium point are derived using Lyapunov functionals. The construction of such quadratic
form functional is reduced to solving a Lur’e system of equations. The solvability of the
latter system is investigated. Here, the main results are results similar to the Kalman
– Yacubovic̆ lemma which are generalizations of results due to a) A.V. Balakrishnan [2]
and b) J.C. Oostveen and R.F. Curtain [27]. These results are illustrated in detail by
electrical transmission lines: 1) of the distortionless loaded RLCG–type and 2) of the
unloaded RC–type.
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1. Introduction

This paper uses some results on abstract linear systems in factor form, obtained by the
authors in earlier papers [16], [17] and shortly recalled in Section 2. These results combined
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with the input–output approach using passivity concepts lead in [18] to a circle criterion
for the nonlinear Lur’e type feedback system described by (3.4) below. The present paper
shows that Lyapunov state space theory together with the abstract results of Section 2 is
also useful for getting similar stability conditions.

Some absolute stability criteria are derived in Section 3. They are based on using a
candidate quadratic form Lyapunov functional. A rather sophisticated procedure of eval-
uating the derivative of the quadratic form along the system trajectories is studied and
successfully applied to get a novel so–called Lur’e system. A weak version of LaSalle’s in-
variance principle is then used to investigate the global attractivity of the state trajectories
to a unique equilibrium at the origin. Moreover the abstract results of Section 2 enable us
to strengthen the attractivity properties such that even global strong asymptotic stabil-
ity can be obtained under some more restrictive assumptions. An important consequence
is that the problem of constructing a quadratic form Lyapunov functional is reduced to
solving a Lur’e system of equations as given by (3.2) or (3.7). This reduction is famous in
finite–dimensional system theory and leads to a variety of results commonly known as the
Kalman–Yacubovic̆–Popov lemma. Only a few particular cases of these results, surveyed in
Section 7.1, have been recently investigated in the infinite-dimensonal systems literature.
The main difficulty in getting a generalization of the Kalman–Yacubovic̆–Popov lemma is
due to the fact that boundary control and/or observation involve unbounded linear opera-
tors, which lead to some difficult mathematical questions. When writing this paper it was
observed that its specific problem was not met by the Lur’e system results of many papers.
A careful examination of the assumptions conditioning these results made it clear that the
latter had none or very limited utility for the stability question of this paper’s Lur’e type
nonlinear feedback system.

The solvability of the Lur’e system mentioned above is analyzed in Section 4 and related
to results of papers by Balakrishnan [2] and Nudel’man and Schwartzman [26]. Despite
the fact that some main steps of the classical Kalman proof are repeated here, it is up to
the knowledge of the authors original. Modulo some auxiliary results the proof consists of
three parts. The first part describes spectral factorization using Szegö’s theorem. The next
part describes the solution of the realization problem (4.14) under the assumption that the
open–loop system operator has a system of eigenvectors that is a state space Riesz basis.
The final part handles the solvability of the Lur’e system. A result due to Oostveen and
Curtain [27] is hereby usefully adapted to get solvability conditions for the specific system
at hand.

Section 5 presents an exhaustive illustration of the results above for the example of a
loaded distortionless electric RLCG–transmission line. A salient feature of its presentation
is that the realizability problem is solved by two different methods: a direct method and
a Riesz basis method.

Section 6 handles the example of an unloaded electric RC–transmission line. The latter
has two features that are worth mentioning: 1) as here the factor control vector d is not
admissible, only a weaker stability result can be obtained, and 2) it is possible to verify
implicitly all assumptions made in Section 4 by using the theory of spectral factorization
of even entire functions that are nonnegative on jR.

Some prospects for further investigations are presented in the concluding Subsection 7.2.
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2. Preliminary data

In a Hilbert space H with a scalar product 〈·, ·〉H consider the SISO model of boundary
control in factor form [16],

(2.1)

{
ẋ(t) = A[x(t) + u(t)d]
y = c#x

}
.

We assume that A : (D(A) ⊂ H) −→ H generates a linear exponentially stable (EXS),
C0–semigroup {S(t)}t≥0 on H, d ∈ H is a factor control vector, u ∈ L2(0,∞) is a scalar
control function, y is a scalar output defined by an A–bounded linear observation functional
c#. The restriction of c# to D(A) is representable as c#

∣∣
D(A)

= h∗A for some h ∈ H.

Define two operators:

V ∈ L(H,L2(0,∞)), (V x)(t) := h∗S(t)x

W ∈ L(L2(0,∞),H), Wu :=

∫ ∞
0

S(t)du(t)dt .

Recall that L and R = L∗,

Lf = f ′, D(L) = W1,2(0,∞) ,

Rf = −f ′, D(R) = {f ∈W1,2(0,∞) : f(0) = 0}

are the generators of the semigoups of left– and right–shifts on L2(0,∞), respectively.

Definition 2.1. The observation functional c# is called admissible if the observability
operator

P = V A, D(P ) = D(A)

is bounded.

Definition 2.2. The factor control vector d ∈ H is called admissible if

Range(W ) ⊂ D(A) .

In the sequel Π+ := {s ∈ C : Re s > 0} denotes the open right-half complex plane,
H∞(Π+) is the Banach space of analytic functions f on Π+, equipped with the norm
‖f‖H∞(Π+) = sup

s∈Π+

|f(s)| and H2(Π+) is the Hardy space of functions f analytic on Π+ such

that sup
σ>0

∫ ∞
−∞
|f(σ + jω)|2 dω < ∞, where f(jω) := lim

σ→0+
f(σ + jω) exists for almost all

ω ∈ R. The space H2(Π+) is unitarily isomorphic with L2(0,∞) through the normalized
Laplace transform. To be more precise,

〈f, g〉L2(0,∞)) =
1

2π

∫ ∞
−∞

f̂(jω)ĝ(jω)dω

where f̂ , ĝ are the Laplace transform of f and g, respectively.
Moreover [20, p. 134] we shall frequently use the unitary operator U ∈ L(H2(Π+)) given
by

(2.2) (Uϕ)(s) := (1/s)ϕ(1/s) ,

which for the jω–axis H2(Π+)–norm corresponds to the change of variable ω 7−→ −ω−1.
Finally we shall encounter Wiener and Callier-Desoer convolution algebras. Recall [6, pp.
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652 - 653], [7, pp. 81 - 84], [8, pp. 337 - 338] that a scalar–valued Laplace transformable
distribution f with support on [0,∞) is in the Wiener class A(σ) for some σ ∈ R if

f(t) = fa(t) + fsa(t) for t ≥ 0 with e−σ(·)fa(·) ∈ L1(0,∞) and fsa(t) =
∞∑
i=0

fiδ(t − ti),

where δ denotes the Dirac delta distribution and t0 = 0 and ti > 0 for i > 0 are such

that
∞∑
i=0

e−σti |fi| < ∞. Such distribution is in the Callier–Desoer class A−(0) if it is in

A(σ) for some σ < 0. Â(σ) and Â−(0) denote the classes of Laplace transforms of such
distributions. A(σ) is a convolution Banach algebra with norm

‖f‖A(σ) :=
∥∥e−σ(·)fa(·)

∥∥
L1(0,∞)

+
∞∑
i=0

e−σti |fi| .

For more information see [7] or [8].

Lemma 2.1. If c# is admissible then P , the closure of P has the form

Range(V ) ⊂ D(L), P = LV

In particular for all x0 ∈ H, (Px0)(t) =
d

dt
[h∗S(t)x0] ∈ L2(0,∞) with Laplace transform(

P̂ x0

)
(s) = c#(sI − A)−1x0 ∈ H2(Π+). Moreover if d is admissible then the reachability

operator Q = AW belongs to L(L2(0,∞),H).

Lemma 2.2. If the compatibility condition

(2.3) d ∈ D(c#)

holds then the function

(2.4) ĝ(s) := sc#(sI − A)−1d− c#d = sh∗A(sI − A)−1d− c#d

is well–defined and analytic on the complex right half–plane Π+.
If in addition to (2.3), c# is admissible then:

(i) ĝ(s) = s
(
P̂ d
)
(s)− c#d with P̂ d ∈ H∞(Π+) ∩ H2(Π+).

(ii) The convolution operatorK with kernel Pd, i.e., Ku := Pd?u belongs to L(L2(0,∞))
and it maps the domain of R into itself.

Lemma 2.2 lead to the following result [17, Theorem 4.1].

Lemma 2.3. If (2.3) holds, c# is admissible and

(2.5) ĝ ∈ H∞(Π+)

then the input–output operator F ,

F = −KR− c#dI, D(F ) = D(R)

is bounded and its closure F is given by

Range(K) ⊂ D(R), F = −RK − c#dI .

Moreover, ĝ is then the transfer function of the system (2.1).

The following auxiliary result [17, Fact 3.2, p. 8] shall be needed.



THE CIRCLE CRITERION: LYAPUNOV APPROACH 5

Lemma 2.4. Let c# be admissible. Let ω < 0 be the growth constant of the EXS
C0–semigroup generated by A on H. Then for any σ ∈ (ω, 0]

e−σt
(
Px0

)
(t) ∈ L1(0,∞) ∩ L2(0,∞) ∀x0 ∈ H .

As a consequence with d ∈ H,
(
P̂ d
)
(s) ∈ Â(σ) for any σ ∈ (ω, 0], and hence for such σ, is

analytic and bounded in Re s > σ and thus also in a full neighborhood of s = 0.

Finally we need

Lemma 2.5. Assume that A : (D(A) ⊂ H) −→ H generates an exponentially stable EXS,
C0–semigroup {S(t)}t≥0 on H and assume that A−1 ∈ L(H) generates a C0–semigroup

{etA−1}t≥0 which is bounded uniformly in t ≥ 0 with respect to the operator norm of L(H),

then the semigroup {etA−1}t≥0 is strongly asymptotically stable (AS), i.e. for every x0 ∈ H,

lim
t→∞

etA
−1

x0 = 0.

Proof. In addition to the assumption of uniform boundedness of {etA−1}t≥0, the exponential
stability of the semigroup generated by A gives σP [(A∗)−1]∩jR = ∅ and σ(A−1)∩jR = {0}
( 0 ∈ σC(A−1) is the only point of the spectrum of A−1 on jR). Hence the conclusion follows
by a result in Lyubich and Phong [25], or equivalently one in Arendt and Batty [1]. �

3. Asymptotic stability of the Lur’e feedback system

Consider the Lur’e feeback control system depicted in Figure 3.1,

u y(t)

CONTROLLER

u(t)

PLANT

f(y)
ẋ(t) = A[x(t) + du(t)]
x(0) = x0

y(t) = c#x(t)

- --

Figure 3.1. The Lur’e control system

which consists of a linear part described by (2.1), and a scalar static controller nonlinearity
f : R −→ R.

Our aim in this section is to prove some criteria of global weak and strong asymptotic
stability for the Lur’e feedback system. For this purpose we assume the following linear
subsystem assumptions

(A1) The operator A generates an AS C0–semigroup {S(t)}t≥0 on H and 0 ∈ ρ(A), where
ρ(A) stands for the resolvent set of A,

(A2) The compatibility condition (2.3) holds,

(A3) There exist constants k1 and k2 > k1 such that with

(3.1) q := k1k2, e :=
k1 + k2

2
+ k1k2c

#d, δ := (1 + k1c
#d)(1 + k2c

#d)
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the Lur’e system

(3.2)

{
HA−1 + (A−1)

∗H− qhh∗ = −gg∗

−Hd+ eh = −
√
δg

}
has a solution (H, g), g ∈ H, H ∈ L(H), H = H∗ ≥ 0.

Next for the controller two sets describe restrictions to be imposed on the static nonlinearity
f : R −→ R, namely

• We define the sector

(3.3) S :=
{
f ∈ C(R) : k1 <

f(y)

y
< k2 ∀y ∈ R \ {0}, f(0) = 0

}
.

• We denote byM the class of those functions f ∈ C(R) which are sufficiently smooth
to ensure that the solutions of the closed–loop system equations

(3.4)

{
A−1ẋ = x+ df(y)

y = c#x = c#(A−1ẋ− df) = c#A−1ẋ− c#df = h∗ẋ− c#df

}
generate a local dynamical system on the state space H. Observe here that for
w ∈ D(A∗) we have

d

dt
〈w, x〉H =

d

dt
〈A∗w,A−1x〉H = 〈A∗w,A−1ẋ〉H = 〈A∗w, x+ df(y)〉H

then any weak solution of the original closed–loop system ẋ = A[x+df(y)], y = c#x
satisfies (3.4) in the classical sense.

Theorem 3.1. Let assumptions (A1)÷(A3) hold, where moreover in (A3) H is coercive,
i.e.

H = H∗ ≥ ηI with η > 0 .

Let f belong to S ∩M. Then the origin of the space H is globally weakly asymptotically
stable

Proof. The idea of proof is to observe that the quadratic form V (x) = x∗Hx is a Lyapunov
functional for the system (3.4). Its derivative along the solutions of (3.4) can be represented
as

V̇ = ẋ∗Hx+ x∗Hẋ = ẋ∗H(A−1ẋ− df) + (A−1ẋ− df)∗Hẋ =

=
[
ẋ∗ f

] [ HA−1 + (A−1)
∗H −Hd

−d∗H 0

][
ẋ

f

]
.

To meet the sector conditions (3.3) we add and subtract the expression

[k2y − f(y)][f(y)− k1y] = [k2h
∗ẋ− (k2c

#d+ 1)f ][(k1c
#d+ 1)f − k1h

∗ẋ] .

Now we get

V̇ = −(k2y − f)(f − k1y) +
[
ẋ∗ f

] [ HA−1 + (A−1)
∗H− qhh∗ −Hd+ eh

−d∗H + eh∗ −δ

][
ẋ

f

]
.

By (A3) we obtain

(3.5) V̇ = −
[
g∗ẋ+

√
δf
]2

− (k2y − f)(f − k1y) ≤ 0 ,

and V is a Lyapunov functional for the system (3.4), independently of f ∈ S ∩M.
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Since the operator H is coercive all solutions are bounded because they remain in the
level set of V which are bounded positively invariant sets. Hence, the solutions of (3.4)
generate a dynamical system on H. Moreover, the null equilibrium point is stable in the
sense of Lyapunov. These facts follow from the estimate

(3.6) η ‖x(t, x0)‖2
H ≤ V [x(t, x0)] ≤ V (x0) ≤ ‖x0‖2

H ‖H‖L(H)

which originally holds on the right maximal interval of existence of the solution x(·, x0)
but then extends to all t ≥ 0.

By the weak invariance principle [3] all solutions weakly tend to an invariant set con-
tained in the set of those initial conditions x0 which give rise to trajectories on which V is
constant, i.e., to the set

E := {x0 ∈ H : V [x(t, x0)] = V (x0) ∀t ∈ R} .

Recall that on an invariant set the flow of a dynamical system acts onto, so we took t ∈ R
rather then t ≥ 0, which would be the case of a positively invariant set. Now by (3.5)
if x0 ∈ E then necessarily y(t) ≡ 0 on [0,∞). However, this implies through the control
law u(t) = f [y(t)] that the trajectory dictated by x(·, x0) is a weak solution of the linear
open–loop system ẋ = Ax, whence x(t, x0) = S(t)x0. Observe that then (3.6) yields

η ‖x0‖2
H ≤ V (x0) = 〈S(t)x0,HS(t)x0〉H ∀t ≥ 0

and consequently, by (ii), we have x0 = 0. Finally E = {0} and the null equilibrium point
is globally weakly attracting which jointly with its stability yields global weak asymptotic
stability. �

Remark 3.1. Assumption (A3) of Theorem 3.1 can be replaced by

(iii’) There exist constants k1 and k2 > k1 such that the system

(3.7)

{
〈Ax,Hx〉H + 〈x,HAx〉H = q (h∗Ax)2 − (g∗Ax)2 ∀x ∈ D(A)

−Hd+ eh = −
√
δg

}
has a solution (H, g), g ∈ H, H ∈ L(H), H = H∗ ≥ ηI with η > 0.

For the next result we need to reconsider the factor control vector d ∈ H. Recall that
Definition 2.2 defines the admissibility of d under the assumption that the C0–semigroup
{S(t)}t≥0 generated by A is EXS. Below we shall need its extension to the case that
semigroup is only AS. To do this reconsider the mapping

W : L2(0,∞) 3 u 7−→ Wu ∈ H, Wu :=

∫ ∞
0

S(t)du(t)dt .

Definition 3.1. Let A generate a C0–semigroup {S(t)}t≥0 which is AS. Then the factor
control vector d ∈ H is said to be admissible if W ∈ L(L2(0,∞),H) and Range(W ) ⊂ D(A).

Comment 3.1. In Definition 2.2 W ∈ L(L2(0,∞),H) was guaranteed by EXS. Hence
there the admissibility of d reduces to Range(W ) ⊂ D(A). If Definition 3.1 holds, then
W ∗ ∈ L(H,L2(0,∞)) and is given by (W ∗x)(t) = d∗S∗(t)x, x ∈ H. Moreover, the reachabil-
ity operator Q satisfies Q := AW ∈ L(L2(0,∞),H) and Q∗ ∈ L(H,L2(0,∞)), Q∗ = LW ∗,
because the restriction of Q to D(R) equals WR.

We are now ready for our next result, where H will be merely nonnegative, at the cost
of restrictions on the linear subsystem factor control vector d:
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(A4) The factor control vector d ∈ H is admissible according to Definition 3.1.

and on the controller sector condition:

• For sufficiently small ε > 0 we consider the sector
(3.8)

Sε :=
{
f ∈ C(R) : −∞ < k1 <

1

2

[
k1 + k2 −

√
(k2 − k1)2 − 4ε

]
≤ f(y)

y
≤

≤ 1

2

[
k1 + k2 +

√
(k2 − k1)2 − 4ε

]
< k2 <∞ ∀y ∈ R \ {0}, f(0) = 0

}
.

Theorem 3.2. Let assumptions (A1)÷(A4) hold. Let f belong to Sε ∩M. Then the
origin of the space H is globally strongly asymptotically stable.

Proof. By the first part of the proof of Theorem 3.1 one gets (3.5). Now, due to f ∈ Sε,
we have

(3.9) V̇ = −
[
g∗ẋ+

√
δf
]2

− (k2y − f)(f − k1y) ≤ −εy2 .

A derivation of the latter estimate is presented in Appendix A. Integrating both sides of
(3.9) from 0 to t we obtain

−V (x0) ≤ V [x(t, x0)]− V (x0) ≤ −ε
∫ t

0

y2(τ)dτ

whence

‖H‖L(H) ‖x0‖2
H ≥ V (x0) ≥ ε

∫ t

0

y2(τ)dτ .

This yields

‖y‖L2(0,∞) ≤
√

1

ε
‖H‖L(H) ‖x0‖H .

By the sector conditions imposed on f we find∫ ∞
0

u2(t)dt =

∫ ∞
0

f 2[y(t)]dt =

∫ ∞
0

y2(t)
f 2[y(t)]

y2(t)
dt ≤ max

{
k2

2, k
2
1

}
‖y‖2

L2(0,∞) ,

whence

(3.10) ‖u‖L2(0,∞) ≤
√

max {k2
2, k

2
1}

1

ε
‖H‖L(H) ‖x0‖H .

We have proved that y, u ∈ L2(0,∞).
Since d ∈ H is an admissible factor control vector, then

x(t) = S(t)x0 +QRtu t ≥ 0

where Q ∈ L(L2(0,∞),H) is the reachability map of Comment 3.1 and Rt ∈ L(L2(0,∞))
denotes the reflection operator at t > 0,

(Rtu)(τ) :=

{
u(t− τ), τ ∈ [0, t)

0, τ ≥ t

}
, ‖Rt‖L(L2(0,∞)) ≤ 1 .

There holds that 0 ≤ t 7−→ x(t) ∈ H is strongly continuous. Using (3.10) and recalling
that AS of the semigroup {S(t)}t≥0 implies by the principle of uniform boundedness its
stability, we conclude that there exists a constant γ > 0, such that

(3.11) ‖x(t)‖H ≤ γ ‖x0‖H ∀x0 ∈ H, ∀t ≥ 0 .

The stability of the null equilibrium easily follows from (3.11).
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Considering state–attraction to zero, there holds that ‖S(t)x0‖H tends to zero as t→∞
for any x0 ∈ H. Hence we may without loss of generality consider x(t) = QRtu. For any
fixed u ∈ L2(0,∞) define for t1 > 0

ut1(t) :=

{
0, t ∈ [0, t1)

u(t), t ≥ t1

}
.

One gets then, using (A4) and Comment 3.1, that for t ≥ t1

x(t) = QRtu = S(t− t1)QRt1u+QRtut1 ,

where {S(t)}t≥0 is AS,

‖QRtut1‖H ≤ ‖Q‖L(L2(0,∞),H)‖Rt‖L(L2(0,∞))‖ut1‖L2(0,∞) ≤ ‖Q‖L(L2(0,∞),H)‖ut1‖L2(0,∞) ,

and ‖ut1‖L2(0,∞) can be made arbitrarily small for t1 sufficiently large. Therefore a similar

reasoning as in the proof of [28, Lemma 2.1.3] yields that lim
t→∞
‖x(t)‖H = 0. �

Remark 3.2. Alternatively, the state–attraction to zero can be proved by showing that for
any u ∈ L2(0,∞) the function t 7−→ QRtu is bounded uniformly continuous and vanishes
at infinity [18].

4. Results similar to the Kalman–Yacubovic̆ lemma

In this section we shall study sufficient conditions for solvability of the Lur’e system of
equations (3.2), or equivalently (3.7) with respect to the pair (H, g). In that sense they
are similar to the Kalman–Yacubovic̆ Lemma for finite-dimensional systems. A major tool
of our results is spectral factorization, which we handle first. We give then a preliminary
analysis and finally present our main results.

4.1. Spectral factorization. In the sequel H2(D) will denote the Hardy space of analytic
functions on the unit disk D := {z ∈ C : |z| < 1} and square integrable on its boundary

T := ∂D, and Ĥ−1 will be the space of functions f analytic on Π+ such that f

(
1 + z

1− z

)
∈

H2(D) i.e.
f(s)

1 + s
∈ H2(Π+). The following result is fundamental [20, pp. 52 - 53] and [19,

Subsection 1.14]:

Theorem 4.1 (Szegö’s theorem). Let h ∈ L1(T) be a real–valued, nonnegative function
on the unit circle. A necessary and sufficient condition for the existence of f ∈ H2(D) such
that

(4.1) h(ejθ) = f(ejθ)f(e−jθ) =
∣∣f(ejθ)

∣∣2
is lnh ∈ L1(T), or equivalently ∫ 2π

0

lnh(ejθ)dθ > −∞ .

If the last condition is satisfied then the function

(4.2) f(z) = exp

[
1

4π

∫ 2π

0

ejθ + z

ejθ − z
lnh(ejθ)dθ

]
solves the spectral factorization problem (4.1).
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Note epecially that by (4.2) in contrast to [20] the boundary value of the modulus of

f reads
∣∣f(ejθ)

∣∣ =
√
h(ejθ) and not

∣∣f(ejθ)
∣∣ = h(ejθ). This spectral factor is such that it

equals
√
k if h(ejθ) ≡ k > 0, and corresponds to the outer function [20, p. 62] induced by

the positive square root of h . Other spectral factors are obtained by multiplication by a
constant of modulus one. Henceforth f as given by (4.1) is called the spectral factor.

Proposition 4.1. Let π be a real–valued, nonnegative function on the jω–axis such that

the function ω 7−→ π(jω)

1 + ω2
belongs to L1(R). A necessary and sufficient condition for the

existence of φ ∈ Ĥ−1 such that

(4.3) π(jω) = φ(jω)φ(−jω) = |φ(jω)|2

is ω 7−→ lnπ(jω)

1 + ω2
∈ L1(R), or equivalently

(4.4)

∫
R

ln π(jω)

1 + ω2
dω > −∞ .

If the last condition holds then the function

(4.5) φ(s) = exp

[
1

2π

∫ ∞
−∞

sjω − 1

jω − s
ln π(jω)

1 + ω2
dω

]
solves the spectral factorization problem (4.3).

Proof. The spectral factorization problem (4.3) reduces to (4.1). Indeed,

f(z) = exp

[
1

4π

∫ 2π

0

ejθ + z

ejθ − z
lnh(ejθ)dθ

]
= φ

(
1 + z

1− z

)
solves (4.1) iff, making substitutions

ejθ =
jω − 1

jω + 1
⇐⇒ ω = cot

θ

2
and z =

s− 1

s+ 1
,

the function

φ(s) = f

(
s− 1

s+ 1

)
= exp

[
1

2π

∫ ∞
−∞

sjω − 1

jω − s
lnh

(
jω + 1

jω − 1

)
dω

1 + ω2

]
,

where π(jω) := h

(
jω + 1

jω − 1

)
, solves (4.3). Observe that

∫ ∞
−∞

π(jω)

1 + ω2
dω =

∫ ∞
−∞

h

(
jω + 1

jω − 1

)
1 + ω2

dω =
1

2π

∫ 2π

0

h(ejθ)dθ ,

i.e., the function ω 7−→ π(ω)

1 + ω2
belongs to L1(R) iff h ∈ L1(T), and

∫ ∞
−∞

lnπ(jω)

1 + ω2
dω =

∫ ∞
−∞

lnh

(
jω + 1

jω − 1

)
1 + ω2

dω =
1

2

∫ 2π

0

lnh(ejθ)dθ ,

i.e., the function ω 7−→ ln π(jω)

1 + ω2
belongs to L1(R) iff lnh ∈ L1(T). Moreover, f ∈ H2(D)

iff φ ∈ Ĥ−1. �
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Henceforth the function π(·) of Proposition 4.1 will be called the Popov function and the
function defined by (4.5) the spectral factor. Further important properties of the spectral
factor are gathered in the lemma below.

Lemma 4.1. Let the Popov function π(jω) belong to L∞(R) and consider two cases:

(a) Let in addition π(jω) satisfy (4.4), then φ ∈ H∞(Π+); moreover if in addition π(jω)
has an analytic extension in a domain containing a full neighborhood of s = 0 which
is para–Hermitian self–adjoint (i.e. π(s) = π(−s)), then

(4.6)

(
s 7−→ φ(s)− φ(0)

s

)
∈ H∞(Π+) ∩ H2(Π+) .

(b) Let in addition π(jω) be coercive, i.e. there exists an ε > 0 such that

π(jω) ≥ ε for all ω ∈ R ,

then both φ and 1/φ are in H∞(Π+); moreover if in addition π(jω) has a para–
Hermitian self–adjoint analytic extension in a domain containing a full neighbor-
hood of s = 0, then (4.6) holds.

Proof. As π(jω) belongs to L∞(R) the assumption of Proposition 4.1 holds.
(a). As π(jω) satisfies (4.4) the conclusion of Proposition 4.1 holds. Observe that with

s = x+ jy, x ≥ 0,

(4.7)
jsω − 1

jω − s
=

x(1 + ω2)

x2 + (y − ω)2
+ j

y(ω2 − 1) + (1− x2 − y2)ω

x2 + (y − ω)2
.

The spectral factor φ is analytic on Π+ because φ ∈ Ĥ−1, and we have to prove that φ is
bounded on Π+. By (4.5) we have

|φ(s)| = eReϕ(s), ϕ(s) =
1

2π

∫ ∞
−∞

sjω − 1

jω − s
lnπ(jω)

1 + ω2
dω .

Using (4.7) we get

|φ(s)| = exp

[
1

2π

∫ ∞
−∞

x ln π(jω)

x2 + (y − ω)2
dω

]
= exp

[
1

2π

∫ ∞
−∞

lnπ(j(y − xω))

1 + ω2
dω

]
.

But
lnπ[(j(y − xω)] ≤ ln+ π[(j(y − xω)] ≤ ln+ ‖π‖L∞(R) ,

where

ln+ x =

{
lnx, x ≥ 1

0, 0 < x < 1

}
,

and therefore

|φ(s)| ≤ exp

[
ln+ ‖π‖L∞(R)

π

∫ ∞
0

1

1 + ω2
dω

]
= exp

[1

2
ln+ ‖π‖L∞(R)

]
∀s ∈ Π+ .

We prove now (4.6). As the Popov function has a para–Hermitian self–adjoint analytic
extension in a domain containing a full neighbourhood of s = 0 then we have there the
factorization

(4.8) π(s) = φ(s)φ(−s) ,

with φ(s) analytic (this can be seen by considering the successive self–adjoint polynomial
approximations and their factorizations of the Taylor expansion π near zero). This jointly
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with φ ∈ H∞(Π+) leads to the fact that the function s 7−→ φ(s)− φ(0)

s
is analytic and

bounded in a full neighborhood of s = 0 and finally is in H∞(Π+) ∩ H2(Π+).
(b). This follows because (4.4) holds whence the conclusions of (a) hold and moreover

‖φ−1‖2
H∞(Π+) ≤ ε−1 .

�

4.2. Preliminary analysis. From now on we consider the feedback system of Figure 3.1
with f(y) = µ0y and make a preliminary analysis under the following assumptions:

(H1) The operator A : (D(A) ⊂ H) −→ H generates an EXS linear C0–semigroup on H;

(H2) The compatibility condition (2.3) holds;

(H3) The observation functional c# is admissible, c#|D(A) = h∗A;

(H4) The transfer function ĝ, defined by (2.4), satisfies (2.5);

(H5) There exist k1, k2, k1 < k2 such that

(4.9)
π(ω) := 1− (k1 + k2) Re[ĝ(jω)] + k1k2 |ĝ(jω)|2 =

= δ + 2eRe[−ĝ(jω)− c#d] + q
∣∣ĝ(jω) + c#d

∣∣2, ω ∈ R ,

satisfies1

(4.10) π(ω) ≥ 0 ∀ω ∈ R
and2

(4.11)

∫ ∞
−∞

lnπ(ω)

1 + ω2
dω > −∞⇐⇒

(
ω 7−→ ln π(ω)

1 + ω2

)
∈ L1(R) ;

(H6) For µ0 = (k1 + k2)/2 we have(
s 7−→ 1

1− µ0ĝ(s)

)
∈ H∞(Π+) .

Note that as ĝ ∈ H∞(Π+) one gets π ∈ L∞(R) and consequently the function ω 7−→
π(jω)

1 + ω2
is in L1(R). It follows from (4.10) and (4.11) and Proposition 4.1 that the spectral

factorization (4.3) holds with φ ∈ Ĥ−1, given by (4.5). Moreover by Lemma 4.1(a), φ ∈
H∞(Π+). Furthermore, as ĝ(s) + c#d = s

(
P̂ d
)
(s), it follows by Lemma 2.4 that the Popov

function has a para–Hermitian self–adjoint analytic extension in a domain containing a full
neighborhood of s = 0 which reads

(4.12)
π(s) := 1− (k1 + k2)

2
[ĝ(s) + ĝ(−s)] + k1k2ĝ(s)ĝ(−s) =

= δ − es
[(
P̂ d
)
(s)−

(
P̂ d
)
(−s)

]
− qs2

(
P̂ d
)
(s)
(
P̂ d
)
(−s) .

1If k1k2 < 0 then the frequency–domain inequality (4.10) means geometrically that the plot of the
transfer function ĝ(jω) is located in the circle with centre at (k−11 + k−12 )/2 and radius (k−12 − k

−1
1 )/2. In

particular, this yields ĝ ∈ H∞(Π+).
2(4.11) means that the rate of which π approaches its zeros (asymptotic zeros included) is not to fast

(e.g. for the function π(ω) = e−ω
2

all assumptions of Proposition 4.1 besides (4.11) are met and therefore
it is not factorizable), however the number of zeros may be countably infinite. The latter holds for the
example studied in Section 5.
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Hence again by Lemma 4.1(a)

(4.13)

(
s 7−→ φ(s)− φ(0)

s
=
φ(s)−

√
δ

s

)
∈ H∞(Π+) ∩ H2(Π+) ,

where by (4.12) and (4.8) we got: δ ≥ 0 and φ(0) =
√
δ.

Henceforth given (H1)÷(H5), we call realization problem that of finding a g ∈ H satis-
fying the identity:

(4.14)
φ(s)−

√
δ

s
= g∗A(sI − A)−1d, s ∈ Π+ ,

such that the observation functional g∗A is admissible.
The following auxiliary result will be useful:

Lemma 4.2. Let (H1)÷(H6) hold. Then

(1) h∗ is a linear bounded observation functional, which is admissible with respect to
the semigroup {etA0}t≥0 generated by the operator

(4.15) A0 := A−1 − µ0

1 + µ0c#d
dh∗ ∈ L(H) .

(2) If g ∈ H is a solution of the realization equation (4.14), then, g∗ is admissible with
respect to the semigroup {etA0}t≥0 if and only if g∗A is admissible for the semigroup
generated by A.

(3) If g ∈ H is a solution of the realization problem (4.14), then g∗ is admissible for the
semigroup {etA0}t≥0.

Proof. Obviously (3) follows by (2). Thus we must prove (1) and (2). A preliminary
exploration is made first.

Observe that the static loop return difference in Figure 3.1, namely 1 + µ0c
#d 6= 0.

Indeed, if µ0 = 0 then this is obvious. If µ0 6= 0 then 1 + µ0c
#d = 0 would imply

π(0) = δ =
(

1− k1

µ0

)(
1− k2

µ0

)
=
(

1− 2k1

k1 + k2

)(
1− 2k2

k1 + k2

)
= −

(k2 − k1

k1 + k2

)2

< 0

which leads to a contradiction with (4.10). Hence, A0 is well–defined and clearly belongs
to L(H). A0 is the inverse of the closed–loop generator arising from (2.1) by taking a linear
feedback law u(t) = µ0y(t) in Figure 3.1, i.e.

A−1
0 = A(I + µ0dc

#)

with

D(A) ⊂ D(c#) , D(A−1
0 ) ⊂ D(c#) and [I + µ0dc

#]D(A−1
0 ) = D(A) ,

where the last relation is a linear bijection as on D(c#), [I + µ0dc
#]−1 = I − µ0(1 +

µ0c
#d)−1dc#. Consider now also the generator A−1 ∈ L(H) and recall that ρ(·) stands for

the resolvent set of an operator. Then the idea of open–loop versus closed–loop resolvent
identity and (4.15) give the following identities in L(H) valid for every s ∈ ρ(A) ∩ ρ(A−1

0 ),
viz.

(4.16)

(sA−1 − I)−1 − (sA0 − I)−1 = −(sA−1 − I)−1
[ sµ0

1 + µ0c#d
dh∗
]
(sA0 − I)−1

= (sA0 − I)−1
[ sµ0

1 + µ0c#d
dh∗
]
(sA−1 − I)−1 .
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(1). Premultiplying and postmultying the first identity of (4.16) by respectively h∗ and
x0 ∈ H, and using (2.4) gives

h∗(sA−1 − I)−1x0 =
1− µ0ĝ(s)

1 + µ0c#d
h∗(sA0 − I)−1x0

or equivalently similarly as in [18, p. 12]

(4.17) h∗(sA0 − I)−1x0 =
1 + µ0c

#d

1− µ0ĝ(s)
h∗A(sI − A)−1x0 =

1 + µ0c
#d

1− µ0ĝ(s)
P̂ x0 ,

where by (H3) and Lemma 2.1: P ∈ L(H,L2(0,∞)) is the observability map associated

with c#, while by (H6):
1

1− µ0ĝ
∈ H∞(Π+). Hence the operator

H 3 x0 7−→ h∗(sA0 − I)−1x0 ∈ H2(Π+)

belongs to L(H,H2(Π+)). Recall now the operator U ∈ L(H2(Π+)) given by (2.2) and
note here that ϕ(s) = h∗(sA0 − I)−1x0 gives (Uϕ)(s) = −h∗(sI − A0)−1x0. Hence by
composition, one gets that the operator

H 3 x0 7−→ h∗(sI − A0)−1x0 ∈ H2(Π+)

belongs to L(H,H2(Π+)). Thus h∗ is admissible with respect to the semigroup {etA0}t≥0.
(2). Let g ∈ H be a solution of the realization equation (4.14). Premultiplication

and postumultiplication of the first identity of (4.16) by respectively g∗ and x0 ∈ H give
successively

g∗(sA−1 − I)−1x0 − g∗(sA0 − I)−1x0 = −sg∗(sA−1 − I)−1d
µ0

1 + µ0c#d
h∗(sA0 − I)−1x0

=
µ0

1− µ0ĝ(s)

[
φ(s)−

√
δ
]
h∗A(sI − A)−1x0 ,

where the last equality follows by (4.14) and the first equality of (4.17). There results

(4.18) g∗(sA0 − I)−1x0 = g∗A(sI − A)−1x0 +
µ0

1− µ0ĝ(s)

[
φ(s)−

√
δ
]
P̂ x0 ,

where one uses (H3) and Lemma 2.1 with P ∈ L(H,L2(0,∞)). Now φ ∈ H∞(Π+), whence
by (H6) the two terms between square brackets of the last summand in (4.18) are in
H∞(Π+). Hence the operator

H 3 x0 7−→
µ0

1− µ0ĝ(s)

[
φ(s)−

√
δ
]
P̂ x0 ∈ H2(Π+)

belongs to L(H,H2(Π+)). Note also that a subsequent application of the unitary oper-
ator U ∈ L(H2(Π+) given by (2.2), will map ϕ(s) = g∗(sA0 − I)−1x0 into (Uϕ)(s) =
−g∗(sI − A0)−1x0. These informations show finally that by (4.18) and composition, g∗A
is admissible for the semigroup generated by A iff g∗ is admissible with respect to the
semigroup {etA0}t≥0. �

Remark 4.1. (4.17) represents the Laplace transformed action of the closed–loop observ-
ability map of c# with respect to the semigroup generated by A−1

0 , while (4.18) gives the
same for the observability map of state–feedback control induced by the spectral factor.
The proof above shows that this follows by the important identity (4.16). In fact it is the
source of all linear feedback wisdom. To discover more note that as soon as (2.3) holds and
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c# is admissible, then the open–loop transfer function (2.4) reads ĝ(s) = c#(sA−1− I)−1d.
Postmultiplying the first identity of (4.16) by d gives

(sA−1 − I)−1d− (sA0 − I)−1d = −(sA−1 − I)−1d
sµ0

1 + µ0c#d
h∗(sA0 − I)−1d .

Then with h∗(sA0 − I)−1d and ĝ(s) = c#(sA−1 − I)−1d well–defined, c#(sA0 − I)−1d is
well–defined. Assume that (1−µ0ĝ(s))−1 is well–defined and consider the transfer function

(4.19) ĝc(s) :=
µ0

1 + µ0c#d
c#(sA0 − I)−1d .

It turns out that

(4.20) ĝc(s) =
µ0ĝ(s)

1− µ0ĝ(s)

i.e. one gets by (4.19) an explicit form of the system closed–loop transfer function in Figure
3.1. To see this premultiply and postmultiply the second identity in (4.16) by respectively
c# and d. One gets

c#(sA−1 − I)−1d− c#(sA0 − I)−1d = c#(sA0 − I)−1d
µ0

1 + µ0c#
sh∗(sA−1 − I)−1d ,

which gives exactly

ĝ(s)− 1 + µ0c
#d

µ0

ĝc(s) = ĝc(s)
[
ĝ(s) + c#d

]
,

from which (4.20) follows. The explicit form of the system closed–loop sensitivity transfer
function (inverse of the return–difference) in Figure 3.1 reads then easily

ĝs(s) :=
1

1− µ0ĝ(s)
=

1

1 + µ0c#d

[
1 + µ0

(
c#(sA0 − I)−1d+ c#d

)]
,

with correct static value for s = 0.

We are now ready for our main results.

4.3. Main results. The theorem below is a generalization of the results due to Nudel’man
and Schwartzman [26, Theorem 4, p. 570], and A.V. Balakrishnan [2, Theorem 2.1, p. 179].
See also Subsection 7.1.

Theorem 4.2. Let assumptions (H1)÷(H6) hold. Moreover assume that:

(H7) The vector d ∈ H is cyclic for A−1, i.e., {A−kd}∞k=0 is a complete system in H;

(H8) The operator A has a system of eigenvectors {φk}k∈N, corresponding to the eigen-
values {λk}k∈N, which forms a Riesz basis of H;

(H9) There holds:

(4.21)
{ αk
λk〈d, ψk〉H

}
k∈N
∈ `2(N)

and

(4.22)
∞∑
k=1

∣∣∣ αk
〈d, ψk〉H

∣∣∣2∣∣f̂(−λk)
∣∣2 <∞ ∀f̂ ∈ H2(Π+)

where

(4.23) αk := Res
s=λk

[φ(s)−
√
δ

s

]
=

1

λk
Res
s=λk

φ(s) ,
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{ψk}k∈N is the system of eigenvectors of A∗ which is biorthogonal with respect to
{φk}k∈N.

Then the system (3.2), or equivalently (3.7), has a solution (H, g), H ∈ L(H), H = H∗ ≥ 0,
g ∈ H and the observation functional g∗A is admissible with respect to the semigroup
generated by A.

Proof. By (H1)÷(H6) all the results of preliminary subsection 4.2 hold and in particular
the conclusions of Lemma 4.2. For convenience recall that the realization problem (4.14) is
to find g ∈ H from the identity:

φ(s)−
√
δ

s
= g∗A(sI − A)−1d, s ∈ Π+ ,

such that the observation functional g∗A is admissible.
We were not able to find a general solution to the realization problem using only assump-

tions (H1)÷(H5) and (H7), which is the case for a finite–dimensional version of (3.2) or
(3.7).

However, a systematic procedure of solving the realization problem can be given pro-
vided that additionally assumptions (H7)÷(H9) hold. Then each element x ∈ H has the
expansions

(4.24) x =
∞∑
k=1

〈x, ψk〉Hφk, x =
∞∑
k=1

〈x, φk〉Hψk .

Both the transfer function ĝ and the spectral factor φ are meromorphic functions. Hence
φ(s)−

√
δ

s
is meromorphic too and by (4.14) we get

∞∑
k=1

αk
s− λk

= g∗A(sI − A)−1d =
∞∑
k=1

λk
s− λk

〈d, ψk〉H〈φk, g〉H ∀s ∈ C, s 6= λk

where the αk for k ∈ N are given by (4.23). The vector d is cyclic with respect to A−1 iff
(A−1, d) is approximately controllable or equivalently (A, d) is approximately controllable,
or equivalently 〈d, ψk〉H 6= 0 for all k ∈ N. Thus by (H7) one gets

g∗Aφk = 〈Aφk, g〉H = 〈λkφk, g〉H =
αk

〈d, ψk〉H
, g∗φk = 〈φk, g〉H =

αk
λk〈d, ψk〉H

and g ∈ H can be recovered using (4.24), provided that {g∗φk}k∈N ∈ `2(N), i.e., when
(4.21) holds.

Applying the spectral criterion of admissibility in [15] we get that g∗A is admissible iff
∞∑
k=1

|g∗Aφk|2
∣∣f̂(−λk)

∣∣2 <∞ ∀f̂ ∈ H2(Π+) ,

i.e., when (4.22) is satisfied.
We show now the existence of an appropriate solution (H, g) of the Lur’e system (3.2).

We start by noting that, since g∗A and h∗A = c#|D(A) are both admissible and by (H1),
there exist unique Hg = H∗g ≥ 0, Hg ∈ L(H) and Hh = H∗h ≥ 0, Hh ∈ L(H) such that

(A∗)−1Hg +HgA
−1 = −gg∗, (A∗)−1Hh +HhA

−1 = −hh∗ .
Hence H := Hg− qHh is a bounded self–adjoint solution of the first equation of the system
(3.2).
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We show now that the pair (H, g) solves also the second equation of (3.2). Note that by
(H1) the resolvent [sI−A−1]−1 of A−1 is regular on jR\{0}. Therefore premultiplying the
first equation of (3.2) by d∗[−jωI − (A∗)−1]−1 and postmultiplying it by [jωI − A−1]−1d
yields

d∗[−jωI − (A∗)−1]−1[HA−1 + (A∗)−1H][jωI − A−1]−1d =

= d∗[−jωI − (A∗)−1]−1[qhh∗ − gg∗][jωI − A−1]−1d =

= q
∣∣h∗[jωI − A−1]−1d

∣∣2 − ∣∣g∗[jωI − A−1]−1d
∣∣2 ∀ω ∈ R \ {0} .

Using the operator identities:

[−jωI − (A∗)−1]−1(A∗)−1 = −jω[−jωI − (A∗)−1]−1 − I ,

A−1[jωI − A−1]−1 = jω[jωI − A−1]−1 − I

one obtains

−2 Re d∗H[jωI − A−1]−1d = q
∣∣h∗[jωI − A−1]−1d

∣∣2 − ∣∣g∗[jωI − A−1]−1d
∣∣2 ∀ω ∈ R \ {0}.

Let ∆ := −Hd+ eh+
√
δg. Then upon substituting ∆ by its expression one gets

2 Re
[
∆∗(jωI − A−1)−1d

]
= q
∣∣h∗(jωI − A−1)−1d

∣∣2 − ∣∣g∗(jωI − A−1)−1d
∣∣2+

+2eRe
[
h∗(jωI − A−1)−1d

]
+ 2
√
δRe

[
g∗(jωI − A−1)−1d

]
=

= δ + 2eRe [h∗(jωI − A−1)−1d] + q |h∗(jωI − A−1)−1d|2−

−|
√
δ − g∗(jωI − A−1)−1d|2 ∀ω ∈ R, ω 6= 0 .

Applying the transformation C 3 ζ 7−→ s−1 ∈ C and (2.4) we get

h∗(ζI − A−1)−1d = −sh∗A(sI − A)−1d = −ĝ(s)− c#d ,

g∗(ζI − A−1)−1d = −sg∗A(sI − A)−1d .

Now, using (4.9) and (4.14) we obtain

2 Re[∆∗
(
jωI − A−1

)−1
d] = 0 ∀ω ∈ R \ {0} .

Recall that the system {φk}k∈N is a Riesz basis of H with corresponding biorthogonal system
{ψk}k∈N, iff there exist an isomorphism T ∈ L(H) and an orthonormal basis {ek}k∈N such
that

φk = Tek, ψk = (T ∗)−1ek, k ∈ N .

Then

‖Tx‖H ≤ ‖T‖L(H)‖x‖H, ‖T−1x‖H ≤ ‖T−1‖L(H)‖x‖H ∀x ∈ H

and Parseval’s theorem gives

(4.25)
1

‖T−1‖2
L(H)

∞∑
k=1

|〈x, ψk〉H|2 ≤ ‖x‖2
H ≤ ‖T‖2

L(H)

∞∑
k=1

|〈x, ψk〉H|2 ∀x ∈ H .
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Thus, inserting x = etA
−1
x0 into (4.25) gives

∥∥etA−1
x0

∥∥2

H
=

∥∥∥ ∞∑
k=1

〈etA−1

x0, ψk〉Hφk
∥∥∥2

H
≤ ‖T‖2

L(H)

∞∑
k=1

∣∣∣〈etA−1

x0, ψk〉H
∣∣∣2 =

= ‖T‖2
L(H)

∞∑
k=1

∣∣∣〈x0, e
t(A∗)−1

ψk〉H
∣∣∣2 = ‖T‖2

L(H)

∞∑
k=1

e2t/Reλk |〈x0, ψk〉H|2 ≤

≤ ‖T‖2
L(H)

∞∑
k=1

|〈x0, ψk〉H|2 ≤ ‖T‖2
L(H)‖T

−1‖2
L(H)‖x0‖2

H ∀x ∈ H, ∀t ≥ 0 ,

i.e., the semigroup {etA−1}t≥0 is uniformly bounded (stable). Hence by Lemma 2.5, the

semigroup {etA−1}t≥0 is AS.
Observe now

∆∗etA
−1
de−jωt = ∆∗(jωI − A−1)(jωI − A−1)−1etA

−1
de−jωt =

= jωe−jωt∆∗(jωI − A−1)−1etA
−1
d− e−jωt∆∗(jωI − A−1)−1A−1etA

−1
d =

=
d

dt

[
−e−jωt∆∗(jωI − A−1)−1etA

−1
d
]
.

Integrating from 0 to T and using the AS of the semigroup {etA−1}t≥0 gives

∆∗(jωI − A−1)−1d =

∫ ∞
0

∆∗etA
−1

de−jωtdt .

Hence,

2 Re[∆∗(jωI − A−1)−1d =

∫ ∞
0

∆∗etA
−1

de−jωtdt+

∫ ∞
0

∆∗etA
−1

de−jωtdt =

=

∫ ∞
0

∆∗etA
−1

de−jωtdt+

∫ ∞
0

∆∗etA
−1

dejωtdt =

∫ ∞
−∞

∆∗e|t|A
−1

de−jωtdt .

The latter means that 2 Re[∆∗(jωI − A−1)−1d can be regarded as the Fourier transform

of the continuous, decaying (for |t| increasing) function R 3 t 7−→ ∆∗e|t|A
−1
d. Now, the

injectivity of the Fourier transform in the class of distributions of slow growth [37, p. 185]
yields

∆∗e|t|A
−1

d = 0 ∀t ∈ R

and consequently

∆∗etA
−1

d = 0 ∀t ≥ 0 ,

where the left-hand side is an analytic function of t ≥ 0. Repeated differentiations at
t = 0+ give ∆∗A−kd, k = 0, 1, 2, 3, . . ., i.e., the vector ∆ is orthogonal to the subspace
spanned by system {A−kd}∞k=0. Since, by assumption (vi) of Theorem 4.2 this system is
complete we obtain ∆ = 0 and the second equation of the Lur’e system (3.2) is satisfied.

We show finally that H ≥ 0. Adding

− µ0

1 + µ0c#d
hd∗H− µ0

1 + µ0c#d
Hdh∗
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to both sides of the first equation of (3.2) and using the second equation of (3.2) we get

HA0 + A∗0H =

= (q − 2eq1√
δ

)hh∗ − gg∗ − q1(hg∗ + gh∗) =

= −[g + q1h][g + q1h]∗ +
[
q − 2eq1√

δ
+ q2

1

]
hh∗, q1 :=

√
δµ0

1 + µ0c#d
.

Hence, recalling the definitions of e, q and δ we obtain the system
(4.26){

HA0 + A∗0H = −[g + q1h][g + q1h]∗ − q0hh
∗

−Hd+ eh = −
√
δg

}
, q0 :=

(k2 − k1)2

4(1 + µ0c#d)2
> 0 .

By Lemma 4.2: (g + q1h)∗, h∗ are admissible with respect to the semigroup {etA0}t≥0 and
therefore H ≥ 0. �

Our next criterion of solvability of the Lur’e system of equations (3.2) is partially based
on the results of Oostveen and Curtain [27, Theorem 19 and Corollary 20]. See also
Subsection 7.1.

Theorem 4.3. Let assumptions (H1)÷(H6) hold. Moreover assume that:

(H10) The operator A : (D(A) ⊂ H) −→ H is such that the semigroup generated by A−1

is uniformly bounded;

(H11) In assumption (H5) condition (4.11) is strengthened to

(4.27) π(ω) ≥ ε > 0 ∀ω ∈ R ,

where π is given by (4.9).

(H12) The operator A0 defined by (4.15) generates an AS semigroup on H.

Then the system (3.2) has a solution (H, g), H ∈ L(H), H = H∗ ≥ 0, g ∈ H and g∗A is
admissible with respect to the semigroup generated by A.

Proof. By (H1 )÷(H6) all the results of preliminary subsection 4.2 are valid and in par-
ticular the conclusions of Lemma 4.2; moreover by (H11) and Lemma 4.1(b) the spectral
factor φ of π is such that both φ and 1/φ are in H∞(Π+).

Now by (4.27) π(0) = δ > 0. Hence system (3.2) has a solution (H, g), H ∈ L(H),
H = H∗ ≥ 0, g ∈ H and g∗A is admissible iff the operator equation

(4.28) (A−1)∗H +HA−1 +
1

δ
(−d∗H + eh∗)∗(−d∗H + eh∗)− qhh∗ = 0

has a solution H ∈ L(H), H = H∗ ≥ 0, such that g∗A is admissible, where

(4.29) g =
1√
δ

(Hd− eh) .

Upon changing H into −X, (4.28) coincides with the operator Riccati equation discussed
in Oostveen and Curtain [27, Formula (1) with A replaced by A−1 and B = d, C = h∗,
N = e, Q = q, R = δ], see also (7.7) in Subsection 7.1.4, where their results are shortly
reported.

By assumption (H1) and (H10) and by Lemma 2.5 the semigroup {etA−1}t≥0 is AS.
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The admissibility of c#|D(A) = h∗A with respect to the semigroup generated by A,
guaranteed by (H3), is equivalent3 to the admissibility of h∗ with respect to the semigroup

{etA−1}t≥0. Indeed, by the unitary operator U ∈ L(H2(Π+)) defined in (2.2), ϕ(s) =
h∗A(sI − A)−1x0 is mapped into (Uϕ)(s) = −h∗(sI − A−1)−1x0.

Similarly, the transfer function defined in [27, Definition 13] (see also (7.5) in Subsection
7.1.4)

(4.30) G(s) = C(sI − A)−1B = h∗(sI − A−1)−1d = −s−1h∗A(s−1I − A)−1d

is tied with our transfer function ĝ (see (2.4)) by

(4.31) G(s−1) = −ĝ(s)− c#d

and thus due to (H2) and (H4) we get G ∈ H∞(Π+). Moreover the coercivity assumption
imposed on the Popov function defined in [27, Formulae (19) and (21)] (see also (7.6) in
Subsection 7.1.4) reduces here to

δ + 2eRe[h∗(jωI − A−1)−1d] + q
∣∣h∗(jωI − A−1)−1d

∣∣2 ≥ ε > 0 ∀ω ∈ R \ {0} .
By (4.30) and (4.31) the latter holds iff

δ − 2eRe[ĝ(jω) + c#d] + q
∣∣ĝ(jω) + c#d

∣∣2 ≥ ε > 0 ∀ω ∈ R ,

i.e., upon recalling the definitions of δ, e and q, iff

π(ω) = 1− (k1 + k2) Re ĝ(jω) + k1k2|ĝ(jω)|2 ≥ ε > 0 ∀ω ∈ R .

Now this holds by assumption (H11). Denote by Ψ ∈ L(H,L2(0,∞)) the observability

map associated with the pair ({etA−1}t≥0, h
∗) and by F – the input–output map dictated by

the triple (A−1, h∗, d). In the frequency–domain F is given by the transfer function defined
in (4.30) and (4.31). Then by M.Weiss [35, Theorem 2.15] there holds that

H := −qΨ∗Ψ−Ψ∗(qF + eI)R−1(qF∗ + eI)Ψ ,

where
R ∈ L(L2(0,∞)), R := δI + eF + eF∗ + qF∗F ,

and (by (4.27)) R−1 ∈ L(L2(0,∞)), is a self–adjoint bounded solution of the operator
Riccati equation (4.28).

Consider now g ∈ H given by (4.29). It turns out that the spectral factor of π reads

φ(s) = sg∗A(sI − A)−1d+
√
δ ,

i.e. g solves the realization equation (4.14). To see this premultiply and postmultiply equa-

tion (4.28) by respectively d∗ [−(jω)−1I − (A∗)−1]
−1

and [(jω)−1I − A−1]
−1

d and subtract
δ from both sides. Tedious but straightforward manipulations deliver ultimately∣∣jωg∗A(jωI − A)−1d+

√
δ
∣∣2 =

= δ − 2eRe
[
jωh∗A(jωI − A)−1d

]
+ q

∣∣jωh∗A(jωI − A)−1d
∣∣2 = π(ω) .

Consider now the generator A0 ∈ L(H) given by (4.15) and observe that by Lemma
4.2(2), the observation functional g∗A is admissible with respect to the semigroup generated
by A iff the same holds for g∗ with respect to the semigroup {etA0}t≥0. Hence we are done
if the latter holds and H ≥ 0.

3Similarly, d is an admissible factor control vector with respect to the semigroup generated by A iff d is

an admissible control vector with respect to the semigroup {etA−1}t≥0. However, here we do not assume
admissibility of d.
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Now by Lemma 4.2(1), h∗ is admissible for the semigroup {etA0}t≥0, which by (H12) is
AS. Thus by [13, Theorems 3 and 4] the operator Lyapunov equation

A∗0X +XA0 = −hh∗ ,

has a unique solution Hh ∈ L(H), Hh = H∗h ≥ 0. Observe now that the pair (H, g) solves
(4.26). Hence the operatorH ∈ L(H), withH = H∗, is a solution of the Lyapunov equation

A∗0X +XA0 = −ww∗ − q0hh
∗, w := g + q1h ∈ H .

Define now H0 := H − q0Hh. Obviously H0 ∈ L(H) with H0 = H∗0, is a solution of the
Lyapunov equation

(4.32) A∗0X +XA0 = −ww∗, w := g + q1h ∈ H ,

which turns out to be nonnegative. Indeed premultiplication and postmultiplication of
(4.32) by respectivelely x∗etA

∗
0 and etA0x gives for any fixed x ∈ H

− d

dt

[
x∗etA

∗
0H0e

tA0x
]

= −x∗etA∗0 [A∗0H0 +H0A0] etA0x = |w∗etA0x|2 ∀t ≥ 0 .

Moreover integration of both sides from 0 to t yields

−x∗etA∗0H0e
tA0x+ x∗H0x =

∫ t

0

|w∗eτA0x|2dτ ∀t ≥ 0 .

Now as etA0 is AS, the left-hand side above converges to x∗H0x ∈ R as t → ∞, whence
the right–hand side must do the same. Hence for any x ∈ H

x∗H0x =

∫ ∞
0

|w∗eτA0x|2dτ ≥ 0 ,

where the right–hand side is an improper Riemann integral. Thus H0 ≥ 0 and therefore
the existence of the solution H0 of the Lyapunov equation (4.32) implies by [13, Theorem
3] that w∗ (as given in (4.32)) is admissible for the semigroup {etA0}t≥0. As h∗ had already
this property, the same holds for g∗. Finally H = H0 + q0Hh is nonnegative as the sum of
two such operators and we are done. �

5. Example 1: Distortionless loaded RLCG–transmission line

In this section we discuss an electrical transmission line as a plant in Figure 3.1 illus-
trating hereby the results of the previous sections.

The distortionless transmission line is a RLCG line for which α := R/L = G/C. Fol-
lowing [17, Subsection 5.1] consider such line loaded by a resistance R0. By using the

Hilbert space H = L2(−r, 0)⊕ L2(−r, 0) with r =
√
LC equipped with the standard scalar

product, one gets its dynamics desribed by an abstract model in factor form as in (2.1).
More precisely:

• The state space operator A takes the form

Ax = x′, D(A) =
{
x ∈W1,2(−r, 0)⊕W1,2(−r, 0) : x(0) = CSx(−r)

}
,

where

CS =

[
0 1
−b 0

]
, b =

κ

ρ2
, κ =

R0 − z
R0 + z

, z =

√
L

C
, ρ = eαr .
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The operator A generates a C0–semigroup {S(t)}t≥0 on H (or even a C0–group if
detCS 6= 0). This semigroup is EXS iff |λ(CS)| < 1 or equivalently |b| < 1 [12, pp.
148 - 154], which is the case. Thus assumption (H1) of Theorem 4.2 holds.
• The observation functional c# is given by

(5.1) c#x = cT0 x(−r), D(c#) = {x ∈ H : cT0 x is right-continuous at − r} ,
where

c0 =

[
0
a

]
, a =

1 + κ

ρ
≥ 0 .

It is representable on D(A) as

c#
∣∣
D(A)

= h∗A, h = ϑ

[
b1
−1

]
∈ H, ϑ :=

a

1 + b
,

where 1 denotes the constant function taking the value 1 on [−r, 0]. The admis-
sibility of c# was implicitly discussed in [14, p. 363]. The Lyapunov proof of this
fact is presented in [17]. Thus assumption (H3) of Theorem 4.2 holds.
• The factor control vector is identified as

d =
−1

1 + b
d0, d0 =

[
1
1

]
∈ H ,

where d is admissible [17]. It is also proved therein that the Lyapunov operator
equation which proves the admissibility of d has a unique coercive solution. Thus
the system is exactly controllable. This implies that the pair (A, d) is approximately
controllable, which is equivalent to the cyclicity of d with respect to A−1. Thus
assumption (H7) of Theorem 4.2 holds.

The system dynamics can also be described by

(5.2)

{
w(t) = CSw(t− r) + u(t)b0

y(t) = cT0w(t− r)

}
, b0 =

[
0
1

]
.

The compatibility condition (2.3) holds with c#d = −ϑ and by (2.4) the transfer function
reads

(5.3) ĝ(s) =
ae−sr

1 + be−2sr
.

This is confirmed by applying the Laplace transform directly to (5.2). Moreover,

‖ĝ‖H∞(Π+) =
a

1− |b|
.

and thus (2.5) is satisfied. The situation is even better, namely we have that g is in the
Callier–Desoer algebra A−(0). All these results and many others can be found in [17]. In
particular assumptions (H2) and (H4) of Theorem 4.2 hold.

The closed–loop semigroup generator corresponding to the linear feedback law f(y) = µy
takes the form

Aµx = x′, D(Aµ) =
{
x ∈W1,2(−r, 0)⊕W1,2(−r, 0) : x(0) =

[
CS + µb0c

T
0

]
x(−r)

}
.

Indeed, D(Aµ) consists of these x for which x + µdc#x ∈ D(A). The latter holds if
x ∈W1,2(−r, 0)⊕W1,2(−r, 0) and x(0) + µdc#x = CS

[
x(−r) + µdc#x

]
, or equivalently, if

x(0) =
[
CS + µb0c

T
0

]
x(−r). The semigroup generated on H = L2(−r, 0)⊕L2(−r, 0) by Aµ
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is EXS iff all eigenvalues of the matrix CS + µb0c
T
0 are in the open unit disk [12]. This is

the case if

(5.4) |µ| < 1 + b

a
.

Stability condition (5.4) yields the Hurwitz sector which has to be compared with a sector
(k1, k2) generated by the frequency–domain inequality (4.10). It is clear that by (5.4) the

upper limit for k2 is
1 + b

a
and the lower limit for k1 is −1 + b

a
.

5.1. Analysis of the case b ≤ 0. Substituting k2 = −k1 =
1 + b

a
into (4.9) gives

π(jω) = 1−
(

1 + b

a

)2

|ĝ(jω)|2 =
−4b sin2 ωr

(1− b)2 + 4b cos2 ωr
≥ 0 ∀ω ∈ R

and therefore the Hurwitz sector (5.4) agrees with the sector implied by (4.10). Now

π(jω) ≥ −4b sin2 ωr

(1− b)2
∀ω ∈ R ,

and by [11, 865.64]∫ ∞
−∞

lnπ(jω)

1 + ω2
dω ≥ ln

[
−4b

(1− b)2

] ∫ ∞
−∞

1

1 + ω2
dω +

∫ ∞
−∞

ln sin2 ωr

1 + ω2
dω > −∞ .

Hence condition (4.11) holds provided that b 6= 0, and by Proposition 4.1 there exists a

spectral factor φ ∈ Ĥ−1. Thus assumption (H5) of Theorem 4.2 is valid. We have even
more, by Lemma 4.1(a) the spectral factor is in H∞(Π+). It can be obtained from (4.5),
however we shall use an elementary method to recover it. To do this rewrite π in the form

π(jω) =
−2b(1− cos 2ωr)

(1− b)2 + 4b cos2 ωr
,

and apply the identity

(5.5)
(α + βe−sr + γe−2sr)(α + βesr + γe2sr) =

= (α2 + β2 + γ2) + β(α + γ)e−sr + β(α + γ)esr + αγe−2sr + αγe2sr

to get the spectral factor only for the denominator. It requires solving the system of
equations

α2 + β2 + γ2 = −2b, 2β(α + γ) = 0, 2αγ = 2b .

The solution for α =
√
−b, β = 0 and γ = −

√
−b leads to the spectral factorization

π(jω) =

√
−b(1− e−2jωr)

1 + be−2jωr

√
−b(1− e2jωr)

1 + be2jωr
,

with spectral factor

(5.6) φ(s) =

√
−b(1− e−2sr)

1 + be−2sr
.

For this factor one has φ(0) =
√
δ = 0. If b = 0 then π ≡ 0 and the trivial case of

Proposition 4.1 is met. It was not mentioned in Proposition 4.1 that in this case we
trivially get the null spectral factor, which then coincides with (5.6).
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To determine the vector g ∈ H we have to solve the realization problem (4.14). Here
δ = 0 because we have k2 = 1/ϑ and c#d = −ϑ. A solution will be sought in the form

g = constant

[
1
1

]
.

On substituting g and

(5.7) (A(sI − A)−1d)(θ) =
1

1 + be−2sr

[
e−sr+sθ

esθ

]
, s ∈ ρ(A), θ ∈ [−r, 0]

into (4.14) one has

(5.8) g =
√
−b
[

1
1

]
.

The solution is unique because the system is exactly controllable. Now using (5.8) we find

(5.9) g∗Ax =
√
−b
[∫ 0

−r
x′1(θ)dθ +

∫ 0

−r
x′2(θ)dθ

]
= −
√
−b(1 + b)x1(−r) ∀x ∈ D(A) .

Assuming a solution of (3.7) of the form

(Hx)(θ) = Hx(θ), H ∈ L(R2), H = H∗

and taking (5.1) with q = −k2
2 < 0, and (5.9) into account we can reduce (3.7) to a discrete

matrix Lyapunov equation

CT
SHCS −H = −(1 + b)2 diag{−b, 1} .

Its solution is H = (1 + b) diag{−b, 1}. Since H > 0, provided that b 6= 0, then by AS a
unique solution H of (3.7) is coercive. For b = 0 we have only H ≥ 0.

Elementary calculations show that the second equation of the system (3.7) is also satisfied
for e = 1/ϑ.

Assumption (H6) of Theorem 4.2 clearly holds, because here µ0 = (k1 + k2)/2 = 0.
Note that we have solved the realization problem directly, i.e. without using assumptions

(H8), (H9) of Theorem 4.2. Below, we confirm this solution using spectral analysis.
The eigenproblem for A takes the form{

x′(θ) = λx(θ)
x(0) = CSx(−r)

}
and therefore the general form of an eigenvector is x(θ) = eλθx(0), where x(0) is a nonzero
solution of the linear homogeneous equation [I − ξCS]x(0) = 0 with ξ := e−λr. Such a
solution exists iff det(I − ξCS) = 0, or equivalently, iff ξ is a root of the characteristic
polynomial 1 + ξ2b.

For b = 0 there is no eigenvalue, and the resolvent of A is not compact.

For b < 0 there are two series of eigenvalues, corresponding to two roots ξ± =
±1√
−b

=

e−λ
±
n r of the characteristic polynomial, where

λ+
n =

ln
√
−b
r

+ j
2nπ

r
, λ−n =

ln
√
−b
r

+ j
2nπ + π

r
, n ∈ Z .
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The corresponding eigenvectors {x+
n }n∈Z, {x−n }n∈Z can be written as

[
x+
n x−n

]
= e

ln
√
−b
r

θ [
x+(0) x−(0)

] [ y+
n 0

0 y−n

]

where {y+
n }n∈Z, y+

n (θ) :=
1√
r
e
j

2nπ

r
θ

is the classical Fourier orthonormal basis of eigenvec-

tors of a skew–adjoint operator B+ acting in L2(−r, 0),

B+y = y′, D(B+) = {y ∈W1,2(−r, 0) : y(0) = y(−r)} ,

while {y−n }n∈Z, y−n (θ) :=
1√
r
e
j

2nπ + π

r
θ

stands for the classical Fourier orthonormal basis

of eigenvectors of a skew–adjoint operator B− acting in L2(−r, 0),

B−y = y′, D(B−) = {y ∈W1,2(−r, 0) : y(0) = −y(−r)} .

Finally, x±(0) is a solution of the equation [I − ξ±CS]x(0) = 0. In particular, for

x+(0) =

[
1
√
−b

]
, x−(0) =

1

2

[
1

−
√
−b

]

the system {x+
n }n∈Z, {x−n }n∈Z is the image of the system

{[
y+
n

0

]}
n∈Z

,

{[
0
y−n

]}
n∈Z

,

being an orthonormal basis in H = L2(−r, 0)⊕ L2(−r, 0), under a bounded linear isomor-
phism. This implies that the system {x+

n }n∈Z, {x−n }n∈Z,

(5.10) x+
n (θ) = eλ

+
n θ


1√
r

√
−b√
r

 , x−n (θ) = eλ
−
n θ


1

2
√
r

−
√
−b

2
√
r


of eigenvectors of A forms a Riesz basis in H and assumption (H8) of Theorem 4.2 is met.
The biorthogonal Riesz basis of eigenvectors of the adjoint operator A∗,

A∗p = −p′, D(A∗) = {p ∈W1,2(−r, 0)⊕W1,2(−r, 0) : p(−r) = CT
S p(0)} ,

corresponding to the conjugate eigenvalues λ+
n = λ+

−n, λ−n = λ−−n−1 is

p+
n (θ) = e−λ

+
n θ


1

2
√
r

1

2
√
−br

 , p−n (θ) = e−λ
−
n θ


1√
r

−1√
−br

 .

Now we have

α±n := Res
s=λ±n

[
φ(s)−

√
δ

s

]
= Res

s=λ±n

[√
−b(1− e−2sr)

s(1 + be−2sr)

]
=

√
−b(1 + b)

2rbλ±n
,

and

〈d, p+
n 〉H =

1

2λ+
n

√
−br

, 〈d, p−n 〉H =
−1

λ−n
√
−br

.
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Since 〈d, p+
n 〉H 6= 0 and 〈d, p−n 〉H 6= 0 the system is approximately controllable, which

confirms that assumption (H7) of Theorem 4.2 holds (moreover we know that the system
is exactly controllable). Therefore

g∗x+
n =

α+
n

λ+
n 〈d, p+

n 〉H
= − 1 + b√

rλ+
n

, g∗x−n =
α−n

λ−n 〈d, p−n 〉H
=

1 + b

2
√
rλ−n

with {g∗x+
n }n∈Z ∈ `2(Z), {g∗x−n }n∈Z ∈ `2(Z), whence the realizability problem has a solu-

tion g ∈ H such that

g∗Ax+
n = −1 + b√

r
, g∗Ax−n =

1 + b

2
√
r
.

The latter can be confirmed by inserting (5.10) into (5.9).
Since g∗Ax±n and Reλ±n do not depend on n ∈ Z, the spectral admissibility condition

holds iff
∞∑

n=−∞

[∣∣∣Reλ+
n f̂(−λ+

n )
∣∣∣2 +

∣∣∣Reλ−n f̂(−λ−n )
∣∣∣2] <∞ ∀f̂ ∈ H2(Π+) ,

i.e., when the sequences {λ±n }n∈Z are of the Carleson–Newman type, which is the case as
they are uniformly separated and located on a vertical line parallel to the imaginary axis.
Thus assumption (H9) of Theorem 4.2 holds.

5.2. Analysis of the case b > 0. Here for k1 = −1 + b

a
we cannot take k2 =

1 + b

a
. Thus

the Hurwitz sector (5.4) is essentially larger than the sector implied by (4.10) and another

choice of k1, k2 has to be proposed. Assuming k1 = −1 + b

a
we search for the maximal

allowed value of k2 for which (4.10) holds. Since

π(jω) = 1− (k1 + k2) Re[ĝ(jω)] + k1k2 |ĝ(jω)|2 =

=
(1 + b)2 cos2 ωr + (1− b)2 sin2 ωr + (1 + b)2 cosωr − k2a(1 + b) cosωr − k2a(1 + b)

(1− b)2 + 4b cos2 ωr

then treating the numerator as a polynomial of cosωr we find the maximal allowed value
of k2 for which the frequency domain inequality (4.10) holds, viz.

(5.11) k2 =
1 + b

a
− 8b

a(1 + b)
.

Then

π(jω) =
4b(1 + cosωr)2

(1− b)2 + 4b cos2 ωr
=

6b+ 8b cosωr + 2b cos 2ωr

(1− b)2 + 4b cos2 ωr
≥ 0 .

Observe that now

π(jω) ≥
16b cos4 ωr

2
(1 + b)2

∀ω ∈ R

and from [11, 865.65] we know that∫ ∞
−∞

ln π(jω)

1 + ω2
dω ≥ ln

[
16b

(1 + b)2

] ∫ ∞
−∞

1

1 + ω2
dω + 2

∫ ∞
−∞

ln cos2 ωr

2
1 + ω2

dω > −∞ .

Condition (4.11) is satisfied, whence assumption (H5) of Theorem 4.2 holds. By Propo-

sition 4.1 there exists a spectral factor φ ∈ Ĥ−1. Actually by Lemma 4.1 it belongs to
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H∞(Π+). As in the previous case formula (4.5) will not be used to determine φ, but an
elementary method based on identity (5.5) will give its denominator. Simple calculations

yield the spectral factor (here α =
√
b, β = 2

√
b and γ =

√
b)

(5.12) φ(s) =

√
b(1 + e−sr)2

1 + be−2sr
.

For this spectral factor there holds φ(0) =
√
δ = 4

√
b/(1 + b).

To determine the vector g ∈ H we apply (4.14), which leads to the identity

(5.13)
φ(s)−

√
δ

s
=

√
b

1 + b

b− 3 + (2 + 2b)e−sr + (1− 3b)e−2sr

s(1 + be−2sr)
= g∗A(sI − A)−1d ,

valid for all s ∈ Π+. A solution of (5.13) will be sought in the form

g =

[
g11

g21

]
where g1 and g2 are constants. On substituting g and (5.7) into (5.13) one obtains

(5.14) g =

[
g11

g21

]
, g1 =

√
b(3b− 1)

1 + b
, g2 =

√
b(b− 3)

1 + b
.

The solution is unique by exact controllability. Using (5.14) we find with x ∈ D(A)

(5.15) g∗Ax = g1

∫ 0

−r
x′1(θ)dθ + g2

∫ 0

−r
x′2(θ)dθ =

√
b(1− b)x1(−r) + 2

√
bx2(−r) .

Assuming a solution of (3.7) of the form

(Hx)(θ) = Hx(θ), H ∈ L(R2), H = H∗

and taking (5.1) with q = (−b2 + 6b− 1)/a2 and (5.15) into account, we can reduce (3.7)
to a discrete matrix Lyapunov equation

(5.16) CT
SHCS −H = −R, R =

[
b(1− b)2 2b(1− b)
2b(1− b) (1− b)2

]
.

Here to calculate the matrix R we used the identity

(g∗Ax)2 − q(h∗Ax)2 = xT (−r)Rx(−r) ∀x ∈ D(A) .

The solution of (5.16) is

H =

 b(1− b) 2b(1− b)
1 + b

2b(1− b)
1 + b

1− b

 > 0 .

Thus (by AS) we get a unique solution H of (3.7) which is coercive. Observe that R > 0
iff q < 0, and the latter holds only for b ∈ (0, 3− 2

√
2).

Tedious but elementary calculations show that the second equation of the system (3.7)
is valid for e = (1 + b)/a− 12b/[a(1 + b)].
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Since4 ∥∥∥∥ 1

1− µ0ĝ

∥∥∥∥
H∞(Π+)

=
(1 + b

1− b

)2

,

we get that assumption (H6) of Theorem 4.2 holds. Indeed, for b > 0 we have

µ0 =
k1 + k2

2
=

1

2

[
1 + b

a
− 8b

a(1 + b)
− 1 + b

a

]
= − 4b

a(1 + b)
< 0

and therefore, by (5.3) we get

1

1− µ0ĝ(s)
=

(1 + b)(1 + be−2sr)

(be−sr + 1)2 + b(1 + e−sr)2
.

A lower bound for the modulus of the denominator is obtained using

|(1 + be−sr)2 + b(1 + e−sr)2| ≥ |1 + be−sr|2 − b |1 + e−sr|2 =

= (1 + be−σr cosωr)2 + e−2σrb2 sin2 ωr − b
[
(1 + e−σr cosωr)2 + e−2σr sin2 ωr

]
=

= (1− b)(1− be−2σr) ≥ (1− b)2, s = σ + jω, σ ≥ 0 ,

with inequality at s = j
π

r
. This means that∣∣∣∣ 1

1− µ0ĝ(s)

∣∣∣∣ ≤ (1 + b

1− b

)2

and the upper bound is achieved at s = j
π

r
.

As in the previous case the realization problem is solved directly without using as-
sumptions (H8), (H9) of Theorem 4.2. Below we confirm this solution by using spectral
analysis.

For b > 0 there are also two series of eigenvalues, corresponding to two roots ξ± =
±j√
b

=

e−λ
±
n r of the characteristic polynomial,

λ+
n =

ln
√
b

r
+ j

2nπ − π

2
r

, λ−n =
ln
√
b

r
+ j

2nπ +
π

2
r

, n ∈ Z .

The corresponding eigenvectors {x+
n }n∈Z, {x−n }n∈Z can be written as

[
x+
n x−n

]
= e

ln
√
b

r
θ [

x+(0) x−(0)
] [ y+

n 0

0 y−n

]

where {y+
n }n∈Z, y+

n (θ) :=
1√
r
e
j

2nπ − π

2
r

θ
is the classical Fourier orthonormal basis of

eigenvectors of a skew–adjoint operator B+ acting in L2(−r, 0),

B+y = y′, D(B+) = {y ∈W1,2(−r, 0) : y(0) = −jy(−r)} ,

4This formula remains valid for b < 0.
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while {y−n }n∈Z, y−n (θ) :=
1√
r
e
j

2nπ +
π

2
r

θ
stands for the classical Fourier orthonormal basis

of eigenvectors of a skew–adjoint operator B− acting in L2(−r, 0),

B−y = y′, D(B−) = {y ∈W1,2(−r, 0) : y(0) = jy(−r)} .

Finally, x±(0) is a solution of the equation [I − ξ±CS]x(0) = 0. In particular, for

x+(0) =

[
1

−j
√
b

]
, x−(0) =

[
1

j
√
b

]

the system {x+
n }n∈Z, {x−n }n∈Z is the image of the system

{[
y+
n

0

]}
n∈Z

,

{[
0
y−n

]}
n∈Z

,

being an orthonormal basis in H = L2(−r, 0)⊕ L2(−r, 0), under a bounded linear isomor-
phism. This implies that the system {x+

n }n∈Z, {x−n }n∈Z,

(5.17) x+
n (θ) = eλ

+
n θ


1√
r

−j
√
b√

r

 , x−n (θ) = eλ
−
n θ


1√
r

j
√
b√
r


of eigenvectors of A forms a Riesz basis in H which shows that assumption (vii) of The-
orem 4.2 holds. The biorthogonal Riesz basis of eigenvectors of the adjoint operator A∗,
corresponding to the conjugate eigenvalues λ+

n = λ−−n, λ−n = λ+
−n is given by

p+
n (θ) = e−λ

+
n θ


1

2
√
r

−j
2
√
br

 , p−n (θ) = e−λ
−
n θ


1

2
√
r

j

2
√
br

 .

Now we have

α±n := Res
s=λ±n

[
φ(s)−

√
δ

s

]
=

√
b

1 + b
Res
s=λ±n

[
b− 3 + (2 + 2b)e−sr + (1− 3b)e−2sr

s(1 + be−2sr)

]
=

=
b− 1± 2j

√
b

2r
√
bλ±n

,

and

〈d, p+
n 〉H =

j

2λ+
n

√
br
, 〈d, p−n 〉H =

−j
2λ−n
√
br

.

Since 〈d, p+
n 〉H 6= 0 and 〈d, p−n 〉H 6= 0 the system is approximately controllable, which

confirms that assumption (H7) of Theorem 4.2 holds (moreover we know that the system
is even exactly controllable). Therefore

g∗x+
n =

α+
n

λ+
n 〈d, p+

n 〉H
=

(1− b)j + 2
√
b√

rλ+
n

, g∗x−n =
α−n

λ−n 〈d, p−n 〉H
=
−(1− b)j + 2

√
b√

rλ−n
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with {g∗x+
n }n∈Z ∈ `2(Z), {g∗x−n }n∈Z ∈ `2(Z), whence the realizability problem has a solu-

tion g ∈ H such that

g∗Ax+
n =

(1− b)j + 2
√
b√

r
, g∗Ax−n =

−(1− b)j + 2
√
b√

r
.

The latter can be confirmed by inserting (5.17) into (5.15).
Since g∗Ax±n and Reλ±n do not depend on n ∈ Z, the spectral admissibility condition is

satisfied iff
∞∑

n=−∞

[∣∣∣Reλ+
n f̂(−λ+

n )
∣∣∣2 +

∣∣∣Reλ−n f̂(−λ−n )
∣∣∣2] <∞ ∀f̂ ∈ H2(Π+) ,

i.e., when the sequences {λ±n }n∈Z are of the Carleson–Newman type, which is the case as
they are uniformly separated and located on a vertical line parallel to the imaginary axis.
Thus assumption (H9) of Theorem 4.2 holds.

By Theorem 3.1 the origin of the state space H is globally weakly asymptotically stable
for all f ∈ M ∩ S with k1 = −(1 + b)/a and k2 = −k1 if b < 0 and k2 given by (5.11)
if b > 0. This result is “ε–better” than that of [18], which means that now nonlinearities
asymptotically close to the boundary of the sector S are allowed. This is contrary to [18]
where the boundaries where cut away by taking straight lines with slopes k1 +ε and k2−ε,
respectively. In [18] we have used the input–output approach. Moreover by Theorem 3.2
for the cases considered the origin of H is globally strongly asymptotically stable for all
f ∈M∩ Sε. This result agrees with that of [18].

For b = 0 the origin is strongly asymptotically stable for all f ∈ M ∩ Sε with k1 =
−(1 + b)/a = −k2. This result agrees with that of [18].

6. Example 2: Unloaded RC–transmission line

Following [17, Subsection 5.2], the Hilbert space H = L2(0, 1) with standard scalar
product is used to model the dynamics of an unloaded RC transmission line according to
(2.1) with:

• The state–space operator

Ax = x′′, D(A) = {x ∈ H2(0, 1) : x′(1) = 0, x(0) = 0}
which generates an EXS analytic self–adjoint semigroup on H. This is due to
A = A∗ < 0. Moreover, A has a system of eigenvectors {en}∞n=0 (corresponding to
its eigenvalues {λn}∞n=0) that is an orthonormal basis of H (see [15, Formula (21)]
or [16, Lemma 3.1 with K=0]),

en(θ) =
√

2 sin
(π

2
+ nπ

)
θ , 0 ≤ θ ≤ 1, n ≥ 0

λn = −
(π

2
+ nπ

)2

, n ≥ 0

 .

Thus assumptions (H1) and (H8) of Theorem 4.2 are satisfied.
• The observation functional

c#x = x(1), D(c#) = {x ∈ L2(0, 1) : x is left-continuous at 1} ⊃ C[0, 1] ,

whose restriction to D(A) reads as c#
∣∣
D(A)

= h∗A with h(θ) = −θ, 0 ≤ θ ≤ 1. It

was proved in [14] that c# is admissible and therefore assumption (H3) of Theorem
4.2 holds.
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• The factor control vector d is given by

d = −1 ∈ L2(0, 1), 1(θ) = 1, 0 ≤ θ ≤ 1 ,

which is not admissible. For a proof see [16, Subsection 3.3] or for a shorter one
[17, Appendix B]. Since

〈d, en〉H = −
√

2
π

2
+ nπ

6= 0 ∀n ∈ N ∪ {0} ,

the system is approximately controllable, i.e. assumption (H7) of Theorem 4.2
holds.

It is easy to see that (2.3) holds with c#d = −1 and that by (2.4) the transfer function
reads

ĝ(s) =
1

cosh
√
s
, s ∈ Π+ .

Moreover one has

(6.1) ‖ĝ‖H∞(Π+) = 1 ,

where the norm is attained at s = 0. For a more exhaustive discussion of these facts and
many others see again [17]. In particular assumptions (H2) and (H4) of Theorem 4.2 hold.

It follows from (6.1) that (4.9) holds for k2 = −k1 = 1. More precisely one gets

(6.2) π(jω) = 1− 1∣∣cosh
√
jω
∣∣2 ≥ ω2

ω2 + 6
≥ 0 ∀ω ∈ R .

Indeed,

1

cosh
√
jω

=


1

cosh[(1 + j)Ω]
, ω ≥ 0

1

cosh[(1− j)Ω]
, ω ≤ 0

 , Ω :=

√
|ω|
2
≥ 0

and

|cosh[(1± j)Ω]|2 = |cosh Ω cos Ω± j sinh Ω sin Ω|2 = cosh2 Ω cos2 Ω + sinh2 Ω sin2 Ω =

= (1 + sinh2 Ω) cos2 Ω + sinh2 Ω sin2 Ω = sinh2 Ω + 1− sin2 Ω .

Hence

π(jω) = 1− 1∣∣cosh
√
jω
∣∣2 =

sinh2 Ω− sin2 Ω

1 + sinh2 Ω− sin2 Ω
.

Now the Maclaurin expansions of sinh and sin give5:

sinh Ω + sin Ω ≥ 2Ω, sinh Ω− sin Ω ≥ 1

3
Ω3 ∀Ω ≥ 0 ,

leading to

sinh2 Ω− sin2 Ω ≥ 2

3
Ω4 ∀Ω ≥ 0 .

This jointly with the monotonicity of the function x 7−→ x

1 + x
on x ≥ 0 yields

π(ω) ≥ 2Ω4

3 + 2Ω4
=

ω2

ω2 + 6
≥ 0 ∀ω ∈ R .

5By taking higher order terms one can improve the lower bounds arbitrarily.
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The proof of (6.2) is now complete. Now by (6.2)∫ ∞
−∞

ln π(ω)

1 + ω2
dω ≥ 4

∫ ∞
0

lnω

1 + ω2
dω − 2

∫ ∞
0

ln(ω2 + 6)

1 + ω2
dω = −2π ln(1 +

√
6) > −∞ .

Note that by Proposition 4.1 the second integral can be evaluated6 by calculating φ(1)
from the elementary rational spectral factorization problem

|φ(jω)|2 =
ω2

ω2 + 6
,

the solution of which is
φ(s) =

s

s+
√

6
.

Since assumption (H6) of Theorem 4.2 holds trivially, we shall have verified all the as-
sumptions of Theorem 4.2 if (H9) holds.

The spectral factorization problem reads here as

φ(s)φ(−s) = 1− ĝ(s)ĝ(−s) = 1− 1

cosh
√
s

1

cos
√
s

=
cosh

√
s cos

√
s− 1

cosh
√
s

1

cos
√
s
.

where cosh
√
s and cos

√
s are entire functions of exponential order 1

2
and of exponential

type 0 [36, p. 63, p. 71] having the product representations

cosh
√
s =

∞∏
k=0

(
1− s

λk

)
, cos

√
s =

∞∏
k=0

(
1 +

s

λk

)
.

Consider now the even entire function χ(s) := cosh
√
s cos

√
s − 1. It is of exponential

order 1
2

and of exponential type 0 (with maximum modulus on jR). Observe that

χ(jω) = cosh
√
jω cos

√
jω − 1 = sinh2 Ω− sin2 Ω ≥ 2

3
Ω4 =

1

6
ω2 ≥ 0

and therefore∫ ∞
−∞

ln[χ(jω)]

1 + ω2
dω ≥

∫ ∞
−∞

1

1 + ω2
ln
(ω2

6

)
dω =

= 4

∫ ∞
0

lnω

1 + ω2
dω − 2 ln 6

∫ ∞
0

dω

1 + ω2
= −π ln 6 > −∞ .

As a consequence χ(s) is nonnegative on jR and an entire function of exponential type
0 of class A [21, p. 223]. Hence by Akhiezer’s spectral factorization theorem for entire
functions of exponential type [4, Theorem 7.5.1, p. 125], [21, Theorem 1, p. 437], [32,
Theorem 3.6, p. 315] there exists an entire function ϑ(s) of exponential type 0 such that

(6.3) χ(s) = cosh
√
s cos

√
s− 1 = ϑ(s)ϑ(−s) .

It turns out that ϑ(s) has real zeros ζk for k = 0, 1, 2, . . . with ζ0 = 0, in the closed left
complex half–plane. Indeed the ζk are roots of the equation

cosh
√
s =

1

cos
√
s
,

which upon setting s = −x2, x ≥ 0, reads

(6.4) cosx =
1

coshx
, x ≥ 0 .

6Alternatively one can apply [11, Formulae 864.54 and 864.62].
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The graphs of the functions on the left–hand– and right–hand side intersect in simple
roots x0 = 0, xk > 0 for k ∈ N, such that with

εk := xk −
[π

2
+ kπ

]
, k ∈ N ∪ {0} ,

one gets the exponentially fast converging root–error bound

(6.5) |εk| ≤ e0.01ππe−
√
−λk ≤ e−1.49ππ := επ ≈ 0.00927π ∀k ∈ N ,

with ε0 = −π
2

and −λk =
(π

2
+kπ

)2
. For more information on this formula as well as (6.10)

and (6.11) below, see Appendix B. Then with ηk := λk−ζk = λk+x2
k = λk+(εk+

√
−λk)2 =

εk
(
2
√
−λk + εk

)
and ε := e−1.49π, one gets the exponentially fast converging absolute error

bound

(6.6) |ηk| = |λk − ζk| ≤ 2π(1 + ε)e0.01π
√
−λke−

√
−λk ≤ 3ε(1 + ε)π2 ∀k ∈ N ,

i.e.
|ηk| ≤ 2.083π

√
−λke−

√
−λk ≤ 0.02807π2 ∀k ∈ N ,

where the last expressions are the next to last ones at k = 1.
The relative error bound reads

(6.7)

∣∣∣∣ηkλk
∣∣∣∣ ≤ 2π(1 + ε)e0.01π e

−
√
−λk

√
−λk

≤ 4ε(1 + ε)

3
=: ρ ∀k ∈ N ,

i.e. ∣∣∣∣ηkλk
∣∣∣∣ ≤ 2.083π

e−
√
−λk

√
−λk

≤ 0.01247 ∀k ∈ N ,

with a similar comment concerning the last expressions as above, whence

(6.8) 0 < 1− ρ ≤
∣∣∣∣ ζkλk
∣∣∣∣ ≤ 1 + ρ ≈ 1.01247 ∀k ∈ N .

From (6.8) and the fact that
∞∑
k=1

1

|λk|
1
2

+α
<∞, α > 0 .

we get

(6.9)
∞∑
k=1

1

|ζk|
1
2

+α
<∞, α > 0 .

Hence upon applying to χ(s) = ϑ(s)ϑ(−s) Weierstrass’s factorization theorem and sub-
sequently Hadamard’s factorization theorem as indicated in Appendix B, there holds the
product representation:

(6.10) ϑ(s) = Ks
∞∏
k=1

(
1− s

ζk

)
, K =

1√
6
.

There holds that ϑ(s) is an entire function of order 1
2

and of exponential type 0. The former
is by Borel’s theorem, while the latter follows from [36, Theorem 7, p. 71]).

The error analysis above suggests that
∞∏
l=1

(
1 +

λk
ζl

)
≈
∞∏
l=1

(
1 +

λk
λl

)
=
(

1 +
λk
λ0

)−1

cosh
√
−λk .
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Indeed upon defining the product–ratio

R(λk) :=

∞∏
l=1

(
1 +

λk
ζl

)
∞∏
l=1

(
1 +

λk
λl

) ,

one finds (with ρ defined in (6.7)) a constant R =
[ 1

1− ρ(1 + ρ)

]1/(1−e−π)

≈ 1.0134 such

that

(6.11) R−1 ≤ R(λk) ≤ R ∀k ∈ N ∪ {0} .

As

ϑ(λk)ϑ(−λk) = cos
√
−λk cosh

√
−λk − 1 = −1 ,

with

ϑ(−λk) = K(−λk)
∞∏
l=1

(
1 +

λk
ζl

)
= K(−λk)R(λk)

(
1 +

λk
λ0

)−1

cosh
√
−λk ,

one finds then a constant L =
4R

−Kλ0

= 4.024 such that

(6.12) |ϑ(λk)| ≤ Le−
√
−λk ∀k ∈ N ∪ {0} ,

i.e. the sequence {ϑ(λk)}∞k=0 tends to zero exponentially fast.
By the considerations above the general form of the spectral factor is

φ(s) =
ϑ(s)

cosh
√
s
, s 6= λk, k = 0, 1, 2, . . . .

Since φ(0) =
√
δ = 0, from (4.23) we find for k ∈ N ∪ {0}

αk = Res
s=λk

[φ(s)

s

]
= lim

s→λk
(s− λk)

ϑ(s)

s(cosh
√
s− cosh

√
λk)

=
2ϑ(λk)√
λk sinh

√
λk

=
2(−1)k+1ϑ(λk)√

−λk

and therefore with the orthonormal A–eigenvector basis {ek}∞k=0 of H

αk
λk〈d, ek〉H

=

√
2(−1)k+1ϑ(λk)

(−λk)
,

where (6.12) holds. This shows that (4.21) holds. Using the standard estimate (with
Re s > 0)

|f̂(s)|
√

2 Re s =
∣∣〈f, e−s(·)〉L2(0,∞)

∣∣√2 Re s ≤

≤ ‖f‖L2(0,∞)‖e−s(·)‖L2(0,∞)

√
2 Re s = ‖f‖L2(0,∞) ,
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we get (with real negative eigenvalues λk and using (6.12))

∞∑
k=0

∣∣∣ αk
〈d, ek〉H

∣∣∣2∣∣f̂(−λk)
∣∣2 =

∞∑
k=0

∣∣∣ αk√
−2λk〈d, ek〉H

∣∣∣2∣∣f̂(−λk)
√
−2λk

∣∣2 ≤
≤ L2‖f‖2

L2(0,∞)

∞∑
k=0

e−2
√
−λk

(−λk)
≤ L2‖f‖2

L2(0,∞)

e−π

(−λ0)

∞∑
k=0

e−2kπ =

= L2‖f‖2
L2(0,∞)

1

(−λ0)

e−π

1− e−2π
<∞ ∀f ∈ L2(0,∞) .

Hence (4.22) holds and so does assumption (H9) of Theorem 4.2.
Contrary to Theorem 4.2, the assumptions of Theorem 4.3 are easily checked. In (6.2) the

equalities are attained at ω = 0 and therefore (4.27) cannot be satisfied until k2 = −k1 = 1.
Nevertheless, if we decrease k2 = −k1 from 1 to

√
1− ε, where ε > 0 is small then (4.27)

will hold. Indeed, by (6.1) we have then

1− (1− ε) |ĝ(jω)|2 ≥ 1− (1− ε) = ε > 0 ∀ω ∈ R .

Furthermore, for k2 = −k1 =
√

1− ε all the assumptions of Theorem 4.3 (except for
(H10) and (H12)) are satisfied, because their verification is similar as in the case of the
assumptions of Theorem 4.2. As for (H10) and (H12) one must check that the semigroup
generated by A0, which here equals A−1, is uniformly bounded and hence AS. This can
be done in many ways. In particular, we can repeat the Riesz basis property method,
used in the proof of Theorem 4.27, and conclude that the semigroup {etA0}t≥0 is uniformly
bounded.

By Theorem 4.3 the Lur’e system (3.2) has a solution (H, g) such that H ∈ L(H),
H = H∗ ≥ 0, and g ∈ H with g∗A admissible with respect to the semigroup generated by
A. Since one does not know whether H is coercive, one cannot use Theorem 3.1. Moreover
as d is not admissible, Theorem 3.2 cannot be applied. However, by the proof of Theorem
3.2, (3.10) is valid without the admissiblity of d, so one can conclude that y, u ∈ L2(0,∞)
provided that f satisfies the sector condition∣∣∣∣f(y)

y

∣∣∣∣ ≤ √1− ε, ∀y 6= 0, f(0) = 0 .

This confirms the result of Grabowski and Callier [18, p. 10], where the same has been
derived using the input–output approach.

Theorem 4.2 provides an positive answer to the question of solvability of the Lur’e system
of equations (3.2) for k2 = −k1 = 1. Consequently y, u ∈ L2(0,∞) even if f satisfies the
weaker sector condition

(6.13)

∣∣∣∣f(y)

y

∣∣∣∣ < 1, ∀y 6= 0, f(0) = 0 .

This result can be sharpened using the output equation

y = Px0 + g ? u ,

7See the text just after formula (4.25) with some simplifications due to the fact that A has a system of
eigenvectors being an orthonormal basis, so the similarity transformation T is trivial, i.e., T = I.
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where the observability map P is given by

(6.14)

(Px0)(t) =
∞∑
k=0

eλktc#ek〈x0, ek〉H =

=
√

2
∞∑
k=0

(−1)ke
−
(π

2
+ kπ

)2

t
〈x0, ek〉H ∀t > 0, ∀x0 ∈ H

and therefore Px0 is continuous function of t > 0 and decays exponentially as t tends
to infinity. The impulse response g is the derivative of Pd and thus g is continuous for
t ≥ 0, (Pd)(0) = −1 = c#d8, g(0) = 0 and g decays exponentially as t tends to infinity,
see [17, Subsection 5.2] for details. Since u ∈ L2(0,∞) then by the standard properties
of convolution g ? u is a continuous function of t ≥ 0 and lim

t→∞
(g ? u)(t) = 0. Hence y is

continuous for t > 0 and lim
t→∞

y(t) = 0. This jointly with continuity of f and the sector

conditions (6.13) implies that u is continuous for t > 0 and lim
t→∞

u(t) = 0.

The closed–loop linear semigroup generator corresponding to the linear feedback law
f(y) = µy takes the form

Aµx = x′′, D(Aµ) =
{
x ∈ H2(0, 1) : x′(1) = 0, x(0) = µx(1)

}
.

It is proved in [13] that Aµ generates an analytic semigroup on L2(0, 1) which is EXS for
µ ∈ (− coshπ, 1) with coshπ ≈ 11.592. Hence, the Hurwitz sector is essentially bigger
than the sector (k1, k2) obtained above.

7. Discussion

7.1. A survey of known results on the solvability of Lur’e equations.

7.1.1. Nudel’man and Schwartzman [26, Theorem 4, p. 570].

Theorem 7.1. Let A ∈ L(H) be the generator of an EXS linear C0–semigroup on H and
let the vector B ∈ H be cyclic for A, i.e., {AkB}∞k=0 is a complete system in H. Then the
existence of a solution R ∈ L(H), R = R∗ ≥ 0 of

(7.1)

{
A∗R +RA ≤ 0
−RB + C = 0

}
,

is equivalent to

(7.2) ReC∗(jωI − A)−1B ≥ 0 ∀ω ∈ R .

This theorem cannot be applied to decide the solvability of (3.2) as the semigroup gen-
erated by A−1 cannot be EXS unless dim H < ∞, because 0 belongs to the continuous
spectrum of A−1 (clearly A−1 has an unbounded inverse). One may think to use the possi-
ble exponential stabilizability of the pair (A−1, d). However this does not hold, as otherwise

the semigroup {et(A−1+dg∗)}t≥0 would be EXS for some g ∈ H. Since the operator dg∗

has rank one then by a result of Triggiani [33] the semigroup {etA−1}t≥0 would also be
EXS which is not the case if dim H = ∞. Hence the pair (A−1, d) is not exponentially
stabilizable.

8For x0 = d the series in (6.14) converges for t ≥ 0, and its convergence at t = 0 is conditional which
follows from Leibniz’s criterion.
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7.1.2. Likhtarnikov and Yacubovic̆ [23, Theorem 3, p. 902].

Theorem 7.2. Let A ∈ L(H) be the generator of a linear C0–semigroup on H, let B ∈
L(U,H), let the pair (A,B) be exponentially stabilizable9 and let there exist a δ > 0 such
that

F (x, u) ≥ δ
(
‖x‖2

H + ‖u‖2
U

)
∀(ω, x, u) ∈ R×D(A)× U, jωx = Ax+Bu ,

where

(7.3) F (x, u) = 〈x,Qx〉H + 〈x, Su〉H + 〈Su, x〉H + 〈u,Ru〉H
with Q ∈ L(H), Q = Q∗, S ∈ L(U,H), R ∈ L(U) and R = R∗. Then there exists an
operator H ∈ L(H), H = H∗ ≥ 0 which satisfies for some η > 0:

(7.4)
〈Ax+Bu,Hx〉H + 〈x,H(Ax+Bu)〉H+

+F (x, u) ≥ η
(
‖x‖2

H + ‖u‖2
U

)
∀(x, u) ∈ D(A)× U .

Theorem 7.2 does not apply to (3.2), because the left-hand side of (3.5) is not repre-
sentable as the left-hand side of (7.4). Furthermore, then the quadratic form F is not
continuous. Theorem 7.2 does not apply also to (3.7), as then the control operator B is
not bounded and still the quadratic form F is not continuous.

7.1.3. Balakrishnan [2, Theorem 2.1, p. 179].

Theorem 7.3. Let A : (D(A) ⊂ H) −→ H generate an EXS linear C0–semigroup on H,
let A−1 be compact, let A have a system of eigenvectors which forms a Riesz basis of H,
and let the following restrictions hold:

B ∈ D(A), C ∈ D(A∗), 〈C,B〉H 6= 0, 〈C,AB〉H 6= 0 ,

the pair (A,B) is approximately controllable10 and (7.2) holds. Then there exists R ∈ L(H),
R = R∗ ≥ 0 satisying (7.1).

The main difference between Theorem 4.2 and the result above lies in the assumptions
concerning d and h. To be more precise, comparing the Lur’e system (7.1) with (3.7) one
can see that (7.1) corresponds to (3.7) with d = B, eh = C, H = R, and11 δ = 0, q = 0.
The domain assumption B ∈ D(A) implies that Ad is meaningful and belongs to H, while
the domain assumption C ∈ D(A∗) implies that A∗h is meaningful and

c#x = 〈Ax, h〉H = 〈x,A∗h〉H, x ∈ D(A) .

Hence by the Riesz representation theorem the observation functional c# extends to a
bounded, linear everywhere defined functional and we conclude that the Lur’e system
considered by Balakrishnan corresponds to a system with bounded control and observation
operators.

9Originally Likhtarnikov and Yacubovic̆ have assumed the so-called L2–controllability of the system,
however Louis and Wexler [24] proved that this concept is equivalent to exponential stabilizability. In fact
Louis and Wexler rediscovered the theorem by generalizing an earlier result also due to Likhtarnikov and
Yacubovic̆ [22]

10Equivalently, B is a cyclic vector for A−1, i.e., {A−kB}∞k=0 is a complete system in H.

11In the context of (3.2) the two last equalities mean that k1 = 0, k2 = − 1

c#d
=

1

ĝ(0)
> 0.
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7.1.4. Oostveen and Curtain [27, Theorem 19 and Corollary 20].

Theorem 7.4. Let A : (D(A) ⊂ H) −→ H generate an AS linear C0–semigroup on H,
let B ∈ L(U,H) be an admissible control operator12, let C ∈ L(H,Y) be an admissible
observation operator13, let the transfer function

(7.5) G(s) := C(sI − A)−1B

belong to H∞(Π+,L(U,Y)) and N ∈ L(Y,U), Q ∈ L(Y), Q = Q∗, R ∈ L(U), R = R∗ ≥
δI > 0. There holds: if the Popov function satisfies

(7.6) R +NG(jω) + [NG(jω)]∗ + [G(jω)]∗QG(jω) ≥ εI > 0

then the Riccati operator equation:

(7.7) A∗Xx+XAx− (B∗X +NC)∗R−1(B∗X +NC)x+ C∗QCx = 0 ∀x ∈ D(A)

has a unique self-adjoint bounded solution such that the operator [A−BR−1(B∗X+NC)]
generates an AS linear C0–semigroup on H.

Theorem 7.4 inspired Theorem 4.3 of Section 4. For an interesting complement of infor-
mation for the case that the Popov function is nonnegative but not coercive, see [9].

7.1.5. Pandolfi [29, Theorem 3, p. 740].

Theorem 7.5. Let A ∈ L(H) generate a linear C0–group on H, B ∈ L(U,H) and let the
pair (A,B) be exactly controllable. There holds: if

F (x, u) ≥ 0 ∀(ω, x, u) ∈ R×D(A)× U, jωx = Ax+Bu ,

where the form F is given by (7.3) with Q ∈ L(H), Q = Q∗, S ∈ L(U,H), R ∈ L(U), and
R = R∗, then there exists an H ∈ L(H), H = H∗ satisfying

〈Ax+Bu,Hx〉H + 〈x,H(Ax+Bu)〉H + F (x, u) ≥ 0 ∀(x, u) ∈ D(A)× U .

Observe that here the coercivity assumptions of Theorem 7.2 are eliminated by replacing
the L2–controllability by the stronger requirement of exact controllability; simultaneously
A is now the generator of a group.

7.1.6. Bucci [5, Theorem 3.1].

Theorem 7.6. Let A ∈ L(H) generate an EXS linear analytic C0–semigroup on H, let
there exists an α ∈ (0, 1) such that D ∈ L(U, D[D(−A)α]. There holds: if there exists a
δ > 0 such that

F (A(jωI − A)−1Du, u) ≥ δ‖u‖2
U ∀(ω, u) ∈ R× U ,

where F is given by (7.3) with Q ∈ L(H), Q = Q∗, S ∈ L(U,H), R ∈ L(U), and R = R∗ ≥
0, then there exists an H ∈ L(H), H = H∗ satisfying

(7.8) 〈H(x−Du), Ax〉H + 〈Ax,H(x−Du)〉H + F (x−Du, u) ≥ 0 ∀(x, u) ∈ D(A)× U

This result can be applied to decide the solvability of system (3.7) but only when the
observational fuctional c# extends to a linear bounded, everywhere defined functional.

12This holds iff B∗(sI −A)−1x ∈ H2(Π+,U) for all x ∈ H.
13This holds iff C∗(sI −A)−1x ∈ H2(Π+,Y) for all x ∈ H.
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7.1.7. Pandolfi [30, Theorem 2].

Theorem 7.7. Let A ∈ L(H) generate a linear analytic C0–semigroup on H, let D ∈ H,
A−1 be compact, let A have a system of eigenvectors which forms a Riesz basis of H, let
σP (A) = {zn}n∈N where the zn are simple eigenvalues, let there exist a µ > 0 such that
| Im zn/Re zn| < µ uniformly with respect to n ∈ N. There holds: if

π(ω) := F (−A(jω − A)−1Du, u) ≥ 0 ∀(ω, u) ∈ R× U ,

where F is given by (7.3) with Q ∈ L(H), Q = Q∗, S ∈ H, R ∈ R and there exists an
exponent δ < 1 such that

|ω|δπ(ω) > H,

for some positive H and large enough |ω|, then there exists anH ∈ L(H),H = H∗ satisfying
(7.8).

This result can be applied to decide the solvability of system (3.7) but only when the
observation fuctional c# extends to a linear bounded, everywhere defined functional.

7.1.8. Pandolfi [31, Theorem 3, p. 482].

Theorem 7.8. Let A ∈ L(H) generate a linear C0–group on H, let D ∈ L(U,H) be an
admissible factor control operator and the pair (A−1, D) be exactly controllable. There
holds: if

F (x−Du, u) ≥ 0 ∀(ω, x, u) ∈ R×D(A)× U, jω(x−Du) = Ax

where the form F is given by (7.3) with Q ∈ L(H), Q = Q∗, S ∈ L(U,H), R ∈ L(U) and
R = R∗, then there exists an H ∈ L(H), H = H∗ satisfying (7.8).

Again the quadratic form F is continuous, so the result is related to the solvability of
(3.7) with bounded observation.

7.2. Conclusions. The most important results of this paper are:

• Some circle criterion type absolute stability criteria presented in Section 3 based
on quadratic Lyapunov functionals (Theorems 3.1, 3.2). These criteria give results
similar to those of the input–output approach, however to verify here the Theorem
assumptions one has to examine the solvability problem of the Lur’e system (3.2).
• Solvability results for Lur’e systems in Section 4, where in particular, appropriate

versions of the Kalman–Yacubovic̆ lemma are presented (Theorems 4.2 and 4.3).
• A detailed presentation of two examples of electrical transmission–lines, illustrating

the results of previous sections, in Sections 5 and 6. The discussion shows that this
paper’s stability criteria are checkable.

Some considerations for generalizing the results are now discussed. Some further inves-
tigations should be made to replace the Riesz basis assumption in Theorem 4.2 by weaker
assumptions. This probably will require the derivation of a new admissibility criterion for
observation functionals in terms of the cyclic system {A−kd}∞k=0 rather than in terms of a
Riesz basis of eigenvectors of A. Note that up to now there is no satisfactory characteri-
zation of admissibility of the non–spectral type.

Futhermore, more involved numerical analysis is in order to complete the results of the
example of Section 6 for finding interesting approximations of (H, g) – the solution of the
Lur’e system (4.14). In view of the exponential decay of ϑ(λk), it is a good bet that some
spectral approximations could converge very fast to the solution (H, g). This involves
numerical analysis which falls outside the scope of the present paper.
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Finally observe that, except for the case b ≤ 0, all examples above show that the absolute
stability conditions generated by the circle criterion are significantly more conservative than
the Hurwitz sector condition. It is known that for finite–dimensional autonomous continu-
ous Lur’e systems Popov’s method leads to considerably better stability conditions than the
circle criterion. It is less known that a generalization of Popov’s method to finite–dimensio-
nal autonomous discrete Lur’e systems is possible only by further restricting the class of
admissible nonlinearities. This causes one to expect some difficulties to get an appropriate
Popov type stability criterion for the system described by (3.4), which is sufficiently gen-
eral to handle discrete–time systems, as can be seen by noting that (5.2) is an equivalent
model giving the essentially discrete–time dynamics of the electrical distortionless loaded
RLCG–transmission line. An additional observation is that the input–output approach
for finite–dimensional feedback systems is usually based on some smoothness assumptions
imposed on the system output. Thus an other difficulty for obtaining a generalization of
Popov’s method will be that one has to examine some differentiability properties of the
system output.
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Appendix A: Derivation of Equation (3.9)

Let a := k2 − k1 > 0, b := k2 + k1 and ∆ := a2 − 4ε. Then[
k2 −

f(y)

y

] [
f(y)

y
− k1

]
=

=

{
k2 −

b+
√

∆

2
+

[
b+
√

∆

2
− f(y)

y

]}{[
f(y)

y
− b−

√
∆

2

]
+
b−
√

∆

2
− k1

}
=

=

{
a−
√

∆

2
+

[
b+
√

∆

2
− f(y)

y

]}{[
f(y)

y
− b−

√
∆

2

]
+
a−
√

∆

2

}
=

=
a−
√

∆

2

[
f(y)

y
− b−

√
∆

2

]
+

[
b+
√

∆

2
− f(y)

y

][
f(y)

y
− b−

√
∆

2

]
+

+

(
a−
√

∆
)2

4
+

[
b+
√

∆

2
− f(y)

y

]
a−
√

∆

2
=

=

[
b+
√

∆

2
− f(y)

y

][
f(y)

y
− b−

√
∆

2

]
+ ε .

Now since f ∈ Sε we have

y2

[
k2 −

f(y)

y

] [
f(y)

y
− k1

]
= y2

[
b+
√

∆

2
− f(y)

y

][
f(y)

y
− b−

√
∆

2

]
+ εy2 ≥ εy2 .

Appendix B: Error analysis concerning the Example of Section 6

Ad inequality (6.5). Observe that for k ∈ N ∪ {0}, (−1)k+1εk > 0. Moreover for k ∈ N,
|εk| ≤ |εk−1| ≤ 0.5π and for |ε| ≤ 0.5π, (2/π)|ε| ≤ sin |ε|. Put x = ε+(0.5+k)π in equation
(6.4). The latter reads then

(−1)k+1 sin ε =
1

cosh[ε+ (0.5 + k)π]
, k ∈ N, |ε| ≤ 0.5π .

Thus for k ∈ N with k odd there holds

2

π
|εk| ≤ sin |εk| =

1

cosh[|εk|+ (0.5 + k)π]
≤ 1

cosh[(0.5 + k)π]
≤ 2e−(0.5+k)π = 2e−

√
−λk .

Hence for k ∈ N with k odd

|εk| ≤ πe−
√
−λk ≤ πe−1.5π < 0.01π .

Then for k ∈ N with k even, −εk = |εk| ≤ |εk−1| < 0.01π, such that

2

π
|εk| ≤ sin |εk| =

1

cosh[−|εk|+ (0.5 + k)π]
≤ 1

cosh[(0.49 + k)π]
≤

≤ 2e−(0.49+k)π = 2e0.01πe−(0.5+k)π = 2e0.01πe−
√
−λk .

Thus for k ∈ N with k even

|εk| ≤ e0.01ππe−
√
−λk .

Hence upon comparing with the odd case, inequality (6.5) holds. �
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Ad equation (6.10). Observe that χ(s) = ϑ(s)ϑ(−s) has a double root at ζ0 = 0 and
simple real roots at ±ζk with ζk ≈ λk < 0 for k ∈ N. The latter satisfy inequality (6.9).
Hence χ(s) is of genus 0 and order 1

2
(the latter can be confirmed by Borel’s theorem [36,

Theorem 6, p. 69]). Consequently by Weierstrass’s factorization theorem, [36, pp. 54 -
57],

χ(s) = ep(s)(−s2)
∞∏
k=1

(
1− s

ζk

) ∞∏
k=1

(
1 +

s

ζk

)
,

where p(s) is a real polynomial. Now by Hadamard’s factorization Theorem, [36, pp. 74 -
75], the degree of p(s) cannot exceed 1

2
. Hence p(s) is a constant such that

χ(s) = cosh
√
s cos

√
s− 1 = ϑ(s)ϑ(−s) = K2(−s2)

∞∏
k=1

(
1− s

ζk

) ∞∏
k=1

(
1 +

s

ζk

)
,

where K is a constant. Observe that near zero, for s real and small

1 +
(−s2)

6
+ o

(
−s2

)
− 1 = K2(−s2) ,

whence K =
1√
6

. From these considerations one gets equation (6.10). �

Ad inequality (6.11). By definition of ηk we have:

R(λk) =
∞∏
l=1

[
1 + µl(λk)

]
, µl(λk) :=

ηl
ζl

λk
λl + λk

.

Note that in definition of µl(λk) the second factor is positive and less than 1 and the first
factor is related to the relative error, i.e. small. Recalling that ρ = (4/3)(1+ε)ε ≈ 0.01247,
ε = e−1.49π, (6.8) and (6.7) yield

|µl(λk)| ≤
∣∣∣∣λlζl
∣∣∣∣ ∣∣∣∣ηlλl

∣∣∣∣ ≤ (1 + ρ)2π(1 + ε)e0.01π e
−
√
−λl

√
−λl

≤ ρ(1 + ρ) ≈ 0.01263 ∀l ∈ N ,

where the last expression is the third one evaluated at l = 1.
Therefore, since |µl(λk)| ≤ ρ(1 +ρ) ≈ 0.01263 for all l ∈ N, the graph of (−1, 1) 3 x 7−→

ln(1 + x) yields that for β := −
ln
[
1− ρ(1 + ρ)

]
ρ(1 + ρ)

≈ 1.0064, there holds

−β|µl(λk)| ≤ ln[1 + µl(λk)] ≤ β|µl(λk)| ∀l ∈ N .

Combining we get then

(7.9) exp
[
−β

∞∑
l=1

|µl(λk)|
]
≤ R(λk) ≤ exp

[
β

∞∑
l=1

|µl(λk)|
]
,

where for all k ∈ N ∪ {0}
∞∑
l=1

|µl(λk)| ≤ 2π(1 + ε)e0.01π(1 + ρ)
∞∑
l=1

e−
√
−λl

√
−λl

≤ 2π(1 + ε)e0.01π(1 + ρ)√
−λ1

∞∑
l=1

e−
√
−λl =

=
4(1 + ρ)(1 + ε)

3
e0.01πe−0.5π

∞∑
l=1

e−lπ =
4(1 + ρ)(1 + ε)

3

e0.01πe−1.5π

1− e−π
=

=
4(1 + ρ)ε(1 + ε)

3(1− e−π)
=
ρ(1 + ρ)

1− e−π
.
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Thus for all k ∈ N ∪ {0},

β

∞∑
l=1

|µl(λk)| ≤
− ln

[
1− ρ(1 + ρ)

]
1− e−π

.

This and (7.9) imply inequality (6.11) with R =
[ 1

1− ρ(1 + ρ)

]1/(1−e−π)

≈ 1.0134. �
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