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Abstract: We construct a quadratic Lyapunov functional for a class of neutral time–delay
systems. The results simplify and generalize those of [8, 9].

1. INTRODUCTION. MOTIVATING EXAMPLE AND
FORMULATION OF THE PROBLEM

Consider the nuclear reactor temperature control system
depicted in Figure 1.1. The dynamics equations of the
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Fig. 1.1. The nuclear reactor temperature control system

system are
T ẏ(t) + y(t) = p(t− r)

1(t) + f(t) = p(t)

K1ε(t) +K2

∫ t

0

ε(τ)dτ = f(t)

w − y(t) = ε(t)

 , t > 0 (1.1)

where T = 0.2, r = 0.5 and K1, K2 are parameters, 1
denotes the Heaviside step function and r, T are fixed
positive constants. If we assume that the system is asymp-
totically stable and until the moment of the appearance of
a disturbance it remains in equilibrium, then for t < 0

ε = 0, f = K2

∫ ∞
0

ε(t)dt = w, p = w, y = w (1.2)

From (1.1) and (1.2) we get

ε̈(t) = − 1

T
ε̇(t)− 1

T
δ(t− r)− K1

T
ε̇(t− r)− K2

T
ε(t− r)

where δ denotes Dirac’s pseudofunction, together with the
initial conditions ε(θ) = 0, ε̇(θ) = 0 for θ ∈ [−r, 0].
Hence, introducing the state variables z1(t) = ε(t + r),
z2(t) = ε̇(t+ r) and the notation

z02 = a 6= 0,

a = − 1

T
, b = −K1

T
= −5K1, d = −K2

T
= −5K2

we obtain the final version of the dynamics equations


ż1(t) = z2(t)
ż2(t) = az2(t) + bz2(t− r) + dz1(t− r)
z1(θ) = 0, −r ≤ θ ≤ 0
z2(θ) = 0, −r ≤ θ < 0
z2(0) = z02

 (1.3)

The problem, originally posed but not solved in [3], is
to determine a pair (b, d) minimizing the integral perfor-
mance index

J =

∫ ∞
0

ε2(t)dt =︸︷︷︸
ε≡0 on [−r,0]

∫ ∞
0

ε2(t+r)dt =

∫ ∞
0

z21(t)dt.

(1.4)

The system (1.3) is a special case of the neutral system
v̇(t) = A1v(t) + (A1A0 +A2)z(t− r), t ≥ 0
v(t) = z(t)−A0z(t− r), t ≥ 0
v(0) = v0
z(θ) = φ(θ) for almost every θ ∈ [−r, 0]


(1.5)

where A1, A2, A0 ∈ L(Rn), r > 0, v0 ∈ Rn, φ is a function
defined on (−r, 0) with values in Rn. Here

n = 2; A1 =

[
0 1
0 a

]
, A2 =

[
0 0
d b

]
, A0 = 0 ∈ L(R2);

v = z; v0 =

[
0
z02

]
, φ ≡ 0 .

Simultaneously (1.4) is a special case of the quadratic
integral performance index

J

([
v0
φ

])
=

∫ ∞
0

[
v(t)

z(t− r)

]T[
P Q
QT R

][
v(t)

z(t− r)

]
dt

(1.6)

with P , Q, R ∈ L(Rn), P = PT , R = RT ,
[
P Q
QT R

]
≥ 0.

This can be seen by taking
P = ccT , cT = [ 1 0 ], Q = R = 0 ∈ L(R2) .

Motivated by the above example, we pose the following
problem.
Problem 1.1. Evaluate the quadratic performance index
(1.6) over trajectories of (1.5).

This problem has been solved in [5, 6, 7, 8] using the
method of Lyapunov functionals/Lyapunov operator equa-



tion. An entire presentation could be found in [9]; see
also [11]. The construction of a Lyapunov functional given
therein generalizes the method proposed by Castelan and
Infante [2]. A characteristic feature of the latter is the
reduction of the whole construction to solving a functional
differential equation a solution to which is being found in
terms of a finite set of its eigensolutions.

Non–Lyapunov attempts to solving Problem 1.1 has been
proposed in [10], [11] and the literature therein.

The aim of this paper is to simplify the Lyapunov approach
by eliminating the eigenanalysis from previous presenta-
tions. For that some more advances properties of the tensor
(Kronecker) product of matrices will be applied [1].

2. BASIC FACTS ON ABSTRACT OBSERVED
SYSTEMS. LYAPUNOV OPERATOR EQUATION

Throughout this section H will stand for a Hilbert state
space with scalar product 〈·, ·〉H.
Definition 2.1. A family {S(t)}t≥0 ⊂ L(H) is said to be a
C0–semigroup on H if: (i) S(0) = I, S(t+ τ) = S(t)S(τ)
for all t, τ ≥ 0, (ii) lim

t→0+
S(t)x = x for all x ∈ H.

The semigroup {S(t)}t≥0 is asymptotically stable (AS) if
S(t)x0 → 0 (strongly) as t → ∞ for any x0 ∈ H; it is
exponentially stable (EXS) if ‖S(t)‖L(H) as t → ∞ or,
equivalently,
∃M ≥ 1 ∃α > 0 : ‖S(t)‖L(H) ≤Me−αt ∀t ≥ 0 .

Finally, the linear operator

Ax := lim
t→0+

1

t
[S(t)x− x] ,

D(A) =

{
x ∈ H : ∃ lim

t→0+

1

t
[S(t)x− x]

}
is called the infinitesimal generator of the semigroup
{S(t)}t≥0 on H.
Theorem 2.1. (Lummer–Phillips). A linear operator A :
(D(A) ⊂ H) −→ H satisfying the assumptions:

(i) there exists λ0 > 0 such that R(λI −A) = H for all
λ > λ0,

(ii) there exist ω ∈ R and an equivalent scalar product
〈·, ·〉e in H such that A is ω–dissipative with respect
to 〈·, ·〉e, i.e.,
〈Ax, x〉e + 〈x,Ax〉e ≤ 2ω ‖x‖2e ∀x ∈ D(A) ,

is the infinitesimal generator of (or simply generates) a
C0–semigroup {S(t)}t≥0 on H for which

‖S(t)x‖e ≤ e
ωt ‖x‖e ∀t ≥ 0 ∀x ∈ H . (2.1)

Let us consider an abstract observation system on H,{
ẋ(t) = Ax(t), t ≥ 0
x(0) = x0

y = Cx

}
(2.2)

with A : (D(A) ⊂ H) −→ H generating a linear C0–
semigroup {S(t)}t≥0 on H and the A–bounded output
operator C : (D(C) ⊂ H) → Y, Y is a Hilbert space

with the scalar product 〈·, ·〉Y, i.e., an operator satisying:
D(A) ⊂ D(C) and there exists γ > 0 such that

‖Cx‖Y ≤ γ(‖x‖H + ‖Ax‖H) ∀x ∈ D(A)

For each fixed x0 ∈ D(A), the function (output trajectory)
[0,∞) 3 t 7−→ CS(t)x0 ∈ Y is continuous with the Laplace
transform: C(sI −A)−1x0, s ∈ ρ(A) 1 .
Definition 2.2. The observation operator C is called ad-
missible if there exists β∞ > 0 such that∫ ∞

0

‖CS(t)x0‖2Y dt ≤ β∞ ‖x0‖2H ∀x0 ∈ D(A) (2.3)

i.e., the observability map
Ψ : (D(A) ⊂ H) 3 x0 7−→ CS(·)x0 ∈ L2(0,∞;Y)

is (densely) defined on D(A) and bounded.
Theorem 2.2. C is admissible iff there exists H = H∗ ∈
L(H), H ≥ 0, and H satisfies the Lyapunov operator
equation
〈Ax,Hz〉H + 〈x,HAz〉H = −〈Cx, Cz〉Y ∀x, z ∈ D(A)

(2.4)
If C be admissible then H = Ψ∗Ψ, called the observability
Gramian is the unique solution of (2.4), provided that the
semigroup {S(t)}t≥0 is AS; here Ψ denotes the extension
of Ψ to an operator from L(H,L2(0,∞;Y)).

3. SOLUTION OF THE PROBLEM 1.1

We shall give a solution to Problem 1.1 employing Theo-
rem 2.2.

Step 1. In the state space H = M2 = Rn ⊕ L2(−r, 0; Rn)
we can write (1.5) as an abstract initial value problem, a
part of (2.2) with

x0 =

[
v0
φ

]
Ax = A

[
v
ψ

]
=

[
A1v + (A1A0 +A2)ψ(−r)

ψ′

]
, D(A) ={[

v
ψ

]
∈ Rn ⊕W1,2(−r, 0; Rn), v = ψ(0)−A0ψ(−r)

}
.

It can be proved using Theorem 2.1 with an equivalent
scalar product (see [9, pp. 47–48] for details)〈[

v1
ψ1

]
,

[
v2
ψ2

]〉
e

:= vT1 v2+

∫ 0

−r
ψT1 (θ)

[
I − θ

r
AT0 A0

]
ψ2(θ)dθ

that A generates a linear C0–semigroup {S(t)}t≥0 on H,

S(t)

[
v0
φ

]
=

[
v(t)
zt

]
, t ≥ 0

where for a fixed t ≥ 0, zt denotes the Krasovskii–Hale
segmentation, zt : [−r, 0] 3 θ 7−→ zt(θ) = z(t+ θ) ∈ Rn.

Step 2. In what follows we shall assume that this
semigroup is EXS which holds [4, Lemma 6.2.1, p. 151] iff
the spectrum of A0 is in an open unit disk D, i.e.,

σ(A0) ⊂ D (3.1)

1 For each x0 ∈ H this is the Laplace transform of a Laplace–
transformable, Y–valued distribution with support in [0,∞).



and all roots of the characteristic quasipolynomial λ 7−→
det[λI − λe−rλA0 − A1 − e−rλA2], which is an entire
function, have negative real parts, i.e.,{
λ ∈ C : det[λI − λe−rλA0 −A1 − e−rλA2] = 0

}
⊂ C−.
(3.2)

Step 3. A linear observation operator C : H −→ Y,
Y = R2n,

C
[
v
ψ

]
=

[
P Q
QT R

] 1
2
[

v
ψ(−r)

]
,

corresponding to the integrand in (1.6) is an A–bounded
operator. This clearly follows from the identity

ψ(−r) =[
(A1 +A2)−1 −

∫ 0

−r
(A1 +A2)−1A2(·)dθ

]
A
[
v
ψ

]
,[

v
ψ

]
∈ D(A)

where thanks to (3.2): det(A1 + A2) 6= 0. Since the
semigroup {S(t)}t≥0 is EXS we have∫ ∞

0

‖z(t− r)‖2Rn dt =

∞∑
k=0

∫ (k+1)r

kr

‖z(t− r)‖2Rn dt =

=

∞∑
k=0

∫ 0

−r
‖z(kr + θ)‖2Rn dθ =

∞∑
k=0

∫ 0

−r
‖zkr(θ)‖2Rn dθ ≤

≤M2 ‖x0‖2H
∞∑
k=0

e−2µkr =

= M2 ‖x0‖2H
1

1− e−2µr
∀x0 ∈ H .

Employing the Rayleigh inequality we get for all x0 ∈
D(A)∥∥∥∥CS(·)

[
v0
φ

]∥∥∥∥2
L2(0,∞;R2n)

≤

≤ λmax

([
P Q
QT R

])[
1

2µ
+

1

1− e−2µr

]
M2 ‖x0‖2H

and thus (2.3) holds, i.e., C is admissible.

Step 4. If follows from Theorem 2.2 that

J(x0) = 〈x0,Hx0〉H =
∥∥Ψx0

∥∥2
L2(0,∞;Y)

∀x0 ∈ H

where H is a unique bounded self–adjoint nonnegative
solution to the Lyapunov operator equation (2.4) which
here reads as
〈x1,HAx2〉H + 〈x1,HAx2〉H =

= −
[

v1
ψ1(−r)

]T [
P Q
QT R

] [
v2

ψ2(−r)

]
, x1, x2 ∈ D(A).

(3.3)
The solution of (3.3) will be sought in the form

H
[
v
ψ

]
=


αv +

∫ 0

−r
β(θ)ψ(θ)dθ

βT (·)v +

∫ 0

−r
δ(·, σ)ψ(σ)dσ + γψ



with α, γ ∈ L(Rn), α = αT , γ = γT ,

δ(θ, σ) =

{
Φ(θ − σ), θ < σ

ΦT (σ − θ), θ > σ

}
= δT (σ, θ) , (3.4)

and Φ, β ∈ C∞([−r, 0],L(Rn)). The matrix kernel function
(3.4) may have a discontinuity along the diagonal θ = σ
of the square [−r, 0] × [−r, 0], or equivalently, Φ(0) may
not be a symmetric matrix. The matrix γ is a (unique)
solution of the discrete Lyapunov matrix equation

AT0 γA0 − γ = −R
and

Φ(θ) =
dβT (θ)

dθ
−βT (θ)A1 = AT2 β(−r−θ)−AT0

dβ(−r − θ)
dθ

The constant matrix α and the matrix–valued function β
satisfy the boundary–value problem

d
dθ
[
β(θ) + βT (−r − θ)A0

]
= AT1 β(θ) + βT (−r − θ)A2

AT1 α+ αA1 + βT (0) + β(0) + γ = −P
γA0 + α(A1A0 +A2) + β(0)A0 − β(−r) = −Q .


(3.5)

Step 5. In this paragraph we give full solution of (3.5)
in terms of the Kronecker (tensor) product of matrices.
Less advanced properties of the Kronecker product are
presented in basic courses on matrix algebra and gathered
in [1], therefore we shall employ them without notifying –
only more advanced properties of the Kronecker product
will be explained.

By substituting
ϑ(θ) = βT (−r − θ), −r ≤ θ ≤ 0 (3.6)

one can reduce the first equation of (3.5) to the system
d
dθ

[β(θ) + ϑ(θ)A0] = AT1 β(θ) + ϑ(θ)A2

d
dθ

[AT0 β(θ) + ϑ(θ)] = −AT2 β(θ)− ϑ(θ)A1

 . (3.7)

Employing the Kronecker product of matrices, we find

d
dθ

[
I ⊗ I I ⊗AT0

AT0 ⊗ I I ⊗ I

] [
colβ

colϑ

]
=

=

[
AT1 ⊗ I I ⊗AT2
−AT2 ⊗ I −I ⊗AT1

] [
colβ

colϑ

]
where ⊗ stands for the Kronecker product of matrices
while colβ, colϑ are n2–dimensional vectors having rows
composed of the rows of matrices β and ϑ, respectively.
Lemma 3.1. (Schur).

detG1 6= 0⇒ det

[
G1 G2

G3 G4

]
= detG1 det

[
G4 −G3G

−1
1 G2

]
.

Proof. Since detG1 6= 0 then[
G1 G2

G3 G4

] [
I −G−11 G2

0 I

]
=

[
G1 0

G3 G4 −G3G
−1
1 G2

]
.

2

By Lemma 3.1 and (3.1) we have



det

[
I ⊗ I I ⊗AT0

AT0 ⊗ I I ⊗ I

]
= det

(
I ⊗ I −AT0 ⊗AT0

)
6= 0

(3.8)
and, moreover,[

I ⊗ I I ⊗AT0
AT0 ⊗ I I ⊗ I

]−1
=

=

[ (
I ⊗ I −AT0 ⊗AT0

)−1
0⊗ 0

0⊗ 0
(
I ⊗ I −AT0 ⊗AT0

)−1
]
·

·

[
I ⊗ I −I ⊗AT0
−AT0 ⊗ I I ⊗ I

]
.

Consequently, (3.7) may equivalently be written as
d
dθ

[
colβ

colϑ

]
=

[
a11 a12
a21 a22

]
︸ ︷︷ ︸

:=A

[
colβ

colϑ

]
(3.9)

where
a11 :=

(
I ⊗ I −AT0 ⊗AT0

)−1 (
AT1 ⊗ I +AT2 ⊗AT0

)
,

a12 :=
(
I ⊗ I −AT0 ⊗AT0

)−1 [
I ⊗ (A1A0 +A2)

T
]
,

a21 :=
(
I ⊗ I −AT0 ⊗AT0

)−1 [− (A1A0 +A2)
T ⊗ I

]
,

a22 :=
(
I ⊗ I −AT0 ⊗AT0

)−1 (−I ⊗AT1 −AT0 ⊗AT2 ) .

The above arguments show that a solution of the first
equation of (3.5) is

colβ(θ) = ε11(θ) colβ(0) + ε12(θ) colϑ(0) =︸︷︷︸
(3.6)

= ε11(θ) colβ(0) + ε12(θ) colβT (−r)︸ ︷︷ ︸
=colϑ(0)

=

= ε11(θ) colβ(0) + ε12(θ)U colβ(−r)

(3.10)

where ε11(θ) and ε12(θ) denote entries of the fundamental
matrix of (3.9)

eθA =

[
ε11(θ) ε12(θ)
ε21(θ) ε22(θ)

]
,

and U is the permutation matrix [1, p. 772, Formula (4)]

U :=

n∑
i=1

n∑
j=1

eie
T
j ⊗ ejeTi ,

where {ei}i=ni=1 stands for the Cartesian orthonormal basis.

In terms of the Kronecker products, the second equation
of (3.5) reads as(
AT1 ⊗ I + I ⊗AT1

)
colα+(I+U) colβ(0) = − col γ−colP

(3.11)
whilst the third equation of (3.5) takes the form

colβ(−r) = colQ+ col(γA0) +
[
I ⊗ (A1A0 +A2)T

]
colα

+
[
I ⊗AT0

]
colβ(0) .

(3.12)
This enables us to eliminate colβ(−r) from

[I − ε12(−r)U] colβ(−r) = ε11(−r) colβ(0)

which is being obtained from (3.10) at θ = −r. Hence we
get

[I − ε12(−r)U] {colQ+ col(γA0)+

+
[
I ⊗ (A1A0 +A2)T

]
colα+

[
I ⊗AT0

]
colβ(0)}

= ε11(−r) colβ(0) .

(3.13)

(3.11) jointly with (3.13) can be written in vector form[ (
AT1 ⊗ I + I ⊗AT1

)
[I − ε12(−r)U]

[
I ⊗ (A1A0 +A2)T

] ·
I + U

[I − ε12(−r)U]
[
I ⊗AT0

]
− ε11(−r)

]
·
[

colα

colβ(0)

]
=

=

[ − col γ − colP

− [I − ε12(−r)U] [colQ+ col(γA0)]

]
(3.14)

Having (3.14) solved, one knows colα and colβ(0). More-
over, since AT1 ⊗I+I⊗AT1 is a finite–dimensional Lyapunov
operator, written in terms of the Kronecker product, and
I + U maps colβ(0) into col

[
β(0) + βT (0)

]
then colα

corresponds to a symmetric matrix α. Next, using (3.12),
one can determine colβ(−r). Finally, β(θ) can be obtained
from (3.10). The whole procedure yields a closed–form so-
lution, provided that (3.14) has a solution, so the following
theorem is fundamental.
Theorem 3.1. If the semigroup {S(t)}t≥0 is EXS, or
equivalently, (3.1) and (3.2) hold, then the linear algebraic
non–homogeneous system (3.14) has a unique solution.

Proof. It is enough to show that the matrix of the linear
algebraic non–homogeneous system (3.14) is nonsingular.
Suppose that this is not the case. Then the associated
linear algebraic homogeneous system has a nonzero so-
lution with α necessarily symmetric. This implies that
for P = Q = R = 0 (observe that, by (3.1), R = 0
⇐⇒ γ = 0) there exists, a generally nonzero pair
(colα, colβ(0)), which solves (3.14) with the null RHS.
The corresponding colβ(−r) and colβ(θ) are being de-
termined by (3.12) and (3.10), respectively. Consequently
there exists 0 6= H = H∗ ∈ L(H) such that

〈Ax,Hx〉H + 〈x,HAx〉H = 0 ∀x ∈ D(A) .

However, this contradicts EXS. Indeed, inserting x =
S(t)x0 where x0 ∈ D(A) is arbitrary, we conclude that

0 = 〈AS(t)x0,HS(t)x0〉H + 〈S(t)x0,HAS(t)x0〉H =

=
d
dt
〈S(t)x0,HS(t)x0〉H ⇐⇒ 〈S(t)x0,HS(t)x0〉H =

= 〈x0,Hx0〉H ∀t ≥ 0, ∀x ∈ D(A) .

Since H ∈ L(H) and D(A) is dense in H the last equality
holds for any x0 ∈ H, and by EXS:

〈x0,Hx0〉H = 0 ∀x0 ∈ H .

But this means that for any x0 ∈ H there exists y0 ∈ R(H),
namely y0 = Hx0, such that 〈x0, y0〉H = 0. Hence, any
x0 ∈ H is perpendicular to the linear subspace R(H). Thus
R(H) = {0} and H = 0. 2

4. DISCUSSION

Observe that



λI −A =

[
λI ⊗ I 0⊗ 0

0⊗ 0 λI ⊗ I

]
−

[
I ⊗ I I ⊗AT0
AT0 ⊗ I I ⊗ I

]−1
·

·

[
AT1 ⊗ I I ⊗AT2
−AT2 ⊗ I −I ⊗AT1

]
=

[
I ⊗ I I ⊗AT0
AT0 ⊗ I I ⊗ I

]−1
·

·

[
(λI −AT1 )⊗ I I ⊗ (λAT0 −AT2 )

(λAT0 +AT2 )⊗ I I ⊗ (λI +AT1 )

]
,

whence, up to the reciprocal of the determinant (3.8), the
characteristic polynomial of A equals, by Lemma 3.1,

det

[
(λI −AT1 )⊗ I I ⊗ (λAT0 −AT2 )

(λAT0 +AT2 )⊗ I I ⊗ (λI +AT1 )

]
=

= det[(λI −AT1 )⊗ I] det{[I ⊗ (λI +AT1 )]

−
[(
λAT0 +AT2

)
⊗ I
]

[(λI −AT1 )⊗ I]−1︸ ︷︷ ︸
:=I⊗(λI−AT

1 )−1

[I ⊗ (λAT0 −AT2 )]}.

But the matrices (λAT0 + AT2 ) ⊗ I, I ⊗ (λI − AT1 )−1

commute, consequently, up to a constant multiplier, the
characteristic equation of A is

det
[
(λI −AT1 )⊗ (λI +AT1 ) + (AT2 + λAT0 )⊗ (AT2 − λAT0 )

]
.

(4.1)

Thus

eλθ
[
L
M

]
(4.2)

is an eigensolution of (3.7) where λ is a root of (4.1), and
matrices L, M ∈ L(Cn

2

) satisfy the system{
λL+ λMA0 = AT1 L+MA2

λAT0 L+ λM = −AT2 L−MA1

}
. (4.3)

By multiplying the equations of (4.3) by (−1), transposing
and reordering them, one can see that if (4.2) is an

eigensolution then e−λθ
[
MT

LT

]
is an eigensolution too. In

fact, copying the arguments of [2] and shortly reported
in [12, pp. 15 - 16], one can prove that λ and −λ have
the same geometric and algebraic multiplicities. Applying
the Kronecker product to (4.3) and to its transmutation

just described, we see that
[
col L
col M

]
,
[
Ucol M
Ucol L

]
belong

to ker(λI −A), i.e., they are eigenvectors of A, and thus

eλθ
[
col L
col M

]
, e−λθ

[
Ucol M
Ucol L

]
are eigensolutions of (3.9).

Now assume, in addition, that all eigenvalues of (3.7)
have linear elementary divisors. Then the corresponding
eigenvectors form a basis in Cn

2

and a general solution of
(3.7) is[

β(θ)

ϑ(θ)

]
=

n2∑
i=1

{
κie

λiθ

[
Li

Mi

]
+ µie

−λiθ

[
MT
i

LTi

]}
.

This solution satisfies the functional equation (3.6) iff
µi = κie

−λir, so

β(θ) =

n2∑
i=1

κi

[
eλiθLi + e−λi(r+θ)MT

i

]
⇐⇒

colβ(θ) =

n2∑
i=1

κi

[
eλiθcol Li + e−λi(r+θ)Ucol Mi

] (4.4)

is a general solution of the first equation of (3.5). Substi-
tuting (4.4) into the second and third equation of (3.5)
yields

γ +AT1 α+ αA1 +

n2∑
i=1

κi
[
Li + LTi + e−λir(Mi +MT

i )
]

=

= −P

γA0 + α(A1A0 +A2) +

n2∑
i=1

κi
[
e−λir(MT

i A0 − Li)+

+(LiA0 −MT
i )
]

= −Q .

Applying the Kronecker product of matrices to the last
system one obtains[

AT1 ⊗ I + I ⊗AT1
I ⊗ (A1A0 +A2)T

col [Li + LTi + e−λir(Mi +MT
i )]︸ ︷︷ ︸

n2 vectors (i=1,2,...,n2)

col [e−λir(MT
i A0 − Li) + LiA0 −MT

i ]︸ ︷︷ ︸
n2 vectors (i=1,2,...,n2)





col α
κ1
κ2
κ3
...
κn2

 =

=

[
−col γ − col P
−col Q− col (γA0)

]
.

(4.5)
This system has been derived in [7, p. 103], [8] and [9,
Section 3.2]. Eliminating, with an aid of (4.4), colβ(0) from
(3.14) we conclude that (4.5) and (3.14) are consistent, so
(3.14) is a generalization of (4.5).

The symmetry of matrices α, γ, P causes that both (4.5)
and its generalization (3.14) contain n(n−1)

2 redundant
equations which can be canceled.

For a variety of initial conditions the evaluation of the
performance index does not require the knowledge of all
elements and/or entries of the quadruple α, β(θ), δ(θ, σ),

γ, e.g., for x0 =

[
v0
0

]
it suffices to determine only the

matrix α.

We end with a remark that the Kronecker product is
easily available in contemporary software for symbolic
computations, e.g., in Maple 12TM.
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