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Abstract

A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n1, . . . , nk) of positive integers with
n1 + · · · + nk = n, there exists a partition (V1, . . . , Vk) of the vertex set of G such that Vi induces a connected subgraph of order
ni , for all i = 1, . . . , k. A sun with r rays is a unicyclic graph obtained by adding r hanging edges to r distinct vertices of a cycle.
We characterize all arbitrarily vertex decomposable suns with at most three rays. We also provide a list of all on-line arbitrarily
vertex decomposable suns with any number of rays.
c© 2008 Published by Elsevier B.V.
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1. Introduction

Let G = (V, E) be a graph of order n. A sequence τ = (n1, . . . , nk) of positive integers is called admissible for
G if n12 + · · · + nk = n. If τ = (n1, . . . , nk) is an admissible sequence for a graph G and there exists a partition
(V1, . . . , Vk) of the vertex set V such that for each i ∈ {1, . . . , k} the subgraph G[Vi ] induced by Vi is a connected
subgraph of order ni , then τ is called G-realizable or realizable in G and the sequence (V1, . . . , Vk) is said to be a
G-realization of τ or a realization of τ in G. Each set Vi will be called a τ -part of a realization of τ in G. A graph G
is arbitrarily vertex decomposable (avd, for short) if for each admissible sequence τ for G there exists a G-realization
of τ .

Arbitrarily vertex decomposable graphs have been investigated by several authors (cf. [1–9]). This notion originated
from some applications to computer networks (cp. [1] for details). In general, the problem of deciding whether a given
graph is avd is NP-complete [1]. It is not known whether it is NP-complete for the class of all trees. In [1], Barth
et al. showed that this problem is polynomial for the class of tripodes. A tripode S(a1, a2, a3) is a tree homeomorphic
to the star K1,3 obtained from K1,3 by substituting its edges by paths of orders a1, a2 and a3, respectively. In particular,
the tripode S(2, a, b) is a caterpillar with three hanging vertices, and we will denote it by Cat(a, b), assumming that
2 ≤ a ≤ b.

We will make use of the following characterization of avd caterpillars with three hanging vertices due to Barth
et al. [1] and, independently, to Horňák and Woźniak [5]. By (d)λ we denote the sequence (d, . . . , d), where d
appears λ times.
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Fig. 1. Sun(a1, . . . , ar ) with r rays.

Proposition 1 (Barth et al. [1] and Horňák and Woźniak [5]). A caterpillar Cat(a, b) is arbitrarily vertex
decomposable if and only if a and b are coprime. Moreover, each admissible and non-realizable sequence in Cat(a, b)

is of the form (d)λ, where d > 1 is a common divisor of a and b.

Analogous, but more intricate characterizations of avd caterpillars with more hanging vertices have been recently
obtained by Cichacz et al. [3].

The following observation makes it possible to shorten some proofs.

Proposition 2. A graph G is avd if and only if every admissible sequence τ = (n1, . . . , nk) with ni ≥ 2 for each
i = 1, . . . , k, has a realization in G.

Proof. Obviously, it suffices to justify the following assertion: if every admissible sequence with elements greater than
1 has a G-realization, then every admissible sequence also does. Suppose this is not the case, and let τ = (n1, . . . , nk)

with n1 ≥ · · · ≥ nk = 1 be a non-realizable sequence with the least possible number of 1s. By assumption, the
sequence τ ′

= (n1, . . . , nk−2, nk−1+nk) has a G-realization (V1, . . . , Vk−1) since τ ′ has less elements equal to 1 than
τ. Now, choose any vertex v ∈ Vk−1 that is not a cut-vertex of G[Vk−1] to obtain a realization (V1, . . . , Vk−1\{v}, {v})

of τ in G. �

A sun with r rays is a graph of order n ≥ 2r with r hanging vertices u1, . . . , ur , whose deletion yields a cycle
Cn−r , and each vertex vi adjacent to ui is of degree three. Each hanging edge uivi is called a ray. If the sequence
of vertices vi is situated on the cycle Cn−r in such a way that there are exactly ai ≥ 0 vertices, each of degree two,
between vi and vi+1, i = 1, . . . , r (the indices taken modulo r ), then this sun is denoted by Sun(a1, . . . , ar ), and is
unique up to isomorphism (cp. Fig. 1). Note that the order of Sun(a1, . . . , ar ) equals n = 2r + a1 + · · · + ar and the
unique cycle is dominating.

A perfect matching in a graph G = (V, E) of even order n can be defined as a partition (V1, . . . , Vn/2) of V such
that Vi is a set of two adjacent vertices, i = 1, . . . , n/2. Thus, a perfect matching is a realization of the sequence
(2)n/2. A perfect quasi-matching in a graph of odd order n is realization of the sequence (1, (2)(n−1)/2), i.e. a partition
(V1, . . . , V(n+1)/2) of V such that V1 is a single vertex and all other sets Vi contain two adjacent vertices. It follows
that every avd graph G has either a perfect matching or a perfect quasi-matching, hence the independence number
α(G) has to be at most dn/2e.

Note that every traceable graph is avd since every path is avd. It may be well to add that just recently Theorems 7
and 8 of Section 3 of the present paper have been already used by Marczyk to prove the following Ore-type conditions
for a graph to be avd.

Theorem 3 (Marczyk [8]). If deg(x) + deg(y) ≥ n − 2 for every pair of non-adjacent vertices x, y of a graph G of
order n, then G is arbitrarily vertex decomposable unless α(G) = n/2 + 1.

Theorem 4 (Marczyk [9]). Let G be a 2-connected graph of order n ≥ 11 having either a perfect matching or a
perfect quasi-matching. If deg(x) + deg(y) ≥ n − 4 for every pair of non-adjacent vertices x, y, then G is arbitrarily
vertex decomposable.
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Section 2 concerns realizations of so-called l-good sequences in suns with any number of rays, and it enables to
simplify considerably proofs in Section 3, where we characterize all avd suns with at most three rays. In the last
Section 4, we give a complete list of all on-line avd suns with any number of rays.

Given an admissible sequence τ = (n1, . . . , nk) for a graph G of order n, we will use the following convention to
describe a realization (V1, . . . , Vk) of τ in G. Namely, we choose an ordering s = (v1, . . . , vn) of the vertex set of G.
Next, we define the τ -parts according to the sequence s, that is V1 = {v1, . . . , vn1}, V2 = {vn1+1, . . . , vn1+n2}, and so
on.

2. Realizations of l-good sequences

Let τ = (n1, . . . , nk) be an admissible sequence for a graph G of order n. An element ni of τ is called good if
either ni = 1 or ni is even. For l ≥ 0, the sequence τ is called l-good if either τ contains at least l good elements, or
all its elements are good (when k < l). The following observation is analogous to Proposition 2.

Proposition 5. Let G be a graph of even order n. Then every l-good sequence is G-realizable if and only if every
l-good sequence with all elements greater than 1 is G-realizable.

Proof. Clearly, it suffices to prove the “if” part. Suppose there exists an l-good sequence with some elements equal
to 1, which has no realization in G. Let τ = (n1, . . . , nk) be such a sequence with the least number of 1’s. Assume
n1 ≥ · · · ≥ nk = 1.

If there exists an element ni that is not good in τ , then the sequence τ ′
= (n′

1, . . . , n′

k−1), with n′

i = ni + 1 and
n′

j = n j for all j 6= i , has the same number of good elements and less number of 1s. Hence τ ′ has a G-realization
(V1, . . . , Vk−1). Similarly as in the proof of Proposition 2, choose any vertex w ∈ Vi that is not a cut-vertex of G[Vi ],
define Vk = {w} and re-define Vi = Vi \{w}, 1 ≤ i ≤ k −1, to obtain a realization of τ in G, contrary to the definition
of τ.

Suppose all elements of τ are good, whence nk−1 = 1 since n is even. The sequence τ ′
= (n1, . . . , nk−2, 2)

is also l-good and has less number of 1’s. Therefore τ ′ has a realization (V1, . . . , Vk−1) in G. Then
(V1, . . . , Vk−2, {w1}, {w2}), where {w1, w2} = Vk−1, is obviously a G-realization of τ . �

Theorem 6. Every (r − 2)-good sequence is realizable in Sun(a1, . . . , ar ) if and only if at most one of the numbers
a1, . . . , ar is odd.

Proof. Let n denote the order of a graph G = Sun(a1, . . . , ar ).

Necessity. If n is even, then the sequence (2)n/2 is (r − 2)-good. Hence each number ai has to be even since each ray
uivi has to create a τ -part. For odd n, the sequence ((2)(n−3)/2, 3) is (r − 2)-good since r ≤ n/2. It follows easily that
exactly one of the numbers a1, . . . , ar is odd.
Sufficiency. First, we consider the case when n is even. Thus all numbers a1, . . . ar are even. Let τ = (n1, . . . , nk) be
an (r − 2)-good sequence. By Proposition 5, we may assume that ni ≥ 2 for all i. Define a realization (V1, . . . , Vk)

of τ in Sun(a1, . . . , ar ) according to the following sequence of vertices

s = (v1, u1, x1
1 , . . . , x1

a1
, v2, u2, x2

1 , . . . , vr , ur , xr
1, . . . , xr

ar
).

This clearly gives a realization of τ in G if all elements of τ are even. Hence, assume n1, . . . , nk1 are odd, for some
k1 ≥ 1, and nk1+1, . . . , nk are even. Obviously, k1 is even since n is even. Suppose that this construction does not give
a realization of τ in G, and let i0 denote the smallest i such that the subgraph G[Vi ] is disconnected. It follows that
v j0 ∈ Vi0−1 while u j0 ∈ Vi0 , for some j0 with 2 ≤ j0 ≤ r . The integer ni0−1 is odd since the number of elements
following v j0 in s is odd. We distinguish two cases.
Case A: j0 ∈ {3, . . . , r} or ar = 0. We modify the ordering of elements in τ by moving the last even element of τ just
before ni0−1 to obtain a new sequence

τ = (n1, . . . , ni0−2, nk, ni0−1, . . . , nk−1).

We define new τ -parts according to s. It is easily seen that, for each j = 1, . . . , j0, both vertices u j , v j belong to the
same τ -part.

We then find the first disconnected subgraph G[Vi0 ] and repeat the above modification of the sequence τ by moving
its last even element before the element ni0−1. Then we partition the set of vertices of G according to the modified τ .
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If j0 ≥ 3, then the number of necessary modifications is not greater than the least possible number r − 2 of even
elements of τ . Hence finally, we obtain a G-realization of τ. If ar = 0 then it is easy to see that we also need at most
r − 2 modifications of τ to obtain a realization of τ in G since ni ≥ 2 for all i .
Case B: j0 = 2 and ar ≥ 2. We start our procedure again with another ordering τ = (n1, . . . , nk1−1, nk1+1, nk, nk1)

and we partition the set V (G) according to the following new sequence

s1
= (xr

ar
, v1, u1, x1

1 , . . . , x1
a1

, v2, u2, x2
1 , . . . , vr , ur , xr

1, . . . , xr
ar −1).

Thus, each of the first two rays u1v1 and u2v2 belong to certain connected subgraphs induced by τ -parts of G. Then
we proceed in the same way as in Case A. Observe that at each step, the first disconnected subgraph corresponds to
an odd element of the current sequence. Therefore, moving at most r − 2 even elements in τ yields a realization of τ

in G.
Now, suppose that n is odd. Without loss of generality we may assume that a1 is the unique odd number among

a1, . . . , ar , the sequence τ = (n1, . . . , nk) is (r − 2)-good, n1, . . . , nk1 are odd numbers, for some k1 ≥ 1, and all
other elements of τ are even.

If 1 ∈ {ni | i = 1, . . . , k1}, say n1 = 1, then we take a hanging vertex u1 as a τ -part assigned to n1. Deletion of u1
yields a sun G ′ with r − 1 rays. The sequence (n2, . . . , nk) is (r − 3)-good and thus realizable in G ′ since the order
of G ′ is even.

Otherwise, we start defining τ -parts of Sun(a1, . . . , ar ) according to the sequence s. Clearly, G[V1] is connected
since n1 is odd. Then it is not difficult to see that exactly the same method as the one used previously for even n
provides a realization of τ in G. �

The following example shows that the number r − 2 in the above theorem cannot be smaller. Consider a
sun with r rays G = Sun(3m1, 3m2, 0, . . . , 0), for some non-negative integers m1, m2, and a sequence τ =

((2)r−3, (3)m1+m2+2). It is easy to check that τ is (r − 3)-good but has no realization in G.

3. Avd suns with at most three rays

Every sun with one ray is avd since it is traceable.

Theorem 7. A sun with two rays Sun(a, b) is arbitrarily vertex decomposable if and only if at most one of the numbers
a and b is odd. Moreover, Sun(a, b) of order n is not avd if and only if (2)n/2 is the unique admissible and non-
realizable sequence.

Proof. The first claim follows immediately from Theorem 6 for r = 2 since every admissible sequence is 0-good.
To prove the “only if” part of the second claim of the theorem (the “if” part is obvious) suppose that Sun(a, b) is

not avd and (n1, . . . , nk) is an admissible and non-realizable sequence. Hence both a and b are odd, and the order n is
even. If we choose a vertex of degree three and delete a non-hanging edge incident to it, then we obtain a caterpillar,
either Cat(a + 1, b + 3) or Cat(a + 3, b + 1). Clearly, the sequence τ = (n1, . . . , nk) cannot be realized in any of
these two trees. Hence, by Proposition 1, this sequence is of the form τ = (d)k with d being a common divisor of four
numbers a + 1, a + 3, b + 1, b + 3. It follows that d = 2. �

Theorem 8. A sun with three rays Sun(a, b, c) is not arbitrarily vertex decomposable if and only if at least one of the
following three conditions is fulfilled:

(1) at least two of the numbers a, b, c are odd,
(2) a ≡ b ≡ c ≡ 0 (mod 3),

(3) a ≡ b ≡ c ≡ 2 (mod 3).

Proof. Sufficiency. If all three numbers a, b, c are odd, then n ≥ 9 is odd, and it is easy to see that the sequence
(3, (2)(n−3)/2) is admissible and not realizable in Sun(a, b, c). If exactly two numbers among a, b, c are odd, then n
is even and the sequence (2)n/2 cannot be realized. If either condition (2) or (3) is fulfilled, then it is not difficult to
see that the sequence (3)n/3 is non-realizable.
Necessity. We will show that if condition (1) is not fulfilled and Sun(a, b, c) is not avd, then either (2) or (3) holds.
Suppose that at most one of the numbers a, b, c is odd. Let τ = (n1, . . . , nk) be an admissible and non-increasing
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Fig. 2. Sun(a, b, c) with three rays.

sequence. If τ contains a good element, then τ is realizable in Sun(a, b, c), by Theorem 6. Therefore assume that all
elements of τ are odd and greater than two, i.e. n1 ≥ · · · ≥ nk ≥ 3.

Without loss of generality, we may assume that 0 ≤ a ≤ b ≤ c, the graph G = Sun(a, b, c) has three hanging
vertices u1, u2, u3 adjacent to v1, v2, v3, respectively, and the subgraph G −{u1, u2, u3} is a cycle with n − 3 vertices
appearing in the following order: v1, x1, . . . , xa, v2, y1, . . . , yb, v3, z1, . . . , zc (cp. Fig. 2).

Arrange all the vertices of G into the following sequence

s = (v1, u1, x1, . . . , xa, v2, u2, y1, . . . , yb, v3, u3, z1, . . . , zc).

Define the τ -parts Vi , i = 1, . . . , k, according to the sequence s. The induced subgraphs G[Vi ] will be connected for
all i , unless one of the following Cases A or B appears.
Case A: There exists an i such that v2 ∈ Vi while u2 ∈ Vi+1.

In this case, we modify the ordering of vertices of G and consider a new sequence

s1
= (zc, v1, u1, x1, . . . , xa, v2, u2, y1, . . . , yb, v3, u3, z1, . . . , zc−1).

The sets V j , j = 1, . . . , k are now defined according to s1. Observe that this construction yields a τ -realization in G,

unless either c = 0, or v3 is the last vertex of V j for some j , i.e. n1 + · · · + n j = a + b + 6.
If c = 0, then a = b = 0 since a ≤ b ≤ c. Hence condition (2) is fulfilled, and we are done.
If n1 + · · · + n j = a + b + 6, for some j , then we take another sequence

s2
= (zc−1, zc, v1, u1, x1, . . . , xa, v2, u2, y1, . . . , yb, v3, u3, z1, . . . , zc−2),

and define the τ -parts according to s2. This would not give a realization of τ in G only if either c = 1 or n1 = 3.
If c = 1, then a and b have to be even, so a = b = 0, and n = 7. But for a graph of order 7, and there does not

exist an admissible sequence of odd elements greater than two.
When n1 = 3, then n1 = n2 = · · · = nk = 3, as τ is non-increasing. Hence a ≡ 0 (mod 3), by the definition of

Case A. Also, b ≡ c ≡ 0 (mod 3) since n1 + · · · + n j = a + b + 6 and n = 3k. Thus, again condition (2) is satisfied.
Case B: The vertices v2 and u2 both belong to the same τ -part, but there exists an i such that v3 ∈ Vi while u3 6∈ Vi ,
i.e. n1 + · · · + ni = a + b + 5.

It follows that c ≥ 2. Here, we define the sets V1, . . . , Vk according to the sequence s1. This will not give a
realization of τ in G, only if n1 + · · · + n j = a + 4 for some j with 1 ≤ j < k. In the latter case, if we re-define the
sets V1, . . . , Vk according to s2, then we obtain a G-realization of τ unless either b = 0 or n1 = 3.

This is not possible that b = 0, since then a = 0 and n1 +· · ·+n j = 4, while all elements of τ are odd and greater
than two.

If n1 = 3, then n2 = · · · = nk = 3. Consequently, a + 4 = 3 j , a + b + 5 = 3i and a + b + c + 6 = 3k. It follows
that a ≡ b ≡ c ≡ 2 (mod 3), that is condition (3) holds. �

The following corollary follows immediately from the above proof.

Corollary 9. Sun(a, b, c) of order n is not arbitrarily vertex decomposable if and only if either (2)n/2, or (3)n/3, or
else (3, (2)(n−3)/2) is an admissible and non-realizable sequence. �
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Table 1
Values a, b such that Cat(a, b) is on-line avd

a b

2 ≡1 (mod 2)

3 ≡1, 2 (mod 3)

4 ≡1 (mod 2)

5 6, 7, 9, 11, 14, 19
6 ≡1, 5 (mod 6)

7 8, 9, 11, 13, 15
8 11, 19
9 11

10 11
11 12

Table 2
Values a, b such that Sun(a, b) is on-line avd

a b

0 Arbitrary
1 ≡0 (mod 2)

2 6≡ 3 (mod 6), 3, 9, 21
3 ≡0 (mod 2)

4 ≡2, 4 (mod 6), [4, 19] \ {15}

5 ≡2, 4 (mod 6), 6, 18
6 6, 7, 8, 10, 11, 12, 14, 16
7 8, 10, 12, 14, 16
8 8, 9, 10, 11, 12
9 10, 12

It has to be noted that, as opposed to Theorem 7 for suns with two rays, Corollary 9 does not characterize all
possible admissible and non-realizable sequences for suns with three rays. For instance, if all numbers a, b, c are odd
and a ≤ b ≤ c, then it is not difficult to see that, for every odd d with 1 ≤ d ≤ a + 4, each sequence of the form
τ = (d, (2)(n−d)/2) is admissible and non-realizable in Sun(a, b, c).

4. All on-line avd suns

The notion of an on-line arbitrarily vertex decomposable graph has been introduced by Horňák, Tuza and Woźniak
in [4].

Let G be a graph of order n. Imagine the following decomposition procedure consisting of k stages, where k is
a random variable attaining integer values from 1 to n. In the i-th stage, where i = 1, . . . , k, a positive integer ni
arrives and we have to choose a connected subgraph Gi of G of order ni that is vertex-disjoint from all subgraphs
G1, . . . , Gi−1 chosen in the previous stages (without a possibility of changing the choice in the future). More precisely,
if a graph G j of order n j has been already chosen in a stage j , for all j ≤ i − 1, and 1 ≤ ni ≤ n − (n1 + · · · + ni−1),
then Gi has to be chosen as a connected subgraph of G − (G1 ∪ · · · ∪ Gi−1). If the decomposition procedure can be
accomplished for any (random) sequence of positive integers τ = (n1, . . . , nk) adding up to the order n of G, then G
is said to be on-line arbitrarily vertex decomposable (on-line avd, for short).

It seems that the characterization of avd trees is very difficult. The situation is different in the case of on-line avd
trees. The theorem below (being the main result of [4]) provides their complete list.

Theorem 10 (Horňák et al. [4]). A tree T is on-line avd if and only if either T is a path or T is a caterpillar Cat(a, b)

with a and b given in Table 1 or T is the tripode S(3, 5, 7).

Similarly as in the case of trees, the complete characterization of avd suns seems to be very difficult but the on-line
version is much easier. The theorem below provides the complete list of on-line avd suns.
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Table 3
Values a, b, c such that Sun(a, b, c) is on-line avd

a b c

0 0 ≡1, 2 (mod 3)

0 1 ≡0 (mod 2)

0 2 ≡2, 4 (mod 6), 3, 6, 7, 11, 18, 19
0 3 ≡2, 4 (mod 6)

0 4 4, 5, 6, 8, 10, 11, 12, 14, 16
0 5 6, 8,16
0 6 8, 10
0 7 8, 10
0 8 8, 9
1 2 ≡2, 4 (mod 6), 6, 18
2 3 4, 8, 16

Theorem 11. A sun with one ray is always avd.
A sun with two rays Sun(a, b) is on-line avd if and only if a and b take values given in Table 2.
A sun with three rays Sun(a, b, c) is on-line avd if and only if a and b take values given in Table 3.
A sun with four rays is on-line avd if and only if it is of the form Sun(0, 0, 1, d) with d ≡ 2, 4 (mod 6).
A sun with five or more rays is never on-line avd.

The proof of this theorem is arduous and too long to be presented in this paper. We refer the reader to [7].

Acknowledgement

The third author’s work was carried out while he was visiting Institute of Mathematics of Polish Academy of
Sciences.

References

[1] D. Barth, O. Baudon, J. Puech, Decomposable trees: A polynomial algorithm for tripodes, Discrete Applied Mathematics 119 (2002) 205–216.
[2] D. Barth, H. Fournier, A Degree Bound on Decomposable Trees, Discrete Mathematics 306 (2006) 469–477.
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