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On packing of two copies of a hypergraph

Monika Pilśniak† and Mariusz Woźniak‡

AGH University of Science and Technology, Department of Discrete Mathematics, Kraków, Poland

A 2-packing of a hypergraph H is a permutation σ on V (H) such that if an edge e belongs to E(H), then σ(e) does
not belong to E(H). Let H be a hypergraph of order n which contains edges of cardinality at least 2 and at most
n− 2. We prove that ifH has at most n− 2 edges then it is 2-packable.
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1 Introduction
Let H = (V, E) be a hypergraph, where V is the vertex set and E ⊂ 2V is the edge set. We allow empty
edges for technical reasons, hence a complete simple hypergraph of order n has 2n edges. We consider
only finite hypergraphs. The edge of cardinality t is called t-edge, and 1-edge is called a singleton. A
vertex is isolated if it does not belong to any edge. The number d(v) of edges containing a vertex v is
called the degree of v ∈ V . A hypergraph is t-uniform if |e| = t for all e ∈ E . Let H be a hypergraph
of order n. A packing of two copies of H (2-packing of H) is a permutation σ on V (H) such that, if
an edge e = {x1, ..., xk} belongs to E(H), then the edge σ(e) = {σ(x1), ..., σ(xk)} does not belong to
E(H). Such a permutation (a packing permutation) is also called an embedding ofH into its complement.
Consider a hypergraph H and a permutation σ on V . We have σ(V ) = V and σ(∅) = ∅. So, if V ∈ E or
∅ ∈ E , thenH cannot be packable.

We proved the following result in [4].

Theorem 1 If a hypergraphH of order n and size at most 1
2n has neither the empty edge nor its comple-

ment, thenH is 2-packable.

Observe that this bound is sharp. Namely, if H is a hypergraph of order n, and it has more than 1
2n

edges, and each edge is a singleton, then evidentlyH is not packable.
The aim of this paper is to show that if empty edges and singletons (and their complements, i.e. n-edges

and (n− 1)-edges) are excluded, then the bound on the size can be improved. We call a hypergraphH of
order n admissible if 2 ≤ |H| ≤ n− 2 holds for all edges H ∈ H.

We shall prove the following theorem.
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Theorem 2 An admissible hypergraphH of order n and size at most n− 2 is 2-packable.

Recall that a 2-uniform hypergraph is called a graph. The packing problems for graphs have been
studied for about thirty years (see for instance chapters in the books by B. Bollobás or H. P. Yap ([2],[8]),
or survey papers by H. P. Yap or M. Woźniak ([9], [6], [7] and [5])). One of the first results in this area
was the following theorem (see [3]).

Theorem 3 A graph G of order n and size at most n− 2 is 2-packable.

This bound is tight. Namely, if G is a star (of order n and size n− 1), then G is not packable.
LetH be an admissible hypergraph of order n. First, denote byHk a k-uniform hypergraph of order n,

which is induced by all k-edges inH, and let mk be the size ofHk. Let m be the size ofH. Thus

n− 2 ≥ m = m2 +m3 + ...+mn−2.

Let H = (V, E) be a hypergraph. Consider the hypergraph H̃ = (V, Ẽ) with the same vertex set V and
the edge set Ẽ , obtained from E in the following way: if e ∈ E has at most n

2 vertices then e belongs to
Ẽ and if e has more than n

2 vertices, then e is replaced by V \ e, with the convention that a double edge
conceivably created in this way is replaced by a single one.

Remark 4 Let H be an admissible hypergraph of order n. If the hypergraph H̃ is 2-packable, then also
H is 2-packable. Therefore, we shall assume that H of order n is restricted to have edges of size at most
n/2 only.

Let H = (V, E) be an admissible hypergraph, and let x be a vertex of H. We define the hypergraph
H′ = (V ′, E ′) := H − x as follows: V ′ = V \ {x}, and the set of edges is obtained from E by deleting
2-edges containing x, and replacing all remaining edges containing x by new edges with x deleted. It
should be noted that it may happen that the assumption of Remark 4 does not apply to the hypergraph H̃.
So, if necessary, we use H̃′ instead ofH′.

2 Lemmas
In the proof of Theorem 2, we shall use the following lemmas.

Lemma 5 Let H be an admissible hypergraph of order n ≥ 7. Let x be an isolated vertex in H2, and
let y be a vertex of degree at least two in H2. Suppose that there does not exist any 3-edge e ∈ H such
that x ∈ e and y ∈ e. If H′ = H − x − y is 2-packable, then H is also 2-packable. Moreover, H′ is an
admissible hypergraph.

Proof: Let x and y be two vertices satisfying the assumptions. It is easy to see that H′ is an admissible
hypergraph, since, by assumptions, there is no singleton in H′, because there is no 3-edge e ∈ H such
that x ∈ e and y ∈ e. On the other hand, since n ≥ 7, there is no (n′− 1)-edge inH′ (where n′ = n− 2).

Let σ′ be a packing permutation ofH′. By the choice of x and y and the property of σ′, it is easy to see
that the permutation σ = σ′ ◦ (xy), where (xy) denotes a transposition, is a packing permutation ofH.

2

The proof of Lemma 6 is analogous to that of Lemma 5.
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Lemma 6 Let H be an admissible hypergraph of order n ≥ 7. Let x and y be two not adjacent vertices
of degree one in H2 such that the neighbors x′ of x and y′ of y are distinct. Suppose that there does not
exist any 3-edge e ∈ H such that x ∈ e and y ∈ e. If H′ = H − x − y is 2-packable, then H is also
2-packable. Moreover,H′ is an admissible hypergraph.

Lemma 7 Let H be an admissible hypergraph of order n and size at most n − 2. If m2 ≤ n
2 , then H is

2-packable.

Proof: Using a probabilistic argument we shall show that a packing permutation exists forH.
Let e and f be two edges of H of the same cardinality and let σ be a random permutation on V . We

say that edge e covers edge f (with respect to σ), if σ(e) = f . We denote this fact by (ey f ).
Let e and f be two k-edges. The event A such that e covers f (denoted by A(e y f)) has probability

equal to

Pr(A(ey f)) =
k!(n− k)!

n!
=

(
n

k

)−1
.

Observe, that there are m2
k ways to choose a pair e, f of k-edges such that e covers f . So, we have

Pr

 ⋃
e,f∈H

A(ey f)

 ≤ ∑
e,f∈H

Pr (A(ey f)) = m2
2

(
n

2

)−1
+m2

3

(
n

3

)−1
+ ...+m2

bn2 c

(
n

bn2 c

)−1
.

Since k ≤ n
2 , the sequence

((
n
2

)−1
,
(
n
3

)−1
, ...
)

is decreasing, and we have

m2
2

(
n

2

)−1
+m2

3

(
n

3

)−1
+ ...+m2

bn2 c

(
n

bn2 c

)−1
≤ m2

2

(
n

2

)−1
+

(
n

3

)−1 (
m2

3 + ...+m2
bn2 c

)
≤

≤ m2
2

(
n

2

)−1
+

(
n

3

)−1
(n− 2−m2)

2
.

If m2 = 0, then n ≥ 5, and

m2
2

(
n

2

)−1
+

(
n

3

)−1
(n− 2−m2)

2
=

(
n

3

)−1
(n− 2)

2
.

If m2 = 1, then n ≥ 3, and

m2
2

(
n

2

)−1
+

(
n

3

)−1
(n− 2−m2)

2
=

(
n

2

)−1
+

(
n

3

)−1
(n− 3)

2
.

If m2 ≥ 2, then n ≥ 4, and

m2
2

(
n

2

)−1
+

(
n

3

)−1
(n− 2−m2)

2 ≤ 2n2

4n(n− 1)
+

6(n− 4)2

n(n− 1)(n− 2)
.
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It is easy to check that in each case

Pr

 ⋃
e,f∈H

A(ey f)

 < 1.

Consequently, a 2-packing of an admissible hypergraph H of order n and size at most n − 2 exists, if
m2 ≤ n

2 .
2

3 Proof of Theorem 2
By Remark 4, we consider only hypergraphs with edges of cardinality at most n

2 . It is easy to see that for
n ≤ 6, either H has only 2-edges, and we can apply Theorem 3, or the number of 2-edges is less than or
equal to n/2, and we can apply Lemma 7. So, let n ≥ 7.

Observe that, by Lemma 7, our claim holds if H2 is empty. Therefore, the proof will be divided into
two main cases corresponding to the structure ofH2 which is supposed to be non-empty.

The proof goes by induction on n. Let x, y be two vertices satisfying the assumptions of Lemma 5 or
of Lemma 6. A 3-edge containing both of them will be called a blocking edge. Observe that if there is no
blocking edge inH, then the induction hypothesis can be applied. Below, we shall very often estimate the
number of blocking edges in order to get a contradiction with the size ofH.

Case 1. There is no vertex of degree one inH2.

The hypergraph H2 has at most n − 2 edges, so it has at least two isolated vertices. Denote by w
the number of non-isolated vertices in H2. Observe that w ≥ 3 and w ≤ m2. Let y be a vertex of
degree at least 2 in H2. If we can choose an isolated vertex x in H2 such that there is no 3-edge
containing both x and y, then we are done. So, suppose that a 3-edge containing both x and y exists
in H for every isolated vertex x in H2 and for any y. Observe that one 3-edge can cover at most
two pairs of vertices x, y satisfying the assumptions of Lemma 5. Hence,

m3 ≥
1

2
w(n− w) ≥ 1

2
w(n−m2),

2m3 + wm2 ≥ wn.

Hence,
w(m2 +m3) ≥ wn,

but m2 +m3 ≤ n− 2, a contradiction.

Case 2. There is a vertex of degree one inH2.

Let b = m3 + ...+mbn2 c. If b = 0, thenH is a graph, and the claim is true. Hence, let b > 0. Then
m2 = n − 2 − b. Denote by t the number of tree components in H2. So, t ≥ b + 2. Next, denote
by i the number of isolated vertices in H2, by j the number of isolated edges, by k the number of
stars with at least two leaves, and by l the number of trees with diameter greater than two. Thus,
t = i+ j + k + l. We shall consider four subcases.
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Case 2A. There are at least two vertices of degree at least two inH2, and j + k + l ≥ 2.

As above, we shall count, how many blocking edges have to be in H. Denote by n2 the number
of vertices of degree at least two in H2. By assumption, n2 ≥ 2. So, if we are not able to apply
Lemma 5, we should have at least ( 12 in2) 3-edges in H. Similarly, if we are not able to apply
Lemma 6, we should have at least [ 13 · 4 ·

(
j+k+l

2

)
] 3-edges inH. Observe that one 3-edge can cover

at most three pairs of vertices x, y which satisfy the assumptions of Lemma 6. Moreover, between
every two tree components with at least two leaves, there are at least four such pairs. There are(
j+k+l

2

)
such pairs. Observe that all 3-edges mentioned above have to be distinct. Hence, we have

1

2
in2 +

4

3
·
(
j + k + l

2

)
≤ b ≤ t− 2 = i+ j + k + l − 2.

Observe that
1

2
in2 ≥ i,

and
4

3
· 1
2
· (j + k + l)(j + k + l − 1) ≥ 1 · 1 · (j + k + l − 1).

Again, we obtain a contradiction.

Case 2B. There are at least two vertices of degree at least two inH2, and j + k + l < 2.

Thus, we have l ≤ 1 and n2 ≥ 2. Analogously as in Case 2A, we consider blocking edges in H. If
l = 0, we obtain two cases:

1) if j + k = 0, then

i ≤ 1

2
in2 ≤ b ≤ t− 2 = i− 2;

2) if j + k = 1, then

i ≤ 1

2
in2 ≤ b ≤ t− 2 = i− 1.

If l = 1 we have at least one blocking edge more. Then,

i+ 1 ≤ 1

2
in2 + 1 ≤ b ≤ t− 2 = i+ l − 2 = i− 1.

In all cases we get a contradiction.

Case 2C. There is at most one vertex of degree at least two inH2, and j + k + l < 2.

By definition, l = 0. Therefore, we have three subcases to consider. If k = j = 0 or k = 0 and
j = 1, then by Lemma 7, our claim is true. Thus, let j = 0 and k = 1. So, H2 consists of a star
K1,p and i isolated vertices. Observe that if p ≤ n

2 , then we are done by Lemma 7.

Hence, let p > n
2 . Then, n = i+p+1. Let y be the center of the star, and let x be an isolated vertex

inH2. If for any vertex z, the set {x, y, z} is not an edge ofH, then we are done by Lemma 5.
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If the vertex y belongs to two edges of the form {x, y, z} ∈ E(H) for any isolated vertex x, then
we have the inequality

p+ 2 · i
2
≤ n− 2.

Since p+ 2 · i2 = n− 1, we obtain a contradiction.

Therefore, there exists an isolated vertex x such thatH contains exactly one 3-edge {x, y, z}. Now,
we construct a hypergraphH′ = (V ′, E ′) such that V ′ = V −{x, y} and the set of edges is obtained
from E as follows: we delete all 2-edges as well as the edge {x, y, z}, and we replace all remaining
edges containing x or y (or x and y) by new edges with these vertices deleted. Then H′ has two
vertices less, and at least p+ 1 edges less thanH.

We shall show that there exists a packing permutation σ′ ofH′ without fixed points.

By the choice of x and y and the property of σ′, it is easy to see that the permutation σ = σ′ ◦ (xy),
where (xy) denotes a transposition, will be a packing permutation ofH.

An edge of the form {x, s, t} ∈ H (where s 6= y and t 6= y) will be called an x-edge. Analogously,
an edge of the form {y, s, t} ∈ H (where s 6= x and t 6= x) will be called a y-edge.

First, we consider the case where H has either x-edges or y-edges. We construct the hypergraph
H′′ = (V ′′, E ′′) as follows: V ′′ = V ′, and the set of edges is obtained from E ′ by deleting all
x-edges and y-edges. So m′′2 = 0 in H′′. Now, we use a probabilistic argument as in the proof of
Lemma 7.

Pr

 ⋃
e,f∈H′′

A(ey f)

 ≤ (n
3

)−1
(n− 2− p− 1)

2 ≤ 6(n− 6)2

4(n− 2)(n− 3)(n− 4)
<

1

e
− 1

n!
.

It is easy to observe that the last inequality holds for n ≥ 6. (Recall that the probability that a
random permutation has no fixed point is greater than or equal to 1

e −
1
n! .)

Now, suppose that there are ξ x-edges and η y-edges inH. Observe that we have at least p+3 edges
in H (there are p edges of the star, the edge {x, y, z}, at least one x-edge and at least one y-edge).
Then, p+3 ≤ n− 2. But p > n

2 , hence n ≥ 11. In general, we have at least (ξ + η+1+ p) edges
inH. Therefore ξ + η ≤ n

2 − 3. Then a product ξη is maximal if ξ = η = 1
2 (

n
2 − 3). Analogously

as above, we use a probabilistic argument to show that there is a packing permutation σ′ without
fixed points of H′. Observe that there are ξ + η edges in H′2, and an x-edge cannot be mapped by
σ′ onto a y-edge (and vice versa). We have

Pr

 ⋃
e,f∈H′

A(ey f)

 ≤ 2 · 2ξη · (n− 2)!

n!
+

(
n

3

)−1
(n− 2− p− 3)

2 ≤

≤ (n− 6)2

4n(n− 1)
+

3(n− 10)2

2(n− 2)(n− 3)(n− 4)
<

1

e
− 1

n!
.

It is easy to check that the last inequality is satisfied for n ≥ 11, and consequently, there exists a
packing permutation ofH′ without fixed points.
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Case 2D. There is at most one vertex of degree at least two inH2, and j + k + l ≥ 2.

Then,H2 has only tree components, l = 0 and k ≤ 1.

If k = 0, then j ≥ 2 and j ≤ n
2 (because j is the number of isolated edges in H2). Then, by

Lemma 7, the conclusion holds.

Thus, let k = 1 and j ≥ 1. Denote by K1,p the star inH2. If p+ j ≤ n
2 , we are done by Lemma 7.

Hence p+ j > n
2 and n = i+2j+p+1. If j = 1, then a 3-edge can block at most two possibilities

for the choice of two leaves inH2 if one leaf is in the star. So, if we are not able to apply Lemma 6,
we have to have at least 2p

2 blocking edges in H. If we are not able to apply Lemma 5, we have
to have at least i

2 blocking edges in H. Observe that in both cases the blocking edges are distinct.
Hence, taking into account all 2-edges we get

n− 2 ≥ |E| ≥ p+ 1 + p+
i

2
,

and
n− 3 ≥ 2p+

i

2
.

On the other hand, n − 3 = i + p. Therefore, i
2 ≥ p. So, n − 3 ≥ 3p. It follows that p < n

3 , a
contradiction.

Now, let j ≥ 2. Observe that the number of 3-edges in H is at least i
2 (because of Lemma 5), and

at least 2pj
2 (because of Lemma 6). (In the latter case, we may assume that one of the leaves comes

from the star.)

We have
n− 2 ≥ |E| ≥ j + p+ pj +

i

2
.

But j + p > n
2 , so

n− 2 ≥ n

2
+ pj +

i

2
.

Hence
n

2
− i

2
− 2 ≥ pj.

We know from a structure of the hypergraph that n = i+ 2j + p+ 1, so it follows from the above
inequality that

2j + p+ 1− 4

2
≥ pj.

This inequality together with the fact that 2pj ≥ 2p+ 2j for p, j ≥ 2, implies

2j + p− 3 ≥ 2pj ≥ 2p+ 2j,

a contradiction.

This ends the proof of the theorem.
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