On packing of two copies of a hypergraph

Monika Pilśniak\| and Mariusz Woźniak|"

AGH University of Science and Technology, Department of Discrete Mathematics, Kraków, Poland

A 2-packing of a hypergraph \mathcal{H} is a permutation σ on $V(\mathcal{H})$ such that if an edge e belongs to $\mathcal{E}(\mathcal{H})$, then $\sigma(e)$ does not belong to $\mathcal{E}(\mathcal{H})$. Let \mathcal{H} be a hypergraph of order n which contains edges of cardinality at least 2 and at most $n-2$. We prove that if \mathcal{H} has at most $n-2$ edges then it is 2 -packable.

Keywords: packing, hypergraphs

1 Introduction

Let $\mathcal{H}=(V, \mathcal{E})$ be a hypergraph, where V is the vertex set and $\mathcal{E} \subset 2^{V}$ is the edge set. We allow empty edges for technical reasons, hence a complete simple hypergraph of order n has 2^{n} edges. We consider only finite hypergraphs. The edge of cardinality t is called t-edge, and 1-edge is called a singleton. A vertex is isolated if it does not belong to any edge. The number $d(v)$ of edges containing a vertex v is called the degree of $v \in V$. A hypergraph is t-uniform if $|e|=t$ for all $e \in \mathcal{E}$. Let \mathcal{H} be a hypergraph of order n. A packing of two copies of \mathcal{H} (2-packing of $\mathcal{H})$ is a permutation σ on $V(\mathcal{H})$ such that, if an edge $e=\left\{x_{1}, \ldots, x_{k}\right\}$ belongs to $\mathcal{E}(\mathcal{H})$, then the edge $\sigma(e)=\left\{\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)\right\}$ does not belong to $\mathcal{E}(\mathcal{H})$. Such a permutation (a packing permutation) is also called an embedding of \mathcal{H} into its complement. Consider a hypergraph \mathcal{H} and a permutation σ on V. We have $\sigma(V)=V$ and $\sigma(\emptyset)=\emptyset$. So, if $V \in \mathcal{E}$ or $\emptyset \in \mathcal{E}$, then \mathcal{H} cannot be packable.

We proved the following result in [4].
Theorem 1 If a hypergraph \mathcal{H} of order n and size at most $\frac{1}{2} n$ has neither the empty edge nor its complement, then \mathcal{H} is 2-packable.

Observe that this bound is sharp. Namely, if \mathcal{H} is a hypergraph of order n, and it has more than $\frac{1}{2} n$ edges, and each edge is a singleton, then evidently \mathcal{H} is not packable.

The aim of this paper is to show that if empty edges and singletons (and their complements, i.e. n-edges and $(n-1)$-edges) are excluded, then the bound on the size can be improved. We call a hypergraph \mathcal{H} of order n admissible if $2 \leq|H| \leq n-2$ holds for all edges $H \in \mathcal{H}$.

We shall prove the following theorem.

[^0]Theorem 2 An admissible hypergraph \mathcal{H} of order n and size at most $n-2$ is 2-packable.
Recall that a 2-uniform hypergraph is called a graph. The packing problems for graphs have been studied for about thirty years (see for instance chapters in the books by B. Bollobás or H. P. Yap ([2], [8]), or survey papers by H. P. Yap or M. Woźniak ([9], [6], [7] and [5])). One of the first results in this area was the following theorem (see [3]).

Theorem 3 A graph G of order n and size at most $n-2$ is 2-packable.
This bound is tight. Namely, if G is a star (of order n and size $n-1$), then G is not packable.
Let \mathcal{H} be an admissible hypergraph of order n. First, denote by \mathcal{H}_{k} a k-uniform hypergraph of order n, which is induced by all k-edges in \mathcal{H}, and let m_{k} be the size of \mathcal{H}_{k}. Let m be the size of \mathcal{H}. Thus

$$
n-2 \geq m=m_{2}+m_{3}+\ldots+m_{n-2} .
$$

Let $\mathcal{H}=(\underset{\tilde{\mathcal{L}}}{V}, \mathcal{E})$ be a hypergraph. Consider the hypergraph $\tilde{\mathcal{H}}=(V, \tilde{\mathcal{E}})$ with the same vertex set V and the edge set $\tilde{\mathcal{E}}$, obtained from \mathcal{E} in the following way: if $e \in \mathcal{E}$ has at most $\frac{n}{2}$ vertices then e belongs to $\tilde{\mathcal{E}}$ and if e has more than $\frac{n}{2}$ vertices, then e is replaced by $V \backslash e$, with the convention that a double edge conceivably created in this way is replaced by a single one.

Remark 4 Let \mathcal{H} be an admissible hypergraph of order n. If the hypergraph $\tilde{\mathcal{H}}$ is 2-packable, then also \mathcal{H} is 2-packable. Therefore, we shall assume that \mathcal{H} of order n is restricted to have edges of size at most $n / 2$ only.

Let $\mathcal{H}=(V, \mathcal{E})$ be an admissible hypergraph, and let x be a vertex of \mathcal{H}. We define the hypergraph $\mathcal{H}^{\prime}=\left(V^{\prime}, \mathcal{E}^{\prime}\right):=\mathcal{H}-x$ as follows: $V^{\prime}=V \backslash\{x\}$, and the set of edges is obtained from \mathcal{E} by deleting 2 -edges containing x, and replacing all remaining edges containing x by new edges with x deleted. It should be noted that it may happen that the assumption of Remark 4 does not apply to the hypergraph $\tilde{\mathcal{H}}$. So, if necessary, we use $\tilde{\mathcal{H}}^{\prime}$ instead of \mathcal{H}^{\prime}.

2 Lemmas

In the proof of Theorem 2, we shall use the following lemmas.
Lemma 5 Let \mathcal{H} be an admissible hypergraph of order $n \geq 7$. Let x be an isolated vertex in \mathcal{H}_{2}, and let y be a vertex of degree at least two in \mathcal{H}_{2}. Suppose that there does not exist any 3-edge e $\in \mathcal{H}$ such that $x \in e$ and $y \in e$. If $\mathcal{H}^{\prime}=\mathcal{H}-x-y$ is 2-packable, then \mathcal{H} is also 2-packable. Moreover, \mathcal{H}^{\prime} is an admissible hypergraph.

Proof: Let x and y be two vertices satisfying the assumptions. It is easy to see that \mathcal{H}^{\prime} is an admissible hypergraph, since, by assumptions, there is no singleton in \mathcal{H}^{\prime}, because there is no 3-edge $e \in \mathcal{H}$ such that $x \in e$ and $y \in e$. On the other hand, since $n \geq 7$, there is no ($n^{\prime}-1$)-edge in \mathcal{H}^{\prime} (where $n^{\prime}=n-2$).
Let σ^{\prime} be a packing permutation of \mathcal{H}^{\prime}. By the choice of x and y and the property of σ^{\prime}, it is easy to see that the permutation $\sigma=\sigma^{\prime} \circ(x y)$, where $(x y)$ denotes a transposition, is a packing permutation of \mathcal{H}.

The proof of Lemma 6 is analogous to that of Lemma 5 .

Lemma 6 Let \mathcal{H} be an admissible hypergraph of order $n \geq 7$. Let x and y be two not adjacent vertices of degree one in \mathcal{H}_{2} such that the neighbors x^{\prime} of x and y^{\prime} of y are distinct. Suppose that there does not exist any 3-edge $e \in \mathcal{H}$ such that $x \in e$ and $y \in e$. If $\mathcal{H}^{\prime}=\mathcal{H}-x-y$ is 2-packable, then \mathcal{H} is also 2-packable. Moreover, \mathcal{H}^{\prime} is an admissible hypergraph.

Lemma 7 Let \mathcal{H} be an admissible hypergraph of order n and size at most $n-2$. If $m_{2} \leq \frac{n}{2}$, then \mathcal{H} is 2-packable.

Proof: Using a probabilistic argument we shall show that a packing permutation exists for \mathcal{H}.
Let e and f be two edges of \mathcal{H} of the same cardinality and let σ be a random permutation on V. We say that edge e covers edge f (with respect to σ), if $\sigma(e)=f$. We denote this fact by ($e \curvearrowright f$).

Let e and f be two k-edges. The event A such that e covers f (denoted by $A(e \curvearrowright f)$) has probability equal to

$$
\operatorname{Pr}(A(e \curvearrowright f))=\frac{k!(n-k)!}{n!}=\binom{n}{k}^{-1}
$$

Observe, that there are m_{k}^{2} ways to choose a pair e, f of k-edges such that e covers f. So, we have
$\operatorname{Pr}\left(\bigcup_{e, f \in \mathcal{H}} A(e \curvearrowright f)\right) \leq \sum_{e, f \in \mathcal{H}} \operatorname{Pr}(A(e \curvearrowright f))=m_{2}^{2}\binom{n}{2}^{-1}+m_{3}^{2}\binom{n}{3}^{-1}+\ldots+m_{\left\lfloor\frac{n}{2}\right\rfloor}^{2}\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}^{-1}$.
Since $k \leq \frac{n}{2}$, the sequence $\left(\binom{n}{2}^{-1},\binom{n}{3}^{-1}, \ldots\right)$ is decreasing, and we have

$$
\begin{gathered}
m_{2}^{2}\binom{n}{2}^{-1}+m_{3}^{2}\binom{n}{3}^{-1}+\ldots+m_{\left\lfloor\frac{n}{2}\right\rfloor}^{2}\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}^{-1} \leq m_{2}^{2}\binom{n}{2}^{-1}+\binom{n}{3}^{-1}\left(m_{3}^{2}+\ldots+m_{\left\lfloor\frac{n}{2}\right\rfloor}^{2}\right) \leq \\
\leq m_{2}^{2}\binom{n}{2}^{-1}+\binom{n}{3}^{-1}\left(n-2-m_{2}\right)^{2}
\end{gathered}
$$

If $m_{2}=0$, then $n \geq 5$, and

$$
m_{2}^{2}\binom{n}{2}^{-1}+\binom{n}{3}^{-1}\left(n-2-m_{2}\right)^{2}=\binom{n}{3}^{-1}(n-2)^{2}
$$

If $m_{2}=1$, then $n \geq 3$, and

$$
m_{2}^{2}\binom{n}{2}^{-1}+\binom{n}{3}^{-1}\left(n-2-m_{2}\right)^{2}=\binom{n}{2}^{-1}+\binom{n}{3}^{-1}(n-3)^{2}
$$

If $m_{2} \geq 2$, then $n \geq 4$, and

$$
m_{2}^{2}\binom{n}{2}^{-1}+\binom{n}{3}^{-1}\left(n-2-m_{2}\right)^{2} \leq \frac{2 n^{2}}{4 n(n-1)}+\frac{6(n-4)^{2}}{n(n-1)(n-2)}
$$

It is easy to check that in each case

$$
\operatorname{Pr}\left(\bigcup_{e, f \in \mathcal{H}} A(e \curvearrowright f)\right)<1
$$

Consequently, a 2-packing of an admissible hypergraph \mathcal{H} of order n and size at most $n-2$ exists, if $m_{2} \leq \frac{n}{2}$.

3 Proof of Theorem 2

By Remark 4, we consider only hypergraphs with edges of cardinality at most $\frac{n}{2}$. It is easy to see that for $n \leq 6$, either \mathcal{H} has only 2-edges, and we can apply Theorem 33 or the number of 2-edges is less than or equal to $n / 2$, and we can apply Lemma 7 . So, let $n \geq 7$.

Observe that, by Lemma 7. our claim holds if \mathcal{H}_{2} is empty. Therefore, the proof will be divided into two main cases corresponding to the structure of \mathcal{H}_{2} which is supposed to be non-empty.

The proof goes by induction on n. Let x, y be two vertices satisfying the assumptions of Lemma 5 or of Lemma6 A 3-edge containing both of them will be called a blocking edge. Observe that if there is no blocking edge in \mathcal{H}, then the induction hypothesis can be applied. Below, we shall very often estimate the number of blocking edges in order to get a contradiction with the size of \mathcal{H}.

Case 1. There is no vertex of degree one in \mathcal{H}_{2}.
The hypergraph \mathcal{H}_{2} has at most $n-2$ edges, so it has at least two isolated vertices. Denote by w the number of non-isolated vertices in \mathcal{H}_{2}. Observe that $w \geq 3$ and $w \leq m_{2}$. Let y be a vertex of degree at least 2 in \mathcal{H}_{2}. If we can choose an isolated vertex x in \mathcal{H}_{2} such that there is no 3-edge containing both x and y, then we are done. So, suppose that a 3 -edge containing both x and y exists in \mathcal{H} for every isolated vertex x in \mathcal{H}_{2} and for any y. Observe that one 3-edge can cover at most two pairs of vertices x, y satisfying the assumptions of Lemma 5 . Hence,

$$
\begin{gathered}
m_{3} \geq \frac{1}{2} w(n-w) \geq \frac{1}{2} w\left(n-m_{2}\right) \\
2 m_{3}+w m_{2} \geq w n
\end{gathered}
$$

Hence,

$$
w\left(m_{2}+m_{3}\right) \geq w n
$$

but $m_{2}+m_{3} \leq n-2$, a contradiction.
Case 2. There is a vertex of degree one in \mathcal{H}_{2}.
Let $b=m_{3}+\ldots+m_{\left\lfloor\frac{n}{2}\right\rfloor}$. If $b=0$, then \mathcal{H} is a graph, and the claim is true. Hence, let $b>0$. Then $m_{2}=n-2-b$. Denote by t the number of tree components in \mathcal{H}_{2}. So, $t \geq b+2$. Next, denote by i the number of isolated vertices in \mathcal{H}_{2}, by j the number of isolated edges, by k the number of stars with at least two leaves, and by l the number of trees with diameter greater than two. Thus, $t=i+j+k+l$. We shall consider four subcases.

Case 2A. There are at least two vertices of degree at least two in \mathcal{H}_{2}, and $j+k+l \geq 2$.
As above, we shall count, how many blocking edges have to be in \mathcal{H}. Denote by n_{2} the number of vertices of degree at least two in \mathcal{H}_{2}. By assumption, $n_{2} \geq 2$. So, if we are not able to apply Lemma 5 , we should have at least $\left(\frac{1}{2} i n_{2}\right)$ 3-edges in \mathcal{H}. Similarly, if we are not able to apply Lemma 6, we should have at least $\left[\frac{1}{3} \cdot 4 \cdot\binom{j+k+l}{2}\right]$ 3-edges in \mathcal{H}. Observe that one 3-edge can cover at most three pairs of vertices x, y which satisfy the assumptions of Lemma 6 Moreover, between every two tree components with at least two leaves, there are at least four such pairs. There are $\binom{j+k+l}{2}$ such pairs. Observe that all 3-edges mentioned above have to be distinct. Hence, we have

$$
\frac{1}{2} i n_{2}+\frac{4}{3} \cdot\binom{j+k+l}{2} \leq b \leq t-2=i+j+k+l-2
$$

Observe that

$$
\frac{1}{2} i n_{2} \geq i
$$

and

$$
\frac{4}{3} \cdot \frac{1}{2} \cdot(j+k+l)(j+k+l-1) \geq 1 \cdot 1 \cdot(j+k+l-1)
$$

Again, we obtain a contradiction.
Case 2B. There are at least two vertices of degree at least two in \mathcal{H}_{2}, and $j+k+l<2$.
Thus, we have $l \leq 1$ and $n_{2} \geq 2$. Analogously as in Case 2A, we consider blocking edges in \mathcal{H}. If $l=0$, we obtain two cases:

1) if $j+k=0$, then

$$
i \leq \frac{1}{2} i n_{2} \leq b \leq t-2=i-2
$$

2) if $j+k=1$, then

$$
i \leq \frac{1}{2} i n_{2} \leq b \leq t-2=i-1
$$

If $l=1$ we have at least one blocking edge more. Then,

$$
i+1 \leq \frac{1}{2} i n_{2}+1 \leq b \leq t-2=i+l-2=i-1
$$

In all cases we get a contradiction.
Case 2C. There is at most one vertex of degree at least two in \mathcal{H}_{2}, and $j+k+l<2$.
By definition, $l=0$. Therefore, we have three subcases to consider. If $k=j=0$ or $k=0$ and $j=1$, then by Lemma 7, our claim is true. Thus, let $j=0$ and $k=1$. So, \mathcal{H}_{2} consists of a star $K_{1, p}$ and i isolated vertices. Observe that if $p \leq \frac{n}{2}$, then we are done by Lemma 7
Hence, let $p>\frac{n}{2}$. Then, $n=i+p+1$. Let y be the center of the star, and let x be an isolated vertex in \mathcal{H}_{2}. If for any vertex z, the set $\{x, y, z\}$ is not an edge of \mathcal{H}, then we are done by Lemma 5 .

If the vertex y belongs to two edges of the form $\{x, y, z\} \in \mathcal{E}(\mathcal{H})$ for any isolated vertex x, then we have the inequality

$$
p+2 \cdot \frac{i}{2} \leq n-2
$$

Since $p+2 \cdot \frac{i}{2}=n-1$, we obtain a contradiction.
Therefore, there exists an isolated vertex x such that \mathcal{H} contains exactly one 3-edge $\{x, y, z\}$. Now, we construct a hypergraph $\mathcal{H}^{\prime}=\left(V^{\prime}, \mathcal{E}^{\prime}\right)$ such that $V^{\prime}=V-\{x, y\}$ and the set of edges is obtained from \mathcal{E} as follows: we delete all 2 -edges as well as the edge $\{x, y, z\}$, and we replace all remaining edges containing x or y (or x and y) by new edges with these vertices deleted. Then \mathcal{H}^{\prime} has two vertices less, and at least $p+1$ edges less than \mathcal{H}.
We shall show that there exists a packing permutation σ^{\prime} of \mathcal{H}^{\prime} without fixed points.
By the choice of x and y and the property of σ^{\prime}, it is easy to see that the permutation $\sigma=\sigma^{\prime} \circ(x y)$, where $(x y)$ denotes a transposition, will be a packing permutation of \mathcal{H}.
An edge of the form $\{x, s, t\} \in \mathcal{H}$ (where $s \neq y$ and $t \neq y$) will be called an x-edge. Analogously, an edge of the form $\{y, s, t\} \in \mathcal{H}$ (where $s \neq x$ and $t \neq x$) will be called a y-edge.
First, we consider the case where \mathcal{H} has either x-edges or y-edges. We construct the hypergraph $\mathcal{H}^{\prime \prime}=\left(V^{\prime \prime}, \mathcal{E}^{\prime \prime}\right)$ as follows: $V^{\prime \prime}=V^{\prime}$, and the set of edges is obtained from \mathcal{E}^{\prime} by deleting all x-edges and y-edges. So $m_{2}^{\prime \prime}=0$ in $\mathcal{H}^{\prime \prime}$. Now, we use a probabilistic argument as in the proof of Lemma7

$$
\operatorname{Pr}\left(\bigcup_{e, f \in \mathcal{H}^{\prime \prime}} A(e \curvearrowright f)\right) \leq\binom{ n}{3}^{-1}(n-2-p-1)^{2} \leq \frac{6(n-6)^{2}}{4(n-2)(n-3)(n-4)}<\frac{1}{e}-\frac{1}{n!}
$$

It is easy to observe that the last inequality holds for $n \geq 6$. (Recall that the probability that a random permutation has no fixed point is greater than or equal to $\frac{1}{e}-\frac{1}{n!}$.)
Now, suppose that there are ξx-edges and ηy-edges in \mathcal{H}. Observe that we have at least $p+3$ edges in \mathcal{H} (there are p edges of the star, the edge $\{x, y, z\}$, at least one x-edge and at least one y-edge). Then, $p+3 \leq n-2$. But $p>\frac{n}{2}$, hence $n \geq 11$. In general, we have at least $(\xi+\eta+1+p)$ edges in \mathcal{H}. Therefore $\xi+\eta \leq \frac{n}{2}-3$. Then a product $\xi \eta$ is maximal if $\xi=\eta=\frac{1}{2}\left(\frac{n}{2}-3\right)$. Analogously as above, we use a probabilistic argument to show that there is a packing permutation σ^{\prime} without fixed points of \mathcal{H}^{\prime}. Observe that there are $\xi+\eta$ edges in $\mathcal{H}^{\prime}{ }_{2}$, and an x-edge cannot be mapped by σ^{\prime} onto a y-edge (and vice versa). We have

$$
\begin{gathered}
\operatorname{Pr}\left(\bigcup_{e, f \in \mathcal{H}^{\prime}} A(e \curvearrowright f)\right) \leq \frac{2 \cdot 2 \xi \eta \cdot(n-2)!}{n!}+\binom{n}{3}^{-1}(n-2-p-3)^{2} \leq \\
\leq \frac{(n-6)^{2}}{4 n(n-1)}+\frac{3(n-10)^{2}}{2(n-2)(n-3)(n-4)}<\frac{1}{e}-\frac{1}{n!}
\end{gathered}
$$

It is easy to check that the last inequality is satisfied for $n \geq 11$, and consequently, there exists a packing permutation of \mathcal{H}^{\prime} without fixed points.

Case 2D. There is at most one vertex of degree at least two in \mathcal{H}_{2}, and $j+k+l \geq 2$.
Then, \mathcal{H}_{2} has only tree components, $l=0$ and $k \leq 1$.
If $k=0$, then $j \geq 2$ and $j \leq \frac{n}{2}$ (because j is the number of isolated edges in \mathcal{H}_{2}). Then, by Lemma 7 the conclusion holds.
Thus, let $k=1$ and $j \geq 1$. Denote by $K_{1, p}$ the star in \mathcal{H}_{2}. If $p+j \leq \frac{n}{2}$, we are done by Lemma 7
Hence $p+j>\frac{n}{2}$ and $n=i+2 j+p+1$. If $j=1$, then a 3-edge can block at most two possibilities for the choice of two leaves in \mathcal{H}_{2} if one leaf is in the star. So, if we are not able to apply Lemma 6 , we have to have at least $\frac{2 p}{2}$ blocking edges in \mathcal{H}. If we are not able to apply Lemma 5 , we have to have at least $\frac{i}{2}$ blocking edges in \mathcal{H}. Observe that in both cases the blocking edges are distinct. Hence, taking into account all 2-edges we get

$$
n-2 \geq|\mathcal{E}| \geq p+1+p+\frac{i}{2}
$$

and

$$
n-3 \geq 2 p+\frac{i}{2}
$$

On the other hand, $n-3=i+p$. Therefore, $\frac{i}{2} \geq p$. So, $n-3 \geq 3 p$. It follows that $p<\frac{n}{3}$, a contradiction.
Now, let $j \geq 2$. Observe that the number of 3-edges in \mathcal{H} is at least $\frac{i}{2}$ (because of Lemma 5 , and at least $\frac{2 p j}{2}$ (because of Lemma6). (In the latter case, we may assume that one of the leaves comes from the star.)
We have

$$
n-2 \geq|\mathcal{E}| \geq j+p+p j+\frac{i}{2}
$$

But $j+p>\frac{n}{2}$, so

$$
n-2 \geq \frac{n}{2}+p j+\frac{i}{2}
$$

Hence

$$
\frac{n}{2}-\frac{i}{2}-2 \geq p j
$$

We know from a structure of the hypergraph that $n=i+2 j+p+1$, so it follows from the above inequality that

$$
\frac{2 j+p+1-4}{2} \geq p j
$$

This inequality together with the fact that $2 p j \geq 2 p+2 j$ for $p, j \geq 2$, implies

$$
2 j+p-3 \geq 2 p j \geq 2 p+2 j
$$

a contradiction.
This ends the proof of the theorem.

References

[1] A. Benhocine, A. P. Wojda, On self-complementation, J. Graph Theory 8 (1985), 335-341.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
[3] D. Burns, S. Schuster, Every $(n, n-2)$ graph is contained in its complement, J. Graph Theory 1 (1977), 277-279.
[4] M. Pilśniak, M. Woźniak, A note on packing of two copies of a hypergraph, Discussiones Math. G. Th. 27(1) (2007), 45-49.
[5] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994), 233-241.
[6] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997), 1-78.
[7] M. Woźniak, Packing of graphs and permutations - a survey, Discrete Math. 276 (2004), 379-391.
[8] H. P. Yap, Some Topics in Graph Theory, London Math. Society, Lecture Notes Series, Vol. 108, Cambridge University Press, Cambridge, 1986.
[9] H. P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988), 395-404.

[^0]: ${ }^{\dagger}$ Email: pilsniak@agh.edu.pl
 \ddagger Email: mwozniak@agh.edu.pl
 This research was partially supported by the Polish Ministry of Science and Higher Education

