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Let D be a simple directed graph. Suppose that each edge of D is assigned with some
number of chips. For a vertex v of D , let q+(v) and q−(v) be the total number of
chips lying on the arcs outgoing form v and incoming to v , respectively. Let q(v) =
q+(v) − q−(v). We prove that there is always a chip arrangement, with one or two chips
per edge, such that q(v) is a proper coloring of D . We also show that every undirected
graph G can be oriented so that adjacent vertices have different balanced degrees (or
even different in-degrees). The arguments are based on peculiar chip shifting operation
which provides efficient algorithms for obtaining the desired chip configurations. We also
investigate modular versions of these problems. We prove that every k-colorable digraph
has a coloring chip configuration modulo k or k + 1.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple connected graph with at least two
edges. Suppose that each edge of G is assigned with one,
two, or three chips. For a vertex v , let q(v) denote the
total number of chips lying on the edges incident to v . Is
it possible to place the chips so that q(u) is different from
q(v) for every pair of adjacent vertices u, v?

This innocently looking question was posed by Karoński,
Łuczak, and Thomason [7] as a variant of the irregularity
strength of a graph (where all numbers q(v), not just for
adjacent vertices, are to be different). Despite some efforts
using various methods [1,2,7] the question remains open.
Currently best result asserts that positive solution exists
if we allow up to five chips per edge [6]. The proof gives
an efficient algorithm for obtaining the desired arrange-
ment of chips. The main idea appeared first in a slightly
modified version of the problem, proposed in [8], in which
chips are placed on the edges as well as on the vertices
of G (with q(v) denoting the total number of chips lying
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on the edges incident to v and on the vertex v itself). It is
conjectured [8] that appropriate chip configuration is now
possible for every graph G with just one or two chips per
every edge and every vertex. In [5] Kalkowski proved that
this holds if we allow up to three chips per edge (with
previous restriction for vertices). A slight refinement of his
simple, ingenious argument is used in the proof of Theo-
rem 5.

In this paper we deal with directed version of the prob-
lem. Let D be a simple directed graph. Suppose that each
edge of D is assigned with some number of chips. For a
vertex v of D , let q+(v) and q−(v) be the total number
of chips lying on the edges outgoing from v and incoming
to v , respectively. Let q(v) = q+(v)− q−(v). We prove that
there is always a chip arrangement, with one or two chips
per edge, such that q(v) is a proper coloring of D (the ends
of every edge get distinct values of the function q(v)). We
also show that every undirected graph G can be oriented
so that just one chip per edge suffices (which means that
balanced degrees of adjacent vertices are different). Similar
argument gives an orientation in which neighbors are dis-
tinguished only by in-degrees. We also investigate modular
version of the problem.
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2. Results

We start by fixing some terminology and notation. Sup-
pose G = (V , E) is a graph with some number of chips
occupying the edges and the vertices. Formally, each el-
ement x ∈ V ∪ E is assigned with a nonnegative integer
c(x). Let N(v) be the set of all neighbors of the ver-
tex v in G . For a fixed configuration of chips, let q(v) =
c(v) + ∑

u∈N(v) c(uv) be the total number of chips on the
edges around v together with those lying on v itself. The
value q(v) will be called the potential of the vertex v .
A chip assignment c(x) forms a coloring configuration on a
graph G if the function q(v) constitutes a proper coloring
of the vertices of G , that is, if q(u) �= q(v) for every two
adjacent vertices u and v of G . By shifting a chip we mean
either transferring it from the edge it occupies to one of
the two end vertices, or moving it from the vertex to one
of the incident edges.

Theorem 1. Let G be a graph with one chip on every edge and
no chips on the vertices. Then it is possible to get a coloring con-
figuration on G by shifting every chip exactly once.

Proof. Start with finding a vertex v with highest potential
q(v) (this will be any vertex with maximum degree) and
mark it as v1. Then shift all chips from the incident edges
towards v1. So we have a new configuration on G in which
potentials of all neighbors of v1 decreased by exactly one.
In the second step find a new vertex v ∈ V (G)\{v1} whose
potential q(v) (in the new configuration) is the highest,
and mark it as v2. Then shift all remaining chips from the
incident edges towards v2. In the i-th step do the same:
find a vertex v in V \ {v1, v2, . . . , vi−1} with highest po-
tential q(v) (in the actual configuration), mark it as vi , and
shift all possible chips to vi . Continue in this way until the
very last vertex.

We claim that we obtain a coloring configuration at the
end of the algorithm. Indeed, suppose e = vi v j is an edge
of G with i < j. This means that q(vi) � q(v j) in the con-
figuration obtained in the step i − 1. Notice that the chip
from the edge e was counted in both potentials. However,
in the i-th step the chip was moved towards vi . So, the
potential of v j decreased by exactly one (and of course it
can never increase). This completes the proof. �

Shifting chips on a graph G leads in a natural way to
orientation of the edges of G: simply direct each edge ac-
cording to the direction of a chip movement.

Corollary 1. Every graph G can be oriented so that the in-
degrees of every two adjacent vertices are different.

Suppose now that we have two kinds of chips, red
and blue, lying on a graph G = (V , E). Formally, we are
given two functions cr, cb : V ∪ E → Z. Let qr(v) = cr(v) +∑

u∈N(v) cr(uv) denote the number of red chips lying on
v and on the edges incident to v . We will call it the red
potential of a vertex v . Similarly define the blue potential
qb(v) of a vertex v . Let q(v) = qb(v) − qr(v) be the differ-
ence potential of v . By a similar chip shifting argument we
get the following result.

Theorem 2. Suppose that each edge of a graph G is assigned
with two chips, one red and one blue. Then it is possible to shift
each chip exactly once, with chips from the same edge shifted in
opposite directions, so that the resulting difference potential is a
proper coloring of G.

Proof. For a fixed red–blue configuration, let f (v) =
qb(v) − cr(v). Start with finding a vertex v with highest
blue potential qb(v) (this will be any vertex with max-
imum degree) and put v1 = v . Then shift all blue chips
from the incident edges towards v1 and all red chips
in opposite directions. In this way we get new red–blue
configuration in which blue potentials of neighbors of v1
decreased by one. In the second step find a new vertex v
in the set V (G)\ {v1} with maximum value of the function
f (v) (in the new configuration) and mark it as v2. Then
shift all possible blue chips from the incident edges to-
wards v2 and their red counterparts oppositely. At the i-th
step do the same: find a vertex v in V \ {v1, v2, . . . , vi−1}
with highest value of f (v) (in the actual configuration),
mark it as vi , and move all blue chips from the incident
edges towards vi . Continue in this way until the very last
vertex.

We claim that we obtain a coloring red–blue configura-
tion at the end of the algorithm. Indeed, suppose e = vi v j
is an edge of G with i < j. This means that f (vi) � f (v j)

in the configuration obtained in the step i − 1. Notice that
the blue chip from the edge e was counted for both ver-
tices. However, in the i-th step this blue chip was moved
towards vi , while the red one floated to v j . So, the value
f (v j) decreased by exactly two (and it cannot increase
later). Finally notice that the final difference potential q(vi)

is equal to f (vi) computed in the i-th step of the proce-
dure. This completes the proof. �

Let d+(v) and d−(v) denote the out-degree and in-
degree of a vertex v in a digraph D , respectively. Let
d(v) = d+(v) − d−(v) denote the balanced degree of a ver-
tex v . As before, orienting the edges of a graph G accord-
ing to the movement of blue chips gives immediately the
following result.

Corollary 2. Every undirected graph G has an orientation in
which every two adjacent vertices have different balanced de-
grees.

Notice that the two corollaries are logically indepen-
dent (none of them implies the other). Moreover, there are
graphs for which both procedures give orientations satisfy-
ing only one of the above properties.

Let c : V ∪ E → Z be a chip configuration on a digraph
D = (V , E). For a vertex v ∈ V , let E+(v) and E−(v) de-
note the set of edges outgoing from v and incoming to v ,
respectively. Let q+(v) = c(v) + ∑

e∈E+(v) c(e) be the out-
going potential of a vertex v . Similarly define the incoming
potential q−(v) by counting chips on v and on the edges
incoming to v . Let q(v) = q+(v) − q−(v) be the balanced
potential of the vertex v in the configuration c. By writing
c : E → Z we mean that there are no chips on the vertices
in configuration c.
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Theorem 3. For every directed graph D = (V , E) there is a
chip configuration c : E → {1,2} whose balanced potential is
a proper coloring of D.

Proof. We start with putting one red chip and two blue
chips on every edge of D . This configuration will be mod-
ified in subsequent steps in accordance with the following
two basic rules: (1) blue chips always migrate according to
the orientation of the edge they occupy, while red chips
in the opposite direction, (2) before shifting chips from an
edge e we either add one red chip to e, or subtract one
blue chip from e (so, the number of red and blue chips
on e right before shifting is the same).

For a fixed red–blue chip configuration on a digraph
D , let q+

r (v) = cr(v) + ∑
e∈E+(v) cr(e) denote the red outgo-

ing potential of the vertex v . Similarly, let q−
b (v) = cb(v) +∑

e∈E−(v) cb(e) be the blue incoming potential of the ver-

tex v . Finally let g(v) = q−
b (v) − q+

r (v).
Now the procedure goes similarly as in the previous

proofs. Start with finding a vertex v with maximum value
of the function g(v) and mark it as v1. Then add one
red chip to every edge incoming to v1 and subtract one
blue chip from every edge outgoing from v1. Finally, shift
all chips from the edges incident to v1 according to the
rule (1). In the second step find a new vertex v in the set
V (G) \ {v1} with maximum value of the function g(v) (in
the new configuration) and mark it as v2. Repeat proce-
dure of adding and subtracting chips exactly as for v1, and
next shift them according to rule (1). Similarly in subse-
quent steps until the very last vertex.

We claim that the function g(v) for the final config-
uration is a proper coloring of D . Indeed, suppose that
e = (vi, v j) is a directed edge of D with i < j. This means
that g(vi) � g(v j) in the configuration obtained in the
step i − 1. However, in calculating g(vi) we counted one
red chip from e with negative sign, while in calculating
g(v j) we counted two blue chips with positive signs (in
view of direction of the edge). But before shifting we sub-
tracted one blue chip from e according to rule (2). Hence,
the value g(v j) decreased by one. Similarly in the other
case, where e = (v j, vi) with i < j; this time we have to
add one red chip to the edge e before shifting, which also
decreases the value g(v j) by one. Since g(v j) cannot grow
up in future steps we get the claim.

To obtain a chip configuration satisfying the assertion of
the theorem just shift back all red chips and throw away
all blue chips (or vice versa). This completes the proof. �

In another variation we look for chip configurations
with values in additive group Zm . Potentials of vertices are
defined as before, except that all computations are per-
formed modulo m. In [7] it was proved that for every
graph G and for every odd integer m � χ(G) there is a
coloring configuration c : E → Zm . Below we derive a sim-
ilar statement for directed graphs as a consequence of a
more general result.

Theorem 4. Let D = (V , E) be a directed graph and let f : V →
Zm be any function satisfying

∑
v∈V f (v) ≡ 0 (mod m). Then

there is a chip configuration c : E → Zm whose balanced poten-
tial satisfies q(v) = f (v) for every vertex v ∈ V .

Proof. We assume that D is a connected graph, that is,
every two vertices are joined by (not necessarily directed)
path. Start with putting m chips on every edge of D . If
q(v) �= f (v) we call v a bad vertex. We will modify initial
configuration until there will be no bad vertices. Suppose
that x is a bad vertex. Since for every configuration we
have

∑
v∈V q(v) ≡ 0 (mod m), there must be another bad

vertex, say y. Let P be any path joining x to y in D . Let
x = v0, v1, . . . , vk = y be the sequence of consecutive ver-
tices on the path P and let e1, e2, . . . , ek be the sequence
of consecutive edges of P . Start with modifying the num-
ber of chips on e1 so that q(x) = f (x). This may change
balanced potential of v1. But then we may modify the
number of chips on the edge e2 so that the potential of v1
returns to its previous value. This may influence the poten-
tial of v2, but in that case we modify the number of chips
on e3 so as to bring it back. And so on. In this way we
change the configuration so that q(x) has the desired value,
and potentials of all other vertices of D , except y, remain
unchanged. Clearly this operation reduces the number of
bad vertices by at least one. The proof is complete. �

Using the above theorem we easily get the following
result.

Corollary 3. For every digraph D = (V , E) there is a chip con-
figuration c : E → Zm, with m � χ(D) + 1, whose balanced
potential forms a proper coloring of D.

Proof. Let m = χ(D) be the chromatic number of D and
suppose that f : V → {0,1, . . . ,m − 1} is a proper col-
oring of D . Let S = ∑

v∈V f (v) denote the usual integer
sum of all colors. If S ≡ 0 (mod m + 1) we are done
by the theorem. So, suppose this is not the case and let
S + m ≡ j (mod m + 1), 0 � j � m. Since S is not zero
in Zm+1 we have that j ∈ {0,1, . . . ,m − 1}. Hence there
must be a vertex v in D with f (v) = j. Switch the color
of v into m. Clearly the new sum of colors S ′ satisfies
S ′ = S − j + m ≡ 0 (mod m + 1) which completes the
proof. �

Let G be a graph whose vertices are linearly ordered as
v1, v2, . . . , vn . A vertex vi adjacent to v j , with i < j, is a
backward neighbor of v j . Let b(v j) be the number of back-
ward neighbors of v j . Let col(G) be the coloring number of
a graph G , that is, the least integer k such that there is a
linear ordering of the vertices of G satisfying b(v j) � k − 1
for every j = 1,2, . . . ,n. For instance, the coloring num-
ber of every planar graph satisfies col(G) � 6. The proof
of the next result is almost entirely based on the idea of
Kalkowski from [5].

Theorem 5. Let G = (V , E) be a graph and let m = col(G).
Then there is a coloring chip configuration c : V ∪ E → Zm such
that c(v) ∈ {0,1} and c(e) ∈ {0,1,2}.

Proof. First notice that the result is trivial for trees (in fact
for all bipartite graphs), so we may assume that m � 3.
Start with putting one chip on every edge of G (with no
chips on the vertices). Let v1, v2, . . . , vn be any linear or-
dering of the vertices of G witnessing that col(G) = m.
We will rich a desired configuration by the following chip
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shifting procedure. In the j-th step we look at the back-
ward neighbors of v j . Let vi v j ∈ E with i < j. At this
moment there is one chip on e, as we haven’t considered
the edge e so far. Let q(v j) denote the potential of v j at
this moment. If there is a chip on the vertex vi we may
shift it to the edge e or do nothing. Notice that potential
of vi remains the same in both cases, while potential of v j
will be equal to q(v j) + 1 or q(v j), respectively. If there is
no chip on vi then we may shift the chip from e to vi or
do nothing. This also does not change potential of vi and
gives two possibilities for the new potential of v j , namely
q(v j) − 1 or q(v j), respectively. Anyway, we have always
a choice between two consecutive values for the new po-
tential of v j , by shifting at only one edge. So, if there are
k backward neighbors of v j we can obtain k + 1 different
values for the new potential of v j . Since k � m − 1 there
is always a free value for v j in Zm which is different from
all potentials of backward neighbors of v j . This completes
the proof. �
3. Problems

We conclude the paper with collecting the most in-
triguing conjectures in the topic. Maybe some of them
could be solved in the near future by using the method
of chip configurations.

Conjecture 1. (See the 123-conjecture, [7].) Every connected
graph G = (V , E) (with at least two edges) has a coloring chip
configuration c : E → {1,2,3}.

Conjecture 2. (See the 12-conjecture, [8].) Every graph G =
(V , E) has a coloring chip configuration c : V ∪ E → {1,2}.

Conjecture 3. (See antimagic labelings, [4].) For every con-
nected graph G = (V , E) (with at least two edges) there is a
bijection c : E → {1,2, . . . , |E|} such that no two vertices of G
have the same potential.

The last problem we state here concerns a purely vertex
version of 123-conjecture. For a chip configuration c : V →
{1,2, . . . ,k}, let q(v) = ∑

u∈N(v) c(u) be the vertex potential
of a vertex v . How large k must be to guarantee that there
is a configuration c whose potential is a proper coloring
of G? The case of cliques shows that sometimes k � χ(G),
but can we always do it with k = χ(G)?

Conjecture 4. (See Lucky labelings, [3].) For every graph G =
(V , E) there is a chip configuration c : V → {1,2, . . . ,χ(G)}
whose vertex potential is a proper coloring of G.
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